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ABSTRACT 

 
 

Each year in the United States there is an increasing trend of patients receiving 

total joint replacement (TJR) procedures.  Approximately a half million total knee 

replacements (TKRs) are performed annually in the United States with increasing 

prevalence attributed to baby-boomers, obesity, older, and younger patients.  This trend is 

also seen for total hip replacements (THRs) as well.  The use of ultra high molecular 

weight polyethylene (UHMWPE) inserts in TJRs results in wear particle-induced 

osteolysis, which is the predominant cause for prosthesis failure and revision surgery. 

Sub-micron size particle generation is inevitable despite the numerous efforts in 

improving this bearing material. Work by others has shown that the use of oral and 

intravenous systemic bisphosphonates (BP) can significantly minimize periprosthetic 

osteolysis. However, the systemic delivery and the high solubility of BPs results in a 

predominant portion of the drug being excreted via the kidney without reaching its target, 

bone.  

 

This doctoral research project is focused on the development and evaluation of a 

novel method to administer BPs locally using the inherent wear of UHMWPE for 

possible use as an anti-osteolysis treatment.  For new materials to be considered, they 

must be mechanically and tribologically comparable to the current gold standard, 

UHMWPE.  In order to evaluate this material, mechanical, drug elution and tribological 

experiments were performed to allow assessment of material properties.  Tensile tests 
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showed comparable yield stress and pin-on-disk testing showed comparable wear to 

standard virgin UHMWPE.  Further, drug elution tests have shown that BP was released 

from the enriched material both in static and dynamic conditions.  Additionally, an 

aggressive 2 million cycle total knee simulator experiment has shown statistically similar 

wear results for the two materials.  Overall, this research has provided the groundwork 

for further characterization and development of a new potential material for total joint 

replacements as an enhancement to standard UHMWPE.  This material shows significant 

potential as an alternative bearing material to indirectly increase TJR longevity by 

addressing osteolysis related issues. 
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— CHAPTER ONE — 

INTRODUCTION 

1.1 Clinical Significance 

There are approximately a half million total knee replacements (TKRs) performed 

in the United States annually1.  By 2030, the number of TKRs may increase to over 

3.48million/year due to baby-boomers, obesity, older & younger patients1.  The use of 

ultra high molecular weight polyethylene (UHMWPE) inserts in total joint replacements 

(TJR) results in wear particle-caused osteolysis, which is the predominant cause for 

prosthesis failure and revision surgery. Sub-micron size particle generation is inevitable 

despite the numerous efforts in improving this bearing material. Work by others has 

shown that the use of oral systemic bisphosphonates (BP) can significantly contribute to 

minimize periprosthetic osteolysis2, 3. However, the systemic delivery and the high 

solubility of BPs results in a predominant portion of the drug being excreted via the 

kidney without reaching its target, bone. The goal of this research is to develop a novel 

method to administer BPs locally using the inherent wear of UHMWPE.  This research 

aims to evaluate key material and tribological properties of this novel material (See 

Figure 1.1).  It was hypothesized that optimum concentration of BP would not 

significantly affect the material properties and tribological performance of UHMWPE, 

and that BP would be released from the surface and thin films of the enriched UHMWPE. 
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1.2 Project Hypothesis 

It is hypothesized that an UHMWPE based bearing material can be developed 

allowing the direct elution of BP through wear debris generation.  This project is aimed at 

evaluating the effect of enriching UHMWPE with bisphosphonates to locally deliver 

bisphosphonate for possible use as an anti-osteolysis treatment.  If bisphosphonate can be 

released in a controlled manner locally without significantly affecting the mechanical and 

tribological properties of the UHMWPE, it has the potential to effectively delay or slow 

the progression of osteolysis due to wear particle release.  Further, the percentage of 

bisphosphonate that reaches its target (bone) is likely to increase as it now has a 

decreased distance to reach exposed hydroxyapatite onto which it binds than if taken 

orally or intravenously.  However, the mechanical properties of the enriched UHMWPE 

must be comparable to that of the currently used UHMWPE in order to be considered as a 

viable approach.   
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1.3 Summarized Project Aims 

 

Aim 1: Engineer Enriched UHMWPE Constructs and Evaluate Mechanical and 

Tribological Properties 

A novel UHMWPE-bisphosphonate blend (PE-BP) was developed to administer 

bisphosphonates locally using the inherent wear of ultra-high molecular weight 

polyethylene (UHMWPE), a normal process occurring in total knee replacements, to 

manage periprosthetic osteolysis.  It is hypothesized that particles worn off from a 

bisphosphonate-enriched UHMWPE tibial insert will act as a local delivery system for 

bisphosphonate.   We evaluated of the effect of bisphosphonate (BP) additives on the 

mechanical and tribological properties of UHMWPE using a hydrophilic tag of similar 

molecular weight as BP and BP.  The tag was initially used to assess properties via 

tensile testing and pin-on-disk test.   

 

Aim 2: In vitro & Functional Drug Elution Testing  

In order to further validate this material, assessment of the elution rate of BP from 

bisphosphonate-enriched UHMWPE, both in bulk as well as thin film forms, was 

performed in static conditions.  Functional Drug Elution testing involving the assessment 

of the tribological properties as well as elution rate of BP from BP-enriched UHMWPE 

was completed to assess short term wear rates using a pin-on-disc. The experiment of BP-

enriched UHMWPE was aimed at confirming the initial tag-enriched UHMWPE pin-on-

disk studies by indicating the viability of this material for short term use.  Further, this 
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experiment expanded the initial static elution to include the dynamic conditions of a pin-

on-disk test in which BP was released both from the surface as well as from the pin tips 

as the pins were worn.   

 

Aim 3:  Knee Simulator Experiment  

The expansion of previous wear testing protocols to allow assessment of the 

tribological properties over a longer term in order to assess potential clinical relevance 

was completed.  This study used a Stanmore knee simulator to assess wear rates using a 

2-million cycles, which is approximately 2 years in vivo in an older patient.     
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Figure 1.1:  Flowchart of experiments 
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1.4 Literature Review 

1.4.1  Total Knee Replacements 

History 

Each year in the United States there is an increasing trend of patients receiving 

total joint replacement (TJR) procedures.  As reported by the National Center for Health 

Statistics in 2004, total hip replacements (THRs) have risen to 234,000 per year and total 

knee replacements (TKRs) have risen to 478,0004.  This is in part due to revision 

surgeries, but also due to patients receiving TJRs at younger ages.  Additionally, surgeons 

have begun allowing patients in their 80s and later, even with co-morbid conditions, to 

receive TJR implants in order to increase quality of life, thus also increasing the total 

number of implants5. As arthroplasty age decreases, there is an increasing interest in 

longevity of the implant life to reduce the number of potential revisions a patient must 

undergo.      

The first modern total knee replacements, excluding the Gluck’s hinge 

arthroplasty of ivory created in the late 1800s, was the Walldius hinge in 1958 made of 

cobalt-chrome alloy.  The first condylar total knee replacements were introduced by 

Gunston in 1971 as a cobalt chrome condyles articulating against a UHMWPE tibial 

insert, without metal backing6.  This design is similar to those which are used today.  The 

first TKRs were cemented in place using polymethylmethacrylate (PMMA).  PMMA is a 

PMMA pre-polymerized polymer bead powder that is combined with the liquid monomer 

of methyl methacrylate that was then injected into the surgical site once it has achieved 

the proper paste consistency.  The polymer completes polymerization in situ between the 
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implant and the prepared bone site creating a stable support for the implant. Advances in 

design to yield better patient outcomes and kinematics that more closely paralleled the 

natural knee started from the hinge designs and are still evolving today.   

Advances in the 1970s included metal backing for the polyethylene tibial tray as 

well as the use of non-cemented components.  Un-cemented implants allowed removal of 

less bone, however, many early non-cemented TKRs (up to 1/3) did not have bone 

ingrowth into the surface leading to revision7.  The key for bone ingrowth is lack of 

micromotion between the prosthesis and the bone that is found via precise surgical skill 

and patient compliance to allow ingrowth.  Significant research has been completed with 

different textures for porous ingrowth including sintered beads and fibers, meshes, and 

hydroxyapatite coatings.  Outcomes have been variable with non-cemented knee 

implants, however, they have been successful in younger patients with better quality bone 

stock.  In the 1980s advances included design of revision prostheses including longer 

stems, both with and without cement. 

After development of the total knee replacement, unicompartmental knee 

replacements (UKR) were also developed using the same materials and design of the total 

knee at that time, however, only replacing either the medial or lateral section of the knee.  

In 1972, the Sledge prosthesis developed in Germany is one of the earliest reported 

UKRs with a CoCr femoral component bearing on a non-metal backed UHMWPE tibial 

tray.  These were designed as a treatment for unilateral osteoarthritis or trauma to only 

the medial or lateral condyle/meniscus as an alternative to TKRs.  UKRs are most often 

implanted on the medial side, though they may be used for the lateral compartment as 
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well.  The disadvantage of UKRs is that 

they require surgical skill for alignment 

and thus are not used by all orthopaedic 

surgeons. 

Total knee replacements, the focus 

of this research, are composed of four 

components:  femoral component, tibial 

component, tibial insert, and patellar 

button (see Figure 1.2; patellar button not 

shown).  The femoral and tibial components are made of CoCrMo alloy due to its 

biocompatibility.  These two components are either press-fit or cemented over the 

associated bone (femur or tibia) once it has been surgically prepared.  CoCrMo is an 

excellent metal for these components as the chromium adds wear resistance as well as 

allows for a passivating oxidation layer of chromium oxide to form on the surface.  

Further, the cast CoCrMo (ASTM F75) allows fabrication of a porous surface for bone 

ingrowth, which is necessary in non-cemented components; porous coating of the 

CoCrMo results in decreased overall strength of approximately 200MPa, which is 

significantly lower than the non-porous version of it6.  The tibial insert is made of ultra 

high molecular weight polyethylene (UHMWPE), which serves as the sacrificial bearing 

surface for the joint.  UHMWPE has been used for TJR bearing surfaces since the 1950s 

after polytetrafluroethylene’s (PTFE) rapid failure as a sacrificial bearing surface.  

UHMWPE is either extruded and then machined into its final form or direct molded using 

Figure 1.2: TKR components 
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compression molding.  Historically, sterilization was completed using gamma 

sterilization in air but due to oxidative degradation this method was altered.  Currently, 

gamma sterilization is completed in an inert (low oxygen) environment.  However, in 

experimentation with UHMWPE and gamma sterilization, it was found that the gamma 

radiation, which caused chain scission and crosslinking, could have a beneficial effect 

with respect to wear by using high doses (100Mrad) of the radiation to increase cross-

linking; this increased wear resistance while decreasing the occurrence of pitting and 

delamination6,8,9.  More details on the use of high radiation doses to increase crosslinking 

are provided in Section 1.4.4 (Effect of Gamma Sterilization on UHMWPE Wear).  The 

last component is optional, the patellar button.  Many surgeons opt to keep the patient’s 

patella but sometimes it is necessary to replace it.  It is a UHMWPE or metal-backed 

UHMWPE button that is placed against the surgically refinished patella.  Even with 

advances in design as well as in material science and engineering, primary TKRs will fail 

and need to be revised in approximately 10-20 years.   

 

Failure 

There are many factors that influence failure rate of a primary knee replacement.  

Age as well as disease/condition causing the joint replacement both significantly 

influence the service life of an implant (revision is considered the endpoint in this 

review).  As people age, they tend towards lower activity levels.  This results in 

decreased wear on artificial joints and typically longer implant service life.  A 

retrospective study of 11,606 primary knee replacements at Mayo Clinic showed that 
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survivorship at 10 years decreases with patient age at implantation10).  Overall implant 

survivor rate over the 20 year time frame from the same study showed decreases as 

expected at 5, 10, 15, and 20 years.  A more recent study at Mayo Clinic reported a 

survival rate of 95.9% of the living participants at 15 years (n=331  knees)11.   Rand et al 

also separated the patients by gender and showed that women have a significantly higher 

implant survivorship at 10 years than men (93% vs. 88%)10.  Rand and colleagues also 

divided the cause of primary arthroplasty by disease or condition which resulted in 

significantly higher survivorship of rheumatoid arthritis patients (95%) at 10 years 

compared to other diagnoses:  osteoarthritis (90%), post-traumatic arthritis (86%), 

osteonecrosis (84%), and other diagnosis (76%).  The authors suggested that patients with 

rheumatoid arthritis would have decreased physical activity compared to osteoarthritis 

patients.   

Implant design also affects the implant service life.  It was found that posterior 

stabilized designs had a significantly higher revision rate than posterior cruciate-retaining 

designs where at 10 years after surgery survivorship was 76% (n=2994) and 91% 

(n=8052) respectively10.  Mahoney and Kinsey reported much higher survival rate of 

95.8% of posterior stabilized implants at 5-9.5 years implantation among 1030 patients, 

however, this implantation time was shorter and implant failure increases with time12.  

Other TKR studies have also shown higher survival rates at 10 to 13 years (92% at 10 

years, n=6013; 93% at 13 years, n=7614.  The other studies had smaller group sizes, 

however, the lower survivalship may be due to early implant design, such as 



 11 

impingement of the UHMWPE leading to additional wear and resulting in early failure as 

the Rand study contains cases starting in 1978.   

A statistically increased survivalship of cemented knees (92%, n=11,166) was 

shown compared with uncemented (61%, n=259) and hybrid (84%, n=172)10 at 10 years; 

the sample size however was small for those with cementless or hybrid fixation.  Further, 

the survival rate of press-fit prostheses varies by study (81.5% at 15 years for n=15)15.  

Press-fit prostheses require healthy bone stock and are typically implanted in younger 

thus typically more active patients which may explain the decrease in survivorship.  

Further, significant surgical skill is required for the precise cuts used in cementless 

fixation and low frequency of implantation may also explain lower survivorship. Hybrid 

fixation has been shown to be 64% at 15 years (n=65)16, much lower than overall 84% 

reported by Rand et al.   

Other non-design related causes of failure include infection, stress-shielding, peri-

prosthetic osteonecrosis or fracture, implant instability, polyethylene wear-through or 

fracture and allergy or hypersensitivity to one of the implant components6.  

Hypersensitivity to metal ions was found to increase after patients received implants as 

well as to be 4 times more likely in patients with previous metal hypersensitivities17.  

Infection results in 1-2% of all total knee failures15, 18.  

The most common cause of failure of an implant is implant loosening resultant of 

wear and osteolysis6.  Failure rates vary drastically due to design, cemented, hybrid, or 

non-cemented, implantation time, as well as many other factors.   
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1.4.2  Wear 

As previously stated, one of the most significant problems that leads to implant 

loosening andclinical failure is wear.  This is true for all total joint replacements (TJRs), 

not just TKRs.  Wear has been a known problem for several decades.   Wear-induced 

osteolysis was first identified in the mid 1970s by Charnley (1975)19 and Harris et al 

(1976)20.   Harris et al reported large numbers of macrophages and cavities defining 

osteolysis in the proximal femur of a THR; additionally, PMMA particles were found in 

the retrieved tissue.  Their findings were strengthened by a study by Willert and 

Semlitsch the following year that included samples from 123 failed implants.  It also 

showed dense populations of macrophages and giant cells along with three particle types:  

polyethylene, metal, and PMMA21.  In the 1970s, PMMA was thought to be the trigger 

for osteolysis as it was found in the osteolytic cavities and more readily visible than 

polyethylene (polyethylene is only visible using polarized light due to its birefringent 

properties), however with the invention of cementless implants and the continuation of 

the wear-induced osteolysis implant failures, the focus turned to polyethylene by the 

1980s.   

Howie et al (1988)22 studied the effects of intraarticular injections of PE into rat 

knees in the presence of an acrylic bone plug showing resorption in the direct vicinity of 

the implant.  Further they showed that the particles induced changes in the tissue 

surrounding the implant as well as the synovial membrane via an infiltration of 

macrophages, foreign body giant cells, fibrous tissue around the implant, and thickening 

of the synovial membrane.  Their control group contained only an acrylic bone plug and 
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was sacrificed at 2 weeks instead of 8 weeks; but, it showed formation of new bone 

directly adjacent to the acrylic implant, suggesting that it is indeed the PE particles 

inducing negative changes in the tissue.   Some researchers, notably Stuart B. Goodman 

and his collaborators, continued to study both PMMA and polyethylene debris as causes 

of osteolysis.  Both PMMA and polyethylene debris induced osteolysis as well as 

infiltration of giant cells (not statistically different between the two groups) in a rabbit 

model; UHMWPE, however, resulted in increased thickening of the synovial membrane 

as well as higher numbers of histocytes and fibrocytes than PMMA indicating a more 

severe long term response to the particles.  The PMMA samples showed more marrow 

cells indicating bone was attempting to refill the area23.    

Wear-induced osteolysis occurs due to a cascade of events that even after thirty 

years after its discovery is not yet fully understood.  When a total joint replacement is 

implanted, the natural synovial membrane is destroyed due to the resurfacing of the joint.  

However, it has been shown that a pseudosynovial membrane is formed in its place that 

holds lubrication within the joint.   Pizzoferrato et al24 have suggested that this fibrous 

variable organized membrane formed is simply a part of the wound healing response of 

the body.  It has also been indicated that it may take up to two years post-operation for 

this pseudo-capsule to completely form25.   The natural synovial membrane is paper thin 

and filled with synoviocytes, while the pseudosynovial membrane resembles its thinness 

and lack of blood vessels26.  This, however, changes with time as wear particles are 

released from the joint; many of them are trapped within the pseudosynovial membrane, 

as it forms a watertight boundary around the joint in order to hold in the lubricating fluid.  
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These foreign particles then evoke the body’s natural response, which is to remove all 

foreign material from the body.  UHMWPE, unlike bacteria, viruses, and small cellular 

parts, cannot be broken down by the macrophages, which are the first phagocytic cells to 

arrive at the site of foreign particles.  Small particles will be ingested by the 

macrophages; however, due to their inability to break down the polyethylene cytokines 

are released (see Figure 1.3).  Additionally, larger particles that the individual 

macrophages cannot break down on their own result in cytokine release causing the 

formation of multi-nucleated giant cells, which are simply multiple macrophages that 

have fused together in an effort to ingest larger debris.  In general, particles less than 1 

micron tend to be correlated with macrophages while giant cells form when particles 

exceed 10 microns27.  Further, it has been shown that these macrophages and multi-

nucleated giant cells are found within the pseudosynovial  

 

Figure 1.3:  Simplified wear particle-induced osteolysis 
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membrane and change the histology of it drastically during the time period between 

implantation and explantation; the synovial membrane becomes thickened, and perfused 

with vascularization.  This influx of inflammatory response cells releases a number of 

cytokines, which is upregulates osteoclast activation and thus bone resorption and 

prosthetic loosening (see Figure 1.3).  Macrophage activation has been specifically 

associated with release of a number of cytokines:  TNF-α 28, IL-1β29, IL-630, IL-830, IL-

1131, and TGF-β32. 

Chiba et al showed that of these macrophage-released cytokines, there were three 

that were found in stronger concentrations in failed cementless THRs (cementless 

prostheses were used to eliminate potential macrophage activation in response to 

PMMA).  Both THRs with and without osteolysis were tested so that a normal level in a 

failed joint replacement could be used as the control.  They indicated that TNF-α, IL-1, 

and IL-6 were present in elevated amounts.  All three of these cytokines (see Figure 1.4) 

are activators of osteoclasts thus increasing bone resorption in the area local to the 

macrophages.  IL-1 and IL-6 are also activators of osteoblasts, however, it takes 

significantly more time to form bone than it does to resorb it (100 days vs. 20 days). 
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Wear Mechanisms 

In general there are three main wear modes observed in TJRs:  abrasive wear, 

adhesive wear, and fatigue wear.  Adhesion occurs when two parts bond under the 

exposed load; a portion of the material, one or both surfaces, is removed as relative 

motion between the two components occurs.   Abrasion, on the other hand, is primarily 

due to asperities on the surface of one of the materials.  These asperities scrape against 

the softer surface ultimately leading to scratches (thus material removal) in the material’s 

surface33.  Fatigue occurs when a materials is repetitively loaded.  The material fails 

under loads that may be significantly lower than the ultimate tensile strength or even the 

yield strength of the material, due to the additive nature of the repetitive loading.  Fatigue 

Adapted from Marcus et al161 

Figure 1.4:  Bone Remodelling depicting cytokines that function as stimulators and 

inhibitors of both osteoblastic and osteoclastic activity as well as OB-OC relationship 
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failure begins with an initiation site, often a crack or crevice in the material that can also 

be termed a local stress concentration.  This crack then begins to grow due to the 

repetitive loading, which ultimately leads to failure of the material.  Predictions of how 

the material will perform can be estimated from the S-N curve (a graphical representation 

of stress with respect to number of cycles where a material will fatigue if the stress for a 

given number of cycles lies above the curve).  Delamination wear is observed in tibial 

trays of total knee replacements. Often, though, wear is not one distinct wear mode, but a 

combination of one or more of the three types.  So prediction of how a material will fail 

is most accurate retrospectively, though, educated analyses may provide similar 

predictions to what occurs in actuality. 

Ultimately, thus, the goal is to reduce wear such that the service life of the 

implant may be lengthened.  This, however, is highly complex as it deals with the 

interplay of a variety of variables including wear resistance, loading conditions, 

lubrication, surface roughness, design of the implant (conformity), surgical technique, 

etc.  Furthermore, all of these variables will vary during the life of the implant based on 

accumulated wear to each surface. 

 

Wear Resistance 

Wear resistance includes the specific resin used to make the polyethylene.  All 

polyethylenes are created from monomers through Ziegler-Natta catalyst reactions.  But, 

the molecular weight, chain entanglement, and crystallinity may vary among different 

polyethylene types.  Additionally, the manufacturing process may affect how the 
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polyethylene performs as the heat and pressure applied during different phases of 

compression molding have significant effects on a variety of mechanical properties, 

including stiffness, modulus and crystallinity34. 

Additionally, wear resistance may be affected by the sterilization method used; 

for example, gamma sterilization induces some cross-linking as well as free radicals 

within the material which affects the longterm wear properties.  The effects of gamma 

sterilization are further addressed in a later section.  

 

Loading Pattern and Contact Stress 

In addition to polymer properties, wear varies due to the loads that a TJR 

experiences, which will vary based on the activity level and weight of the patient.  

However, research has shown the knee experiences loads up to approximately 2-4 times 

body weight during normal walking gait35.  This load varies as a function of activities of 

daily living.   Load data has been gathered in two ways: telemetry and modeling.  

Telemetry results have been more consistent in the hip than in the knee35.  Telemetry, 

however, uses direct measurements taken via strain gauges or other pressure and load-

sensitive devices that are then transmitted out of the joint.  Measurements taken via 

telemetry have been variable between different groups which is largely due to small 

sample sizes (usually n=1 or 2) as the equipment is very expensive.  Additionally, placing 

and securing the device require significant skill for the knee as well as any problem 

occurring while the device is implanted may result in total loss of data.  Recently, though, 

there has been more telemetry research with cadavers as they are readily available and 
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easy to manipulate.  Burny et al used a method in 2000 that consisted solely of strain 

gauges forming a Wheatstone bridge36.  This was a test done ex vivo.  With the 

percutaneous leads associated with this device, it will make it extremely challenging to 

gather longterm data as it must by definition cross the skin barrier thus risking potential 

infection and/or displacement of the device as the body attempts to close the wound.   

The other option to using direct measurements is via modeling.  Modeling 

requires assumptions to be made in the representation of the muscles, ligaments, and 

bones.  Further, it requires significant skill as the human leg consists of 47 muscles and 

irregularly shaped joint surfaces.  To deal with the complications of the knee joint, it is 

often approximated using six forces and torques representing the three rigid bodies of the 

knee (tibia, femur, and patella).  Due to the complication of the system with numerous 

muscles and ligaments as well as the three rigid bodies, the system is an indeterminate 

one as there are not enough independent kinematics equations to define all of the 

movement at the knee; only 30 independent equations can be defined37.  With an 

indeterminate system, it cannot be mathematically modeled without assumptions being 

made.  Two techniques are currently used for it: reduction and optimization.  Reduction 

as the name suggests reduces the number of muscles so that the number of equations of 

motion can equal the number of unknowns.  This technique has been used since the 70s 

(See Table 1.1). 
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Table 1.1:  Sample of results from different techniques to approximate the loads 

occurring at the knee joint. 

Authors (Year) Method Used Activity Load in 

terms of 

body weight 

(BW) 

Morrison JB (1970) Modeling (Reduction) Walking 2.1 - 4.0 BW 
Komistek RD et al 

(1998)  

Modeling (Reduction) Walking 1.7 - 2.3 BW 

Wimmer MA & 

Andriacchi TP (1997) 

Modeling (Reduction) Walking 3.3 BW 

Seireg et al. (1973) Modeling 
(Optimization) 

Walking 7.2 BW 

Taylor SJG et al 

(1998) 

Telemetry Walking 2.2 - 2.5 BW 
 Stair Ascent 2.3 - 2.5 BW 
 Stair Descent 2.6 - 2.8 BW 

  One Leg Standing 2.5 BW 
Taylor SJG et Walker 

PS (2001) 

Telemetry Walking 2.8 BW 
 Stair Ascent 2.8 BW 

  Stair Descent 3.1 BW 
  Jogging 3.6 BW 
References: 

37-42 
 

 

The other modeling method, optimization, uses optimizing techniques to solve the 

motion equations.  It has been employed since the early 70s as well.  Optimization, 

however, yields higher resultant forces than reduction modeling or telemetry and has 

been questioned as to its validity, specifically whether the results may be legitimate 

mathematically however erroneous physiologically.  Early results using optimization 

predicted load at the knee to be 7.1 times BW40, 43.  As processing capabilities have 

increased with computers, the models as well have become more detailed and advanced 

thus allowing better potential for modeling the system.  Additionally, electromyography 

data is being compared to the associated muscles to tweak and validate the newer models.  
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Recent models have focused on metabolic energy used to control the muscles or forces 

within the ligaments instead of load on the joint in terms of multiple body weights44.  All 

of the work currently published in optimization modeling of the knee joint stems from the 

Pandy lab, including the work in Vail, CO which are former students from the Pandy lab.  

Reduction seems to be the more popular modeling method currently as well as the results 

of those studies more closely match the limited telemetry data.     

The mechanical properties of UHMWPE have been widely reported and the 

approximate compressive yield stress is 23MPa, where a 0.2% plastic strain is used to 

define the offset yield stress.  Given the increased loading resultant of stair climbing, 

jumping, running, or any activity beyond walking, exceeding the maximum yield stress 

becomes a concern45.  If the tibial insert plastically deforms, this will alter the contact 

stresses at the interface as the joint will no longer be functioning the capacity that it 

which it was manufactured to perform.  Past research has shown that thin tibial inserts 

will increase contact stress and thus wear rate resulting in failure46. This would make 

sense as increased contact and pressure will cause an increase in contact area and thus 

particle generation (aka wear).  Additionally, the insert may flex if it is too thin thus 

changing the tension and compression within the molecular chains of the PE insert 

potentially resulting in fatigue of the material, which would generate fatigue cracking and 

thus delamination.     

The exact kinematics of the knee joint has been difficult to elucidate.  However, it 

is generally accepted that the loading pattern for a TKR is markedly different than that of 

a THR as the joints are very differently shaped.  TKRs use a predominantly linear 
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motion, while THRs have multi-rotational movement.  Kinematic studies have been 

conducted using both subjects and TJRs labeled with reflective markers walking on force 

plates recorded via motion analysis cameras.  The kinematics of the TKRs however do 

not mimic the natural knee exactly as TJRs are designed to balance range of motion with 

low wear rates.  Both cannot be simultaneously achieved because as conformity in a TKR 

is increased, wear decreases47.  On the contrary, however, increased conformity decreases 

the patient’s range of motion.  Thus, a balance of the two qualities is reached for each 

different TKR design allowing surgeons to select which of the two characteristics is more 

important for a given patient based on their age, activity level, and desired outcome of the 

surgery.  

Additionally, a variety of motion patterns have been used in pin-on-disk wear 

testing of orthopaedic components from a simple reciprocating motion to U-shaped 

patterns to a variety of multi-axial motions.  The simple reciprocating pattern has been 

shown to produce inaccurate wear results in comparison with retrieved implant analysis.  

Thus, it is not often used at present.  Pin-on-disk testing predominately uses multi-

directional testing since motion of the joints is not completely limited to one-axis, even in 

a TKR.  The use of different testing protocols makes comparing results from pin-on-disk 

tests challenging, however, many of the early tests may be overlooked as their testing 

methodology (simple reciprocating motion) has been shown to be flawed in later tests 

comparing their results to retrieval studies.  Furthermore, pin-on-disk tests vary in length, 

however one million cycles is the industry standard for the number of cycles an implant 

will undergo in one year.  Overall, while pin-on-disk testing may not accurately reflect 
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the kinematics of a TKR or THR, it provides a screening alternative for material 

characterization prior to the use of more relevant knee or hip simulators, which many 

laboratories cannot afford.  Additionally, pin-on-disk systems provide a test to predict 

wear results more quickly.  Comparative information with respect to how various 

polyethylenes (different sterilization methods or composites versus standard UHMWPE) 

can be gathered from running the same size specimen under the same testing protocol for 

an identical length of time in pin-on-disk tests; these results may be extrapolated as to 

how the material may perform during longer tests, though, it is not completely accurate.  

Cornwall et al tested a variety of three kinematic conditions for pin-on-disk testing 

(sliding, rolling, gliding) in conjunction with variations in load and contact stress to 

determine resultant wear factors.  From this testing, it was shown that gliding under a 

load of 190N and 3MPa contact stress resulted in the highest wear factor     

(k=24.0x106)48, 49.      

For more information, McGloughlin and Kavanagh have provided a detailed 

review of the wear studies conducted through 200049. 

 

Surface Roughness and Lubrication 

Wear resultant of the kinematic conditions and associated wear factors will also 

vary based on surface roughness and lubrication.  Initially, the surfaces of all components 

in a TJR are polished prior to packaging.  But, even polished CoCrMo will still present 

asperities that will grind against the softer UHMWPE.  Studies have shown that wear rate 

increases with increased roughness of the CoCr alloy counterpart50.  The change in 
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surface roughness, even when relatively small, can have a pronounced effect on the 

overall wear rate of the UHMWPE component.  Cooper et al indicated that as roughness 

of the metal surface increases 300%, it will result in a significant increase (approximately 

10x) in the UHMWPE particles generated51.  Tests with various initial average surface 

roughnesses (Ra) of the femoral component have also been completed in bovine    

serum51, 52.  These tests confirmed that as surface roughness increases, loss of polymer 

also increases drastically for rougher polished surfaces (Ra=2.0µm).   On the contrary, 

smoother surfaces (Ra=0.06µm) were shown to have low initial wear followed by an 

increase.  In addition to the wear testconditions (dry or wet), the type of lubrication has 

been shown to affect UHMWPE wear.  In the early to mid-1990s, it was often considered 

that both the dry and wet-lubrication conditions were inadequate as many of the wear 

tests showed polymer film transferred onto the bearing surface that was not present in 

retrieval of failed specimens52.  Kernick and Allen showed that as protein level 

(specifically the addition of synovial fluid) increased in saline in a wear test of zirconia 

on UHMWPE, the volume of wear decreased53.  While TKRs are not constructed of 

zirconia, the same principle should still apply as far as lubrication against a bearing 

surface; however, the volume of wear will be higher with CoCrMo than the zirconia (or 

other ceramics) as CoCrMo has peak shaped asperities while zirconia has “valleys”.  At 

present, though, most research groups seem to use some form of protein-based 

lubrication, often bovine serum, for wear tests as it is readily available unlike synovial 

fluid which would be ideal as that is the environment the material will be ultimately 

tested in.  Besong et al54 also tested bovine serum in various dilution against distilled 
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water.  It has been found that the distilled water condition alone yields polymer transfer 

thus harsher wear conditions.  It was found that wear conditions were 14 times higher in 

distilled water (wear factor=2.73x10-6) than 25% serum solution (wear factor=2.7x10-7) 

as well as significantly larger stand-shaped particles formed in the distilled water 

condition54.   

Groups are continuously trying to search for alternative lubricant sources as the 

proteins in bovine serum are not stable during long-term wear tests.   Ahlroos & Saikko55 

tested a variety of lecithin & soybean products as well as bovine serum and aspirate from 

a prosthetic joint that was undergoing revision, which contained some tissue shreds.  The 

results of that study showed no transfer in the bovine serum (as expected) as well as none 

in the soy protein in salt solution.  Additionally, both showed no visible debris in the 

supernatant, though, the authors did not use SEM so this result can be overlooked.  The 

authors test of the prosthetic joint fluid showed the poorest results of all with heavy 

polyethylene transfer and large debris as well as grooves on the pin face such that the 

wear was as poor as that cause by distilled water lubrication tests; these results can be 

explained by the rapid wear and transfer causing surface roughening thus additional wear.   

Another group, though not as successful as the first, looked at gelatin in comparison with 

bovine serum56.  Both were diluted to 25% in distilled water.  Though the gelatin solution 

did not become contaminated with micro-organisms after 28 hours as the bovine serum 

did and maintained its stability, it did not produce physiologically sized particles and 

therefore is not relevant for use in joint simulators.  Bovine serum, while having its 

shortcomings, does produce the most clinically relevant particle sizes, and therefore, it 
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has remained the industry standard.  ISO Standard 14293-1.457 and 14293-358 (for force-

controlled and displacement-controlled wear simulations respectively) specify 25±2% 

bovine serum in distilled water to be used as the lubricant.  Further it says that the bovine 

serum should contain no less than 17g/l of protein and suggests adding sodium azide to 

reduce microbial contamination.  The protocol, however, does not say how often the 

serum should be changed, which is interesting as the protein denatures rapidly during 

wear tests.  The standards set by ISO are guidelines and thus a variety of concentrations 

are used by different research groups.  Fisher’s research group uses 25% bovine serum as 

a standard54,56,59.  Joyce et al report using 30% bovine serum60.  The highest mixture 

found is LaBerge’s lab group at 50%61-64.  Additionally, various concentrations of 

hyaluronic acid in bovine serum has been used in an attempt to closer replicate in vivo 

conditions63,64.  DesJardins and collaborators showed a 7-fold increase in in vitro wear 

rate using the 50% bovine serum with 1.5g/L of hyaluronic acid as well as found pitting 

and delamination, both features of in vivo wear not previously seen in knee simulator 

experiments with bovine serum alone64. 

Third body wear also causes a dramatic increase in the wear rates.  Third body 

wear may be a variety of materials in a TKR: metallic debris, PMMA, or bone.  All of 

these materials have been found upon microscopic examination of failed components.  As 

these debris migrate into the space between the bearing surfaces, they may transiently 

scratch the polished surface of the femoral component causing an increase in wear or may 

become imbedded into the polyethylene itself leading to increased damage to both the 

tibial tray as well as the femoral component.  Wasielewski et al consider this to be the 
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leading cause of early implant failure65.  Third body debris is a likely cause of early 

failure as it causes damage to one or both components leading to increased roughness and 

particle generation as well as the potential of pits gauged in the polyethylene.  Joint 

replacements where significant third body wear is found may alter the contact mechanics 

and contact stress of the joint resulting in early failure. 

 

1.4.3   Additives and Composites 

As wear is one of the major limiting factors to the lifespan of a total joint 

replacement, many research groups have attempted a number of solutions to ameliorate 

the wear issue.  Currently, though, none of these are clinically available. 

 

Early UHMWPE Alternatives 

In the 1950s and 60s, researchers were trying to find a viable bearing surface 

material.  Charnley attempted polytetrafluoroethylene (PTFE) in 1957 to decrease friction 

between the surfaces, however, this was to fail due to high wear rate of the PTFE on the 

order of 835-2300mm3/year.  Silica-filled PTFE also failed due to high wear rates as the 

silica scratched the metal countersurface.  In the 1960s polyethylene terephthalate 

(polyester) was introduced but clinically abandoned by the 1970s due to poor wear 

resistance and clinical outcomes66.  High density polyethylene (HDPE) was used prior to 

the invention of UHMWPE for total joint replacement.   
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Carbon fiber-UHMWPE composite 

Carbon fiber-polyethylene composites are the first group of polyethylene 

composites created for orthopaedic bearing surfaces. They were originally created in the 

early 1970s67.  Initially, randomly oriented carbon fibers were used within the 

polyethylene matrix in an effort to yield better resistance to wear by increasing the 

modulus of elasticity and ultimate tensile strength67 while decreasing creep in comparison 

to UHMWPE.  It is understandable how increasing the mechanical properties to decrease 

wear and potential delamination would develop interest.  Additionally, the carbon fibers 

had been shown to be relatively inert in the body.   Early mechanical tests showed mixed 

results with respect to wear rates67,68.  McKellop and collaborators showed results for 

carbon fiber composites that would be shown as similar to the latter in vivo testing.  They 

found more wear in the carbon-fiber laden UHMWPE as well as abrasions to the femoral 

component bearing surface from carbon fibers exposed due to wear of the polyethylene68.  

Even with mixed in vitro results, Poly IITM was commercially released by Zimmer for 

total hip arthroplasties as well as total knee arthroplasties in the 1970s.  Its success 

however was short lived as the in vivo testing did not prove as successful as any of the in 

vitro testing.  In the mid-1980s analysis of the failed components began being published 

which indicated osteolysis as well as complete fracture of some of the implants.  If 

McKellop’s in vitro tests proved true in vivo, the protruding carbon fibers would have 

resulted in scratches on the surface of the femoral component thus increasing PE debris 

formation (see section on Roughness above for more information on mechanisms).  

Several of the implants had catastrophic failure and when revision surgery was 
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undergone, it was discovered that both the synovial tissue as well as periprosthetic tissue 

were laden with pyrolitic carbon debris, coloring the synovial tissue black69-71.  Carbon, 

though harmless in its bulk form, will generate an inflammatory reaction in debris form 

as well as the debris may be carried into the lymph system, potentially leading to damage 

to it.  Research was undertaken to understand why the material failed in vivo.  It was 

shown that fatigue crack propagation was the primary cause of failure.  The bond 

between the carbon fibers and the polyethylene was not as strong as between 

polyethylene and itself, which led to numerous sites where there was a mismatch of stress 

yielding stress concentrations.  These stress concentrations became crack nucleation sites 

that combined with the material’s low fatigue crack propagation resistance lead to the 

failure of the material in vivo.  Due to the catastrophic failure as well as the carbon debris 

spreading from the implant, the use of carbon-fiber composites was abandoned by the 

mid-80s. 

In the 1990s, however, with better control over machining, it has become possible 

to create nanotubes and nanofibers of carbon.  One commercially available nanofiber that 

is often used is the Pyrograf IIITM (Pygrograf Products, USA) which have outer diameters 

of 100-200nm with lengths of 30-100µm (aspect ratio: 150 to 1000). Over the last few 

years, several researchers are attempting to revive carbon-filled UHMWPE.  Chowdhury 

et al tested two groups of nanocomposites: Kevlar fiber (10, 15, and 20 wt %) and carbon 

fibers (20 wt %).  Their research showed that the carbon fibers had similar problems in 

wear to those tested in the 80s; the carbon fibers became exposed and the wear rate 

increased presumably due to the additional abrasive element of the carbon fibers.  They, 
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however, are proposing that Kevlar fibers at 10 wt % maybe a viable biocompatible 

material as it performed better than the HDPE and UHMWPE in their pin-on-disk and hip 

simulator trials, though, they noted problems with increased wear in the UHMWPE in 

their trial presumably due to temperature errors during fabrication.  While surface 

roughness and SEM were not looked at during the study, the 10 wt % Kevlar fibers 

showed increased modulus of elasticity and tensile strength in comparison to HDPE from 

tensile testing.  Further wear testing showed wear volume similar to HDPE for both pin-

on-disk and hip simulator testing under lubricated (carboxymethyl cellulose, 0.06 Pa-s) 

conditions with significantly lower hemolysis percentage than pure HDPE (2% compared 

to 7.5%)72.    Chowdhury et al used the carboxymethyl cellulose instead of bovine serum 

as it had similar viscosity to synovial fluid, however, their tests showed some evidence of 

polymer transfer that would have been avoided with the bovine serum.  It is for this 

reason that the wear tests may need to be repeated with the appropriate lubrication.  

Further the wear debris used for the hemolysis tests was not wear debris generated from 

the hip simulator but cut wear debris from the bulk; the test would have generated more 

reliable results had smaller more physiologically- sized particles been used for the test.  

These results show promise, however they are in their infancy stage and any in vivo 

testing (perhaps in a rabbit model with the Kevlar composite in one knee as the bearing 

surface (for in vivo particle generation) with the alternate knee serving as a control) will 

provide better information as to the usefulness of this proposed composite.   Galetz et al 

has also worked with the carbon nanotube composite.  This group reported increases in 

nanocomposite modulus and yield strength with a smooth surface while preserving a 



 31 

similar ductility to extruded UHMWPE.  Their pin on disk tests showed a reduced wear 

rate with 5 wt % of carbon nanofibers added while increased wear with 10 wt % under 

dry conditions.  They attributed the increased wear rate to the non-homogenous 

distribution of the carbon within the PE matrix.  Additionally, they reported no 

protruding carbon nanotubes and a relatively smooth surface even after the wear test73.  

Their wear studies however are non-indicative of in vivo wear as they were conducted 

under dry conditions instead of wet (preferably with bovine serum) as well as they were 

conducted at 250C instead of at 370C, where a change in mechanical properties has 

previously been shown between these two conditions.  Additionally, there were 

agglomerates of the nanofibers within the matrix that may lead to stress concentrations 

within the material under longer more physiological wear testing resulting in failure of 

the material.  Finally, no cell testing on the bulk or the nanofiber laden debris has been 

conducted.  This needs to be undertaken before its viability as an enhanced polyethylene 

may be entertained; however, in vivo trials of the material are the ultimate deciding 

factor, as previously positive in vitro testing has led to poor in vivo results with carbon 

fiber containing UHMWPE.   

While the publications concerning these new nanocomposites looks promising in 

vitro, the true test of in vivo compatibility remains.  Further, while the initial carbon 

fibers are smaller this time, carbon particles will still be released with wear of the 

nanocomposite potentially causing systemic problems in vivo, if not simply a blackening 

of the synovial and periprosthetic tissue with high potential for an immune response even 

though bulk carbon is generally well tolerated by the body.           
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UHMWPE homocomposite 

Another modification of UHMWPE included self-reinforced UHMWPE, also called 

UHMWPE homocomposite.  This is a composite that is made of UHMWPE in different 

forms.  This has been researched in an effort to create a composite with better interfacial 

bonding strength along with better overall mechanical, wear, and fatigue properties as 

carbon fiber reinforced UHMWPE had several shortcomings.  Capiati and Porter were 

the first to use this with polyethylene in 197574; they were using high density 

polyethylene, however, but the process is the same.  It is a composite composed of 

UHMWPE in fiber or fabric form along with the typical UHMWPE matrix that is 

partially crystalline.  The polyethylene fibers/fabrics are used to reinforce the matrix of 

more amorphous polyethylene as fibers by definition are highly crystalline polymers.  

The fibers or meshes of polyethylene are retained in the finished composite by 

compression molding the mix at a temperature high enough to melt the amorphous 

polyethylene, but low enough to retain the fibers as they typically have melting points 5-

90C above standard LDPE or UHMWPE.   Increased tensile strength (24MPa for 40% by 

volume fiber composition composite; approximately 3 times that of HDPE alone) was 

found for the composite compared with simply the HDPE matrix as well as good 

interfacial bonding leading to pullout strengths of 17MPa76.  The tensile strength of the 

composite was further enhanced by using irradiated HDPE fibers prior to compression 

molding gaining tensile strengths approximately 9x higher than HDPE alone77.  With the 

advent of new fiber creation methods, namely gel/solution spinning, this opened the door 

for a UHMWPE fiber-UHMWPE matrix composite.  The gel/solution spun fibers had 
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higher crystallinity than their predecessors.  Spectra fibers, UHMWPE solution spun 

fibers, began being produced in the 1990s; there are currently three generations available: 

Spectra 900 (the first generation), Spectra1000, and Spectra 2000 (US Patent 6,969,553 is 

the most recent and 4,551,296 earliest).    

Suh and Arinez’ research group have continued research into the manufacture, 

properties, and wear of this composite as a potential way to decrease overall wear and 

specifically delamination in UHMWPE components74,75.   They use Spectra 1000 fibers, 

solution spun fibers of UHMWPE, for the fiber or fabric backbone of the composite with 

particles of GUR415 used as the resin; both of these components are mixed or layered 

and then compression molded to generate the composite.  In early research of this 

composite, it was found that compression molding needs to take place at 152.50C instead 

of 162.50C as the higher temperature melted the fibers thus losing any potential 

mechanical gain of the composite; composites created at 1450C could not be tested as 

mechanical bonding was insufficient.  Initial wear testing for fabric and fiber composites 

used 110,000 and 500,000 cycles respectively.  Both groups showed reduced wear 

compared to normal UHMWPE74, however, the wear test was equivalent to six months or 

less of cycles the material would experience in vivo so longer testing needs to be 

completed.  A second article by his group conducted wear testing using a cylinder shape 

on a flat geometry (same shape as prior testing) as they felt it was most similar to the 

geometry of the knee replacement.  Both dry and lubricated (in bovine calf serum) wear 

tests were conducted.  Dry and lubricated testing showed similar results for coefficient of 

friction for all materials tested:  fiber homocomposites (all compositions), fabric 
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homocomposite, extruded UHMWPE, and molded UHMWPE.  Wear, however, was 

significantly lower for the homocomposite (though it doesn’t specify which of the four 

homocomposites tested) compared to “commercial” UHMWPE for the dry condition; the 

lubricated condition did not however show significant differences.  This is interesting to 

note, however, that in vivo the two materials will be lubricated and are likely to depict 

similar wear rates, Table 1.275. 

 

Table 1.2:  Comparison of UHMWPE homocomposite under various conditions 

 Dry Lubricated (bovine 

calf serum) 

UHMWPE   0.15 (extruded)  
0.18 (molded) 

0.065 (unirradiated) 
0.08 (irradiated) 

0.25% volume 

fraction of fibers 

composite 

0.10  

0.5% volume 

fraction of fibers 

composite 

0.14  

0.75% volume 

fraction of fibers 

composite 

0.18  

Fabric composite 0.1 0.05 

 Note:  These are approximate values 

from the graphs provided. 

Material from Suh NP et al
75

 

 

Additionally, Shalaby and Meng have developed a UHMWPE self-reinforced 

composite as well (US Patent 5,824,411).  This patent was followed by a second patent 

for device, including biomedical implants such as replacement knees and hips and 

applications varying as far as sporting equipment (US Patent 5,834,113).  Their 

composite was similar as it is also comprised of fibers oriented anisotropically within a 



 35 

matrix of polyethylene, thus the material will be stronger in one direction than the other 

one.  The composite was composed of UHMWPE (GUR 405) and Spectra 1000 fibers 

similar to the other composites while only containing approximately 5% (by weight) 

fibers.  The mechanical and wear testing of the composites showed increased tensile 

properties, resistance to creep, and impact strength of the composite while wear rates 

were similar to that of UHMWPE78.  This combination provides a potentially 

advantageous composite to standard UHMWPE for bearing surfaces as it could lengthen 

service life, but again in vivo tests are necessary for solid conclusions may be drawn.    

 

Vitamin E doping 

In addition to composites, additives have been attempted including Vitamin E, 

also known as α-Tocopherol.  It is an antioxidant compound meaning that vitamin E 

removes the free radicals and will become oxidized itself in order to prevent oxidation of 

surrounding compounds.  It has also been called lipophilic meaning it can dissolve in 

lipids and predominantly forms van der Waals bonds with other compounds (it is not 

capable of forming hydrogen bonds).  Since one of the problems with UHMWPE is 

decreased fatigue strength which is associated with oxidation after gamma   

sterilization79,80, Vitamin E doping has been researched as a potential way to lengthen the 

service life of the implant.   Oxidation is particularly a problem with total knee joints as it 

speeds up the process of fatigue damage and delamination by weakening the UHMWPE.    

Tomita and collaborators showed that with the addition of Vitamin E prior to 

compression molding, the specimens tested exhibited little to no subsurface cracking thus 
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significantly less delamination using a “switched reciprocating” pattern (shape of a U) for 

200,000 cycles at 196N. Additionally, the dynamic microhardness of the Vitamin E 

specimens more closely resembled that of virgin UHMWPE where gamma irradiated had 

a large difference in microhardness leading to stress concentrations and increasing the 

opportunity for fatigue crack propagation.   The microhardness is important as the 

differences in microhardness have been shown to lead to subsurface stress cracking that 

with time and repeated loading with result in flaking or delamination.  The fatigue testing 

was much shorter than the service period of an implant and the sample size was relatively 

small (n=5 per group), however, their results suggested that delamination could be 

reduced with the addition of Vitamin E.    Additionally, these researchers had tested two 

different doping compositions, 0.1% and 0.3% Vitamin E; there was no statistical 

difference between the two for microhardness measurements or area of cracks (%), so the 

lower dose is recommended.  Further, this research group showed that there is also a 

decreased surface roughness with the addition of the 0.1% Vitamin E.  This research 

however, only looked at the first 60,000 repetitions, but it showed significantly decreased 

surface roughness (Ra) and no delamination in the Vitamin E specimens as compared to 

the gamma irradiated; additionally tests showed a significant decrease in Ra compared to 

virgin UHMWPE.   The dramatic increase in Ra of the gamma irradiated UHMWPE 

surfaces attributed to delamination defects; the Vitamin E-doped specimens were 

reported to not have such defects, but this is most likely due to the short cycle time.  The 

surface roughness measurements presented were for cycle 50,000; however, there was no 

indication of why the 5th time point was used instead of the final time point and if the 
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results were less promising at the last time point.  The reported results matched the shown 

figures, but the question still persists of why the last time point was not used.  This study 

used n=5, however, there were 14 roughness measurement positions at each time point as 

well as repetition to ensure accuracy of each measurement position (each position was 

measured 10 times) which helps to ensure accuracy even with the small sample number81.   

The research of Tomita and others prompted other groups to begin investigating 

the addition of Vitamin E as well and to further detail its effects on UHMWPE.  Oral and 

collabroators have looked at wear rates82, fatigue resistance83, migration stability83, and 

real-time aging of gamma-irradiated specimens in air84.  Oral et al used cut specimens 

UHMWPE bar stock that were irradiated at 100kGy and then doped them with Vitamin E 

over a 16 hour period followed by a 27kGy irradiation for sterilization.  Since Vitamin E 

was not mixed into the sample then compression molded, it is necessary to show the 

depth of Vitamin E penetration.  The Vitamin E penetrated approximately 0.5mm; 

beyond 5mm, no Vitamin E was detected.  Additionally, a comparable wear rate was 

shown in Vitamin E-doped specimens (1.9±.5 and 0.9±0.1 mg/million cycles for 65- and 

100-kGy samples respectively) compared to 100 kGy gamma-sterilized UHMWPE 

(1.1±0.7 mg/million cycles) after 2 million cycles post the accelerated ageing period (5 

weeks  at 800C in air).  The oxidation index within the specimen were more constant 

(0.48±0.25AU and 0.44±0.06AU decreasing to ~0.3AU 65- and 100-kGy samples 

respectively) in doped samples than the dramatic decrease for the gamma-irradiated 

(3.74±0.16AU at the surface to close to zero at 2.0mm deep).  Further, the wear rates 

(mg/million cycles) in both doped and aged specimens were shown to be similar to that 



 38 

of unaged 100kGy irradiated/melted samples and significantly decreased from aged 

105kGy irradiated/annealed as well as unaged or aged conventional 25kGy stored in 

nitrogen (only the wear rates of the doped specimens were from this experiment; the 

other results were from earlier reported data from the same research group under the 

same conditions).  The fatigue resistance for the material was shown to be higher in 

doped than simply sterilized at the border region where Vitamin E was found; however, 

beyond 0.5mm (where no Vitamin E was detectable) there was a decrease in fatigue 

resistance.  Penetration of Vitamin E could potentially be amended such that it the whole 

specimen was doped.  This was not done, though, for consideration of manufacturing as 

well as a temperature limitation of 1000C, over which crystallinity of UHMWPE may be 

decreased.  Overall, though, even without complete penetration, decreased oxidation and 

fatigue due to the crosslinking without embrittlement post-irradiation due to oxidation 

were shown for the specimens.  As these specimens are a pilot study to gather more data 

about the optimal levels, pin on disk testing was used instead of hip or knee simulators; 

but, with more concrete data (and larger sample sizes: n=3 for this study), wear in joint 

simulators was proposed. 

Since the doping of the bar stock proved to be a valid method, an elution test 

seemed to be the next step.  Vitamin E is hydrophobic, however, it can be dissolved in 

isopropyl alcohol (IPA) – that which is used by orthopaedic companies to clean the 

samples prior to being bagged and sterilized.  The elution tests included four conditions: 

control (not cleaned), 15-30 minute soak in IPA with subsequent wiping (industry 

standard), the industry standard repeated three times, and an eight hour soak in IPA 
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followed by wiping.  Results showed no statistical differences between the four testing 

conditions, either on the surface or within the bulk, as measured by FTIR (n=3 for each 

group).   Additionally, a wear test of 5 million cycles (approximately 5 years of service 

life) using a walking gait cycle with a max load of 3000N along with 370C circulating 

bovine serum in a hip simulator was performed.  Two sets of liners were tested: control 

(cleaned and irradiated only) and vitamin E doped, cleaned, then irradiated.  After the 5 

million cycles was complete, the liners underwent an accelerated aging process (800C in 

air; 5 weeks).   Results from this test showed that the oxidation index was significantly 

decreased both at the surface and in the bulk for the Vitamin E specimen (.3AU at 

surface; to virtually zero by 1mm depth)  than the non-doped (2.5AU at surface to ~.3 at 

2.5mm) as measured by FTIR.  The results suggest long term stability of Vitamin E.  It 

had been previously reported by Tomita et al that only .1% Vitamin E was necessary for 

effectiveness so starting with 1% allows for migration even though little was shown in 

this study.  The authors concern, though, was that the lipids that exist in the synovial fluid 

may draw out the Vitamin E as they are hydrophobic like Vitamin E, where the synovial 

fluid itself has little draw due to its hydrophilic nature83.   Additionally, Oral et al looked 

at free radical decay in real time to confirm that the results seen in the accelerated model 

were in fact truly mimicking what would happen in real time.  A 7-month test was 

performed in air as well as a specimen that was packaged in inert gas for 13 months was 

examined via FTIR.  The results confirmed the previous results from the accelerated 

aging studies that there is significantly more oxidation in non-doped specimens than 

Vitamin E-doped ones84. 
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Further research has been conducted looking at the response of granulocytes, cells 

that with visible granules in their cytoplasm, to Vitamin E-doped UHMWPE.  There are 

three types of granulocytes: neutrophils (most abundant making up ~70% of white blood 

cells), eosinophils (1-5% of white blood cells; activated in response to allergic reactions 

and parasites), and basophils (0.01-0.3%; store histamine & produces various cytokines).  

Granulocytes for this study were collected from human peripheral venous blood donated 

by six humans.  First, they looked at the surface of both polyethylenes (doped and non-

doped) to ensure the cellular reactions were similar to both surfaces and found that they 

were not significantly different in the number of plasma proteins that would adsorb to the 

surfaces.  It was found that IgG was found adsorbed on both surfaces via Western Blot 

Analysis as would be expected so this was further explored.  IgG, an immunoglobulin 

built of two heavy and two light chains, is the most abundant making up approximately 

75% of the immunoglobulins in human serum.  All of the proteins were desorbed from 

each of the polymer surfaces and run on a polyacrylamide gel to observe the specific 

types of IgG present.  It was found that the doped polyethylene had less IgG adsorbed 

than the non-doped, which suggests that the doped surface may have reduced potential of 

long-term adhesion of macrophages as they have a difficult time adhering in comparison 

with normal UHMWPE85.  The second paper by Reno et al was an opinion paper re-

iterating the advantages that have been suggested in the literature for Vitamin E-doped 

polyethylene.  It confirmed the only shortcoming that is visible in the research to this 

point is that no one has looked at the effects of wear on the polymer long-term including 
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the reaction elucidated in vivo to the bulk and particles once the surface begins to wear 

and age (no research has been published to date for animal or human models)86.   

As of Vitamin E-doped polyethylene for THRs were first clinically introduced in 

2007 with TKRs introduced the following year (2008)87.  Additionally, there are two 

modes of incorporation of Vitamin E to UHMWPE matrix:  blending then molding or 

diffusion after the bar stock has been molded.  Published Vitamin E content is always less 

than 1%, regardless of the manufacturer.  Finally, as Vitamin-E doped UHMWPE has 

been clinically available for less than 5 years, there are no short or long-term clinical 

study results available to assess the in vivo performance of this material compared to 

highly crosslinked UHMWPE.   

 

Carbon-Carbon composite 

After interest in Carbon-UHMWPE composites, researchers looked at carbon-

carbon composites as an alternative to eliminate the UHMWPE.  Carbon-carbon 

composites have been researched for several years as a splint or artificial bone material.  

At its inception, it was not considered for bearing surfaces but simply as a material that 

had a modulus closer to bone for splinting.  Early carbon-carbon composites when tested 

in vivo in a porcine model showed extensive chronic inflammatory reaction to both the 

implant and debris including large numbers of macrophages and giant cells.  

Additionally, when the lymph nodes were examined carbon debris was found there as 

well.  The authors explained the poor results as caused by the wear of the material caused 

by the association of the screws with the plate.  The results from this study were not 
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promising for a new bearing material88.  Research, however, continued as to how to make 

a viable bearing material.  In 2003, Howling et al published on three carbon-carbon 

composites formed using chemical vapor deposition (high modulus polyacrylonitrile 

based carbon fiber (HMU), standard modulus version polyacrylonitrile based carbon fiber 

(SMS), and P25, fibers constructed from the mesopitch phase) along with research on a 

carbon fiber reinforced Polyetheretherketones (PEEK) to assess particle sizes generated 

using pin-on-plate wear tester lubricated with bovine serum.  Wear rates (determined 

gravimetrically) as well as particle size and shape were examined for the 4 carbon-based 

materials along with a UHMWPE (GUR 4120) control; all pins were worn against an 

alumina countersurface.  Three of the four carbon-based materials tested had lower wear 

factors (K x 10^-7 mm3Nm) than metal on UHMWPE (2.00±0.5) including P25 

(0.54±0.34), SMS (0.77±0.24), and CFR-PEEK (0.93±0.30).  Mesophase-pitch based 

P25, the carbon-based material with the lowest wear rate as well as the smallest average 

particle size (most less than 100nm), was used for particle generation in a sterile 

environment for cell studies.  The P25 particles were then cultured with fibroblasts and 

macrophage-like cells to assess cell viability and reaction compared to the carbon 

particles, cobalt chrome metal particles (for comparison), and latex beads (used as a 

negative control).  Cell cultures were tested daily for 5 days; the cell cultures for both 

fibroblasts and macrophages showed no cytotoxicity after five days compared with CoCr 

and camtothecin (very cytotoxic chemical used as control)89.  Howling et al continued 

research into viable carbon-carbon composites for bearing materials with the positive 

results of small particle generation (much smaller than that of UHMWPE) as well as 
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excellent resistance to cytotoxicity.  One of the key reasons for carbon-carbon interest is 

the small particle size as macrophage activation has been shown to be caused via particles 

in the 0.1-0.5 micron range thus causing a release of TNF- α90,91.  The smaller particle 

size generated from the carbon-carbon composites in wear is thought to potentially evoke 

a decreased macrophage reaction resulting in decreased TNF-α release thus decreased 

overall osteolysis around the prosthesis.  The second study started with 22 different 

carbon-carbon composite materials that were placed under short term wear conditions 

(330,000, the equivalent of 13.2km) and then the resultant worn pins were looked at 

gravimetrically to determine the composites that had the best short-term wear resistance.  

The three composites selected were high modulus untreated (HMU) carbon fibers 

(polyacrylonitrile based) in a pitch matrix (HMU-PP), HMU polyacyrlonitrile-based 

fibers with a primary matrix of resin coke and a secondary matrix of pitch (HMU-RC-P) 

and the third was the standard modulus surface treated polyacrylonitrile-based fibers with 

a primary matrix of resin coke and a secondary matrix of pitch (SMS-RC-P)  These 

composites with were then used for long-term wear testing of one million cycles under 

lubricated (bovine serum) conditions.  Additionally, the lowest wearing of the three 

materials, SMS-RC-P, was used for cell culture to test the reaction of fibroblasts and 

peripheral blood mononuclear cells to bulk material and debris.  Fibroblasts results 

showed a non-toxic response to SMS-RC-P.  Additionally, mononuclear cells did not 

stimulate TNF-α production, even at a 80:1 µm3/cell particle volume to monocyte cell 

ratio, thus the material may elicit a reduced osteolytic response in vivo.  The average size 

of the particles generated by SMS-RC-P wear was approximately 50nm, thus it shouldn’t 
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stimulate the macrophage response92.  This research looks good, however, the presence of 

carbon particles in the surrounding tissue and lymph nodes from early studies will most 

likely still be a problem in vivo as the particles are small and therefore may get washed 

into the lymphatic system and trapped in the lymph nodes.  This causes a potential for 

tumor and cyst formation due to response of the particles at distances far from the 

prosthesis.  While this material may elicit a decreased osteolytic response, the balance of 

increased risk of reaction to the particles that are small enough to travel throughout the 

body may overcome the potential benefit of the material.   

 

Other  composites 

Additionally, several composites of UHMWPE have been concocted that are not 

applicable to orthopaedic and/or weight bearing devices including 

UHMWPE/polyurethane (PU) composite93,94 developed for cardiovascular applications to 

try to delay calcification; this composite has not been proven to be very successful 

compared to PU alone with respect to calcification as by day 28 the calcification level of 

the composite was nearing that of PU alone.   

Additionally, a hydroxyapatite (HA)-doped HDPE95-98 as well as a HA-doped 

UHMWPE99-101 have been developed.  This composite was designed for orthopaedic 

implants (e.g. replacement bone), however, due to the nature of polyethylene with its 

multiphases already, adding a hard additive into the matrix will lead to poor wear 

properties due to the additional stress concentrations via the mismatch of properties 

between the HA and UHMWPE if placed in a load-bearing situation. Tests using this 
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composite suggest it may be useful in a non-load bearing capacity as it has good fracture 

toughness  and a Young’s modulus within the range of cortical bone based on percent HA 

added (up to 9x that of virgin UHMWPE)100. 

 

1.4.4  Effect of Gamma Sterilization on UHMWPE Wear 

Even with all the composites attempted, UHMWPE alone has proven to be the 

most viable sacrificial bearing surface.  For UHMWPE, sterilization was standard for the 

industry from the mid-1960s when Charnley invented the hip until the mid-1990s.  

Sterilization by all orthopaedic manufacturers for polyethylene components was 

completed via gamma sterilization, also called gamma irradiation, in air.  Gamma 

sterilization is achieved by use of a gamma ray emitting isotope, Cobalt-60 is most 

commonly for medical applications102.  The emitted gamma rays (energy of 1.1732 and 

1.3325MeV) then sterilize the object as gamma rays penetrate deep within the objects102; 

the gamma rays produce ionization that damages the organism’s DNA and chemical 

structures.   

In 1996, though, the manufacturers began using 

diversified sterilization methods as research had revealed 

problems with gamma sterilization in air.  Additionally, it 

was discovered that gamma sterilization in air allows free 

radicals generated by the sterilization process to cause 

chain scission resulting in shorter UHMWPE chains.  These free radicals may then attack 

other chains and result in oxidation of the polyethylene, thus reduced mechanical 

Figure 1.5:  Oxidative 

degradation of tibial insert  
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properties including toughness, ductility, and fatigue strength 49, 67, 102.  Further, the 

oxidation of the PE was exacerbated by long shelf life times as the implant is exposed to 

higher levels of oxygen within the air-filled sterilized package than it would be once 

implanted within the body102.  Chain scission and oxidation leads to weaker bonds in 

polyethylene that gives way to delamination when under high stress loads in non-

conforming devices, such as a TKR103.  Fisher et al104 suggest that if delamination is 

going to occur then oxidative degradation must precede it; an example of a failed tibial 

insert exhibiting oxidative degradation is shown in Figure 1.5.  It has been found that 

aged gamma sterilization in air results in significantly higher wear rates than both non-

aged (about 50% higher) and non-sterilized polyethylene (approximately 300%)105.  As of 

1998, gamma sterilization in air was no longer a sterilization method used by major 

orthopaedic companies in the United States and it had been replaced by a number of 

techniques attempting to reduce the wear rate of PE including gamma sterilization in a 

low O2 or nitrogen environment, ethylene oxide, gas plasma, and supercritical CO2 (see 

Table 1.3).  While gamma sterilization in air was no longer a technique used for 

sterilization by the orthopaedic companies, the implants themselves were not recalled and 

surgeons continued implanting them post-sterilization changes.  Urban et al106 noted that 

the packaging on the implants did not specify what type of sterilization process the 

implant had undergone so unless the surgeon contacted the company, sterilization method 

was an unknown variable other than by date of manufacture after 1998 (or earlier for 

some manufacturers).  Additionally, Urban et al pointed out a logical association that 
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hadn’t been previously published, which was implant shelf life is inversely proportional 

to the frequency of use (based on size and thickness of insert for a given design)106. 

 

Table 1.3:  Sterilization methods used by US manufacturers as of Spring 1998 

Manufacturer Sterilization Method Used 

Biomet Gamma radiation in a low oxygen package 
DePuy Low temperature peracetic acid gas plasma 
 Gamma radiation in nitrogen 
Howmedica Gamma radiation in nitrogen, followed by 

annealing in the sterile package below the 
melt temperature 

Johnson & Johnson 

Professional 

Gamma radiation in vacuum foil package 

Stryker Osteonics Gamma radiation in nitrogen 
Smith & Nephew Ethylene oxide gas 
Sulzer Orthopaedics Gamma radiation in a low oxygen package 
Wright Medical Ethylene oxide gas 
Zimmer Ethylene oxide gas 
 Gamma radiation in nitrogen 
 Gamma radiation in a low oxygen package 

Table reproduced from Kurtz et al 1999
67 

 

Gamma radiation in a low O2 environment is typically indicative of an argon- or 

nitrogen-based environment with little to no oxygen present.  The rationale for this is that 

if limited oxygen is available in the storage environment, oxidative degradation can be 

postponed until the device is implanted thus significantly reducing the overall oxidative 

degradation that will occur compared to gamma sterilization in air.  This idea was 

previously published by Premnath et al in 1996102 who stated oxidative degradation 

occurs in vivo; however, the amount of dissolved oxygen within the body is significantly 
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lower thus the conditions are much less harsh signifying less oxidative degradation in the 

polyethylene. 

A beneficial effect of the gamma irradiation, which is not produced via other 

sterilization methods, is the production of crosslinks within the polyethylene.  These 

crosslinks reduce the wear rate as they increase Young’s modulus of the material.   

Crosslinking may be chemically created (via silane chemistry).  A one-step process 

(gamma irradiation at higher levels), however, is advantageous as it allows a reduction in 

the overall number of steps the product must go through for manufacturing.   

Additionally, Shen and McKellop107 showed that as oxidation is decreased, 

crosslinking is increased with respect to depth from the surface of UHMWPE.  This is 

due to oxygen binding to the end of the free radical instead of the free radical joining two 

polyethylene chains together to form a crosslink.  So, if the polyethylene is irradiated in a 

low oxygen environment, it will have increased number of crosslinks formed in the 

surface regions thus it should have better wear resistance due to increased stiffness.    

Different manufacturers use different radiation doses between 50 and 105kGy).  Some of 

the highly-crosslinked polymers available currently on the market include Prolong 

(knees, Zimmer), Durasul (knees, Zimmer), Longevity (hips, Zimmer), X3 (knees & hips, 

Stryker Orthopaedics), and Crossfire (hips, Stryker Orthopaedics).   The goal of these 

highly-crosslinked polymers is to reduce particle generation. 
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1.4.5  Bone & Osteolysis 

Osteolysis – Basic Science 

Even with advances in sterilization and other factors affecting wear, wear 

particles are unavoidable.  The particles generated (typically polyethylene, but may also 

be metal debris or corrosion products) that are released into the synovial fluid.  This 

elicits the body’s natural defense mechanism to remove foreign material.  Macrophages 

respond to phagocytose the debris.  They, however, cannot break down the particles as 

they are not biological in nature (i.e. bacteria, viruses, etc.) and thus they secrete 

cytokines that result in osteoclast maturation and activation.  Once osteoclasts mature, 

they function to resorb bone in the regions surrounding the prosthesis.  When bone is 

resorbed around the prosthesis, this results in loosening.  Migration of particles to the 

bearing surface allows for third-body wear that will drastically increase the overall wear 

of the joint.  As the prosthesis loosens, the result is an increase in particles being 

generated, inducing more bone resorption, and thus the result is a destructive positive 

feedback loop.  This destruction of bone is called osteolysis or periprosthetic bone loss 

(see Figure 1.3).   

The average particle size generated for THRs and TKRs is shown in Table 1.4.  

The average particle size ranges from approximately a half micron in THRs to just over a 

micron in TKRs.  TKRs tend to produce larger particles due to oxidative embrittlement 

and delamination.  The particle size is important as it determines the biological response.  

In a murine model, particles from 0.24-1.71μm have been shown to result in activated 

macrophages and thus bone resorption.  Larger particles (7.6 - 88 μm) did not activate 
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macrophages91.  An earlier study by Green et al looked at the cytokine response to 

particles and found that particles in the range of 0.49-4.3 μm, which includes most 

particles generated by TJRs, elicit significant elevation of cytokines90.  Secreted 

cytokines include tumor necrosis factor – alpha (TNF-α), interleukins (IL-1, IL-6, and IL-

10) as well as prostaglandins108. 

 

Table 1.4:  Average particle size for THR & TKRs 

 

 

Osteoclast precursors do not resorb bone until they are signaled to become active, 

which is a key step in osteolysis.  The transcription factor nuclear factor kappa B (NF-

κB) must be stimulated to activate the NF-κB pathway, which results in differentiation 

and maturation of the precursor cells.  The two main components of NF-κB pathway are 

receptor activator of NF-κB (RANK, found on osteoclast progenitors) and RANK ligand 

(RANK-L, molecule secreted by stromal cells that binds and activates the NF-κB 

pathway).  Osteoprotegerin (OPG), a natural downregulation mechanism of this pathway, 

however, has been discovered.  OPG is a molecule secreted by osteoblasts that 

competitively binds to RANK thus inhibiting osteoclast maturation.   TNF-α and IL-1, 

two of the previously mentioned cytokines released by macrophages in response to wear 

particles, are particularly of interest as they upregulate RANK-L secretion111, 112.  

Average Particle Size 

Hip 0.43μm109, 0.53 μm110, 0.694μm112 

Knee 0.52μm109, 1.190μm112  
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Treatment of osteolysis has used a variety of methodologies as the osteolytic 

cascade has not been fully elucidated at this point.  The goal of these treatments is to 

target molecules known to be involved in osteolysis in an attempt to derail the osteolytic 

cascade before osteoclasts are activated.  These methodologies can be divided into the 

two branches of the osteolytic cascade: osteoblastic and osteoclastic.  The osteoblastic 

limb of the cascade includes application of growth factors (TGF-β and BMP-2).  The 

osteoclastic limb of the cascade has been more deeply researched and includes treatments 

such as injection of osteoprotegerin (OPG), TNF-α inhibitors (Etanercept), and 

bisphosphonates.   

 

Osteoblastic Limb of Osteolytic Cascade 

 The osteoblastic limb of the osteolytic cascade has involved application of 

growth factors, notably TGF-β and BMP-2, to enhance the osteoblastic response in non-

cemented implants to enhance the stability.  TGF-β is a cytokine that functions in many 

musculoskeletal tissues but specific to bone it stimulates osteoblast proliferation as well 

as bone/cartilage formation.  It has been shown to improve bone density when injected 

into a localized area of polyethylene induced osteolysis in a lapine model113.  TGF-β has 

also been shown to slightly improve osseointegration when used embedded within 

hydroxyapatite coating on titanium rods114.  BMP-2, which is from the same family of 

cytokines, functions in fracture healing and osteoblast recruitment.  BMP-2 has also been 

used in animal models to improve osseointegration of non-cemented implants via 

embedding it within a degradable polymer matrix.  The use of BMP-2 has not been 
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elucidated yet with respect to osteolysis.  The use of these growth factors to increase 

osseointegration may postpone osteolysis as a stable prosthesis results in less wear.   

However, using growth factors is not currently a viable solution as implants must be able 

to have a lengthy shelf life.  Further, even with recombinant human forms of these BMPs 

being developed, they are still expensive, which may prohibit their widespread use.       

 

Osteoclastic Limb of Osteolytic Cascade 

The osteoclastic limb of the cascade has been more widely explored and includes 

injection of osteoprotegerin (OPG), TNF-α inhibitors (Etanercept), and bisphosphonates.  

Osteoprotegerin is a naturally occurring molecule synthesized by osteoblasts that 

competitively binds to RANK on the osteoclast precursor thereby inhibiting maturation 

and activation.  OPG has been administered via two routes:  antibody and via 

subcutaneous injections.  In the antibody method, an antibody was used against RANK 

protein containing a Fc on the opposite end; it was shown to decrease Ti-particle-induced 

osteolysis in a mouse model115.  In another mouse model, Von Knoch et al administered 

OPG via a subcutaneous injection in a calvarial murine model in the presence of 

polyethylene particles.  These OPG injections were shown to significantly decrease the 

bone resorption when administered starting at Day 0 and Day 5116.  Intravenous OPG 

injections have been briefly used in clinical trials for other conditions such as Paget’s 

disease, however, no data to date on its effect on osteolysis.    

Another osteoclast-related method is TNF-α antagonists.  Since TNF-α is released 

via activated macrophages that have ingested/attempted to ingest particulate debris, it is 
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also a logical choice for a method to prevent osteolysis.  Anti-TNF-α agents are designed 

to bind to TNF-α such that it cannot signal osteoclastogenesis.  Etanercept, a FDA-

approved therapy (1998) that contains TNF-α receptor bound to the Fc portion of human 

immunoglobulin (IgG-1), has been used successfully with rheumatoid arthritis as well as 

in murine models117.   In 2003, however, a second study on osteolysis was published by 

this group using a small human clinical trial that showed no statistical difference between 

patients awaiting that had osteolytic lesions at 6 or 12 months using computer 

tomography118.  The authors noted that a larger sample size would be needed due to 

variability among humans.  The authors used one of the more sensitive methods for 

evaluating osteolysis (CT scan) and the length of the study was reasonable (12 months).  

However, this method is not likely to become a routine method for prevention of 

osteolysis as it has a yearly estimated cost of over ten thousand dollars108. 

 

1.4.6  Bisphosphonates 

General Information 

The third group contains bisphosphonates (also called diphosphonates), which 

belong to a class of drugs that inhibit bone resorption.  While bisphosphonates are 

synthetic, they are structurally similar to a naturally occurring compound called 

pyrophosphate, which also contains a P-C-P backbone.  As the name diphosphonates 

suggests, the backbone of this compound contains two phosphonate groups (PO3) 

covalently bonded to a carbon atom (see Figure 1.6a).  The carbon atom is also bound to 

the two side chains that define the chemical properties (potency, pharmokinetics, etc.), 
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and thus the differences between the multitude of commonly available bisphosphonates 

(Figure 1.6b).   

Predominantly, though, one of the side chains is a hydroxide (-OH) group.  These 

hydroxide groups are key to the high solubility of bisphosphonates.  Bisphosphonates 

may be divided into two classes based on whether they contain nitrogen atoms in the side 

chains:  nitrogenous and non-nitrogenous. 

  

 

 Like many other pharmaceuticals, bisphosphonates have gone through several 

generations of evolution to resolve a variety of problems discovered during clinical trials.  

First generation bisphosphonates, including etidronate and clodronate, were originally 

Figure 1.6a: 

 Figure 1.6:  Structure of bisphosphonates (a) backbone (P-C-P) and side chains of 

bisphosphonate (b) Side chain variations of different bisphosphonates. 

Figure 1.6b: 
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developed in the 1960s as a means to slow bone resorption119-121.  This generation only 

included non-nitrogenous side groups (hydroxide, chorine, and methyl groups). 

 

Table 1.5:  FDA approved bisphosphonates (www.fda.gov) 

 

 

 

Brand Name 

Alendronate  Fosamax, Fosamax Plus D 
Etidronate Didronel 
Ibandronate Boniva 
Pamidronate Aredia 
Risedronate Actonel, Actonel W/Calcium 
Tiludronate Skelid 
Zoledronate Reclast, Zometa 

 

 As techniques improved and their mechanisms of action became better, second 

and third generation bisphosphonates began to utilize hydroxide groups for R1 and 

nitrogenous side chains for R2 (see Figure 1.6b above).  Pamidronate was a second 

generation bisphosphonate.  Third generation drugs included alendronate and risedronate 

drugs.  Both of these generations are fairly similar, however, the major distinction is that 

the 3rd generation bisphosphonates have been shown to be significantly more potent.  

Alendronate (Fosamax), risedronate (Actonel), and zoledronate (Zometa) are examples of 

3rd generation bisphosphonates that are currently clinically available.  Currently, there are 

7 FDA approved bisphosphonates available (Table 1.5, www.fda.gov). 
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Mechanism of Action 

In order for bisphosphonates to function, they need to bind to bone so that they 

are not excreted by the kidney.  Specifically, they must bind to the exposed 

hydroxyapatite sites where bone has already been resorbed in order to function most 

efficiently.  The first step for all bisphosphonates is “ingestion.”  By this process, the 

osteoclasts take in the drug along with the HA to which it is bound.  However, after 

ingestion, non-nitrogenous and nitrogenous bisphosphonates have been shown to use 

different mechanisms to inhibit bone resorption.  Non-nitrogenous bisphosphonates are 

broken down within the osteoclast yielding a chemical compound that interferes with the 

cell’s adenosine triphosphate (ATP) pathway causing the cell to commence apoptosis, 

since ATP is necessary as an energy source for osteoclast function.  As increased 

particles of bisphosphonate are bound to bone, the number of osteoclasts committing 

‘cell-suicide’ leads to a decrease in the overall number of osteoclasts present and 

therefore a decrease in the amount of bone that can be resorbed.  With a decrease in bone 

resorption and assuming normal osteoblast function, more bone will then be laid down 

with respect to that being resorbed thus increasing the overall amount of bone with time.    

The second group, nitrogenous bisphosphonates, acts through the HMG-CoA 

reductase pathway, a metabolic pathway.  The bisphosphonates disrupt the pathway as 

they are used in place of the normal pathway chemical, pyridoxal-phosphate (PPi).  The 

disturbance occurs since both contain phosphate groups, and PPi’s functions within the 

pathway as a phosphate group donor.  This disruption of the pathway results in minimal 

rho protein expression.  This lack of rho protein detrimentally affects the osteoclast’s 
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cytoskeleton such that the osteoclast will lose its ‘ruffled border.’  Rho protein controls 

the attachment of the cell membrane to the cytoskeleton, and a lack in its expression leads 

to the same outcome, osteoclast apoptosis, simply via different mechanisms and 

pathways.   

      

 Clinical Applications 

Bisphosphonates have been used in a variety of clinical applications.  Most bone-

related diseases, including those where bone turnover or bone metabolism is non-optimal, 

have been tested in conjunction with bisphosphonates.  Initially, bisphosphonates were 

used to treat Paget’s disease, a disease in which bones have become enlarged and fragile 

typically from deformity or injury.  In addition, bisphosphonates are now prescribed for 

diseases such as post-menopausal osteoporosis and hypercalcemia of malignancy, a 

condition typically associated with cancer patients in which there is an abundance of 

parathyroid hormone-related peptide (PT-HRP).  In addition to these three current clinical 

usages, bisphosphonates are being experimented with to test for beneficial effects on a 

variety of other diseases:  inflammation-related bone loss 122, 123, fibrous dysplasia124, 125, 

osteogenesis imperfecta126-128, osteoarthritis129, and rheumatoid arthritis130.     

Typical characteristics of bisphosphonates could be represented by that of 

alendronate, clinically known as Fosamax.  Merck, its manufacturer, has published 

detailed information pertaining to the drug’s use and effects in both animals and humans.  

Alendronate’s absorption, which is representative of many of the bisphosphonates, is 

only 0.59% when the patient has fasted overnight and the dose occurs two hours before a 
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standard breakfast.  If the patient takes the pill within an hour prior to breakfast, 

absorption is reduced by 40% and it is negligible if dosing is two hours after breakfast.  

Merck has also shown that alendronate may exist transiently in soft tissues; however, it 

will become redistributed into the bones or excreted after a short period of time.  It has 

not been shown that alendronate can be metabolized in any way by humans or animals.  

Further, the company shows that at least 50% of the drug (using 14C labeling) was 

excreted within 72 hours via the urine.  The drug is expected to have a terminal half-life 

of more than 10 years in the human skeleton if it can become bound before being 

excreted.  However, while the drug is bound to bone, it is inactive.  The drug does not 

become active until both the drug and a small amount of the bone (specifically the 

hydroxyapatite) have been ingested by an osteoclast.  The most prominent 

contraindication for the drug is those who have renal insufficiency as their kidneys will 

not excrete the drug thus leading to an increased but unknown drug concentration in the 

body131.      

 

Systemic Bisphosphonate Delivery 

Delivery of bisphosphonates to the body is currently limited to systemic delivery 

systems.  There are two delivery systems in use:  oral and intravenous.  These two 

methods are very similar as to advantages and disadvantages.  Both systems, due to their 

systemic nature, require high dosages since more than 80% of the administered drug is 

excreted unaltered via the kidney.  Oral administration is advantageous as no needles are 

involved; however, a pill must be taken either daily or weekly.  Furthermore, most 
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bisphosphonates must be taken without food and after fasting overnight due to their high 

solubility.  On the other hand, intravenous administration can occur much less frequently 

(every 3-6months) and has similar clinical and absorption results.      

 

Injection-based bisphosphonate research 

Several groups have researched the effects of bisphosphonates as ways to reduce 

wear particle-caused osteolysis.  Typically lapine or canine models have been used.  It 

has been shown that bisphosphonate (specifically alendronate) may inhibit bone lysis 

even in the presence of wear particles (combination of UHMWPE, titanium alloy, and 

cobalt chrome alloy) in a canine total hip replacement model132.  Using this model, three 

groups of canines were tested:  Group I (control), Group 2 (1x109 mixed particles), and 

Group 3 (1x109 mixed particles+ 5mg alendronate/day).  It was shown that after 24 

weeks, Group 3 that had been treated with bisphosphonate had little bone lysis in 

comparison with Group 2; both groups, however, did continue to show macrophage 

infiltration, which is common in chronic inflammation conditions.   

Another injection-based trial that has been recently published (2007)3 to study the 

effect of bisphosphonates on the bone adjacent to an implant.  This study employs the 

implantation of titanium alloy (TiAlV) rods into both femurs of New Zealand rabbits 

(n=36) with rods in the left knee of each rabbit covered with approximately 2x108 

particles of polyethylene of clinically relevant size for THRs (2.3±0.5µm).  The right 

knees were used as controls and had only the TiAlV rod.  The three groups (n=12 each) 

of rabbits were divided as follows:  control (no bisphosphonate dosing), zolendronate 
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(dosed once intraoperatively), and alendronate (subcutaneous injections weekly starting 

intraoperatively).  The rabbits were sacrificed at 6 and 12 weeks to assess the thickness of 

the cortical bone surrounding the implant.  It was found that both bisphosphonate groups 

significantly increased the thickness of the cortical bone at both six and twelve weeks 

over the non-dosed rabbits.  Additionally, no statistical difference was found between the 

knees containing particles versus no particles as well as no osteolytic lesions were present 

in any of the bisphosphonate-dosed rabbits.  Further, osteoid thickness and osteoid 

volume per bone volume was statistically higher in all implants in the bisphosphonate-

dosed groups (with and without particles) at six weeks, however, these results were not 

statistically different by the twelve week time point.  This indicates that the 

bisphosphonate dosing may help overcome the body’s natural reaction towards osteolysis 

with proper dosing as the bisphosphonate downregulates the osteoclast activity as the 

drug was intended.  Additionally, bone measurements were made at the sixth lumbar 

vertebrae to assess any systemic effects of the drug treatment.  It was found using 

microcomputer tomography (µCT) that the vertebrae of the dosed rabbits (both groups) 

had an increase in cancellous bone volume, cortical bone volume, and trabecular 

thickness with respect to the controls.  These results indicate that bisphosphonate may be 

advantageous in conjunction with TJRs to combat the macrophage activation in response 

to generated debris, as the generation of debris can never be completely halted with any 

UHMWPE or composite created. 
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Localized Bisphosphonate Delivery 

In addition to injection-based delivery, a more localized approach has been 

undertaken.  Microspheres have been researched for drug delivery in the pharmaceutical 

as well as tissue engineering field as early as the 1980s and 90s.  Microparticles were 

researched first as delivery options for proteins & peptides133, 134 as well as DNA135.  

However, this method was potentially problematic for use with bisphosphonates as they 

are relatively low molecular weight drugs and very hydrophilic.  Two groups have 

published on microencapsulation for lower molecular weight drugs136, 137 but until 

recently no one had attempted bisphosphonate encapsulation.  Kissel and his group at 

Marburg, Germany have been trying to encapsulate bisphosphonates (specifically 

pamidronate) for the last few years138, 139.  Their group has tried several different methods 

in order to achieve a 30% (wet weight) target drug loading in the microspheres using 

Poly(D,L-lactide-co-glycolide-D-glucose) abbreviated PLG-GLU.  In 2003, the group 

presented three different methods of encapsulation that they had used with the best results 

from suspension of bisphosphonate in organic solvents (SOO).  SOO combined 

methodology for previous methods for encapsulation of hydrophilic drugs as well as 

gaining high yield; the best results achieved were 71-99% yield with about a quarter of 

the drug being lost in the initial 24-hour burst.  This technique involved using paraffin 

instead of water as pamidronate is almost insoluble in paraffin and this helped to slow the 

initial release of the highly soluble drug.  Furthermore, dichloromethane (DCM) was 

added to the mixture in order to maximize both initial drug release and encapsulation 

efficiency; it was found that 50% DCM in the PLG-GLU mix resulted in the best 
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compromise of the two characteristics.  This resulted in more desirable microsphere 

characteristics, however, the microspheres still did not result in continuous drug 

release138.  Their 2004 paper139 continued work creating the microspheres, however, the 

microspheres had increased drug release during the first 24 hours (almost 100%).  The 

idea of the microspheres is highly advantageous over the systemic dosing as it is local 

and would need much lower dosages if the burst problem could be overcome.  However, 

significantly better drug release profiles must be attained which may mean 

experimentation with block copolymers using hydrophobic external blocks or a 

hydrophobic surface eroding polymer that could retain the drug.  
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— CHAPTER TWO — 

AIM 1:  Engineer Enriched UHMWPE Constructs and Evaluate Mechanical and 

Tribological Properties 

 

2.1  Introduction 

The use of ultra high molecular weight polyethylene (UHMWPE) inserts in total 

joint replacements (TJR) results in wear particle-caused osteolysis, which is the 

predominant cause for prosthesis failure and revision surgery132.  The particles generated 

are released into the synovial fluid; this elicits the body’s natural defense mechanism to 

remove foreign material. Ultimately this process ends in wear particle induced osteolysis 

and implant loosening.   

Numerous efforts have been made to reduce UHMWPE particle generation such 

as the use of highly crosslinked UHMWPE (XLPE)140 or use of alternative polymers.  

While new materials have been successful at reducing the number of particles generated, 

wear particles are still unavoidable.   

A number of studies, both in vitro and in animal models have investigated 

whether the use of an intravenous family of drugs called bisphosphonates (BP) could help 

mitigate the effects of osteolysis.  BPs have been shown to be effective for use in patients 

with osteoporosis as well as other bone metabolism diseases.  These drugs function by 

apoptosing osteoclasts after they ingest the BP bound to bone.  Work by others has shown 

that the use of bisphosphonates can decrease osteoclast activity as well as increase 

osteoblast activity in vitro141.  Further, intravenous systemic bisphosphonates (BP) can 
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significantly contribute to minimize periprosthetic osteolysis2, 3. However, the systemic 

delivery and the high solubility of BPs results in a predominant portion of the drug being 

excreted via the kidney without reaching its target, bone142. Therefore, a local delivery 

system would allow for more of the bisphosphonate to reach its target prior to being 

removed from the system.  Previous groups have attempted to microencapsulate 

bisphosphonates but have encountered problems with burst release due to the 

hydrophillicity and small size of the drug138, 139.   

The goal of this study is to develop a novel method to locally administer BPs  

using the inherent wear of UHMWPE as a drug release mechanism. If bisphosphonate 

can be released in a controlled manner locally, it has the potential to effectively delay or 

slow the progression of osteolysis due to wear particle release.  This study is aimed at 

prooving the concept that bisphosphonates can be effectively added to UHMWPE 

without significantly affecting the material properties.  However, the mechanical 

properties of the enriched UHMWPE must be comparable to that of the currently used 

UHMWPE in order to be considered as a viable approach.  The mechanical properties are 

paramount to the success of a load-bearing material.  Thus, material characterization for 

the UHMWPE-BP blend is essential.  As the biocompability of both materials 

(UHMWPE and BP) has been demonstrated elsewhere, it is expected that the UHMPE-

BP blend material will exhibit a of similar level of biocompatibility as its individual 

components.    Therefore, the first step in development of this novel material consisted in 

the examination of the resultant mechanical and tribological properties.  It is 

hypothesized that an UHMWPE based bearing material can be developed containing two 
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percent bisphosphonate (or similarly sized compound) that would not perform similarly 

in laboratory trials.  It was also hypothesized that optimum concentration of BP would 

not significantly affect the material properties and tribological performance of 

UHMWPE, and that BP would be released from the surface and generated particulate of 

the enriched UHMWPE.   Local delivery of bisphosphonates would be advantageous as 

an anti-osteolysis treatment.  If bisphosphonate can be released in a controlled manner 

locally, it has the potential to effectively delay or slow the progression of osteolysis due 

to wear particle release.     

 

2.2  Materials and Methods 

Two types of proof of concept studies were conducted to assess the mechanical and 

tribological properties of the enriched UHMWPE:  tensile testing and pin-on-disk 

tribological testing.   

 

Compression Molding 

  All UHMWPE and UHMWPE-blend specimens were compression molded to 

reduce variability among the specimens as each specimen had undergone a similar 

compression molding process.  Compression molding using a Carver press was 

completed using methods published by Parasnis & Ramani34.   Briefly, Table 2.1 details 

the times and pressures used in the compression molding process.   

  For tensile testing, a custom mold was used with a molding area of 4580 mm2 

(4.4g PE powder/mm thickness).  For pin-on-disk tests, a larger custom mold was used 
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containing a molding area of 7960 mm2 (7.4g PE/mm thickness).  For this mold, 

approximately 187g of PE was used to achieve 1” thick block from which pins were 

machined.  All pin specimens for a given material (PE or PE-tag) were machined from 

the same block.  This helped control for inter-specimen variability within a given 

material. 

     

Table 2.1:  Carver Press Molding Times (Reproduced from Parasnis et al
34

) 

    

Temperature 

(degC) 

Temp 

Rate 

Step 

Time  

(min) 

Stage 

Duration 

(min) 

Force 

(Mpa) Top Bottom deg/min 

1 0   38.9 29 29 --- 

2 5 5 7.8 29 29 0 

3 20 15 7.8 177 215 9.9 

4 30 10 7.8 177 215 0 

5 57 27 38.9 93 140 -3.1 

6 87 30 38.9 93 140 0 

7 107 20 0 29 29 -3.2 

     

 

UHMWPE + 2% Tag Preparation 

  Blocks of enriched UHMWPE (PE-tag) were prepared using 2% (by weight) 

8-Anilino-1-naphthalenesulfonic acid hemimagnesium salt hydrate (Sigma) blended with 

GUR 4150 UHMWPE powder (Ticona).  Hemimagnesium salt hydrate (Sigma) was 
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selected as it contains a fluorescent tag (naphthalene) which would aid in visually 

inspecting the blocks to ensure evenness in tag distribution.  Additionally, it is 

hydrophilic and of similar size (MW=310) to alendronate sodium (MW=325.12), 

commonly referred to as Fosamax (Merck, Inc.).  Thus, it provided a cost-effective 

alternative to using alendronate, which was still under patent in 2007, for initial studies to 

determine whether blending BP into PE was feasible.  The powder material was blended 

using dry mixing via a vortexer (VWR Standard Mini Vortexer; speed=10) for 10 

minutes.  Initial mixing followed by compression molding of blends that were vortexed 

for 6 minutes or less yielded uneven distributions of the tag within the PE using visual 

inspection post-molding.   Tag distribution was determined by visual inspection of the 

green particles (tag) within the translucent PE matrix (See Figure 2.1).  A mixing time of 

10 minutes ensured even distribution of the tag within the material.  The mixture was 

then compression molded using the Carver press as previously described.  The amount of 

PE powder added was calculated based on the selected mold and specimen thickness.  

 

Non-uniform tag distribution: Uniform tag distribution: 

Figure 2.1:  Representative samples of non-uniform and uniform tag distribution of 

hemimagnesium salt hydrate (tag) within the UHMWPE matrix 
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  A 2% by weight of tag/BP was selected as the targeted BP amount.  This 

concentration was derived by assuming the size and number of UHMWPE particles that 

would be generated in a typical TJR, and BP concentration shown to be effective for cell 

proliferation control.  It was also assumed that BP would be equally dispersed throughout 

each wear particle, and that the wear particles would be small enough that the drug would 

elute from within the particle.  According to Bartel and collaborators, an average of 

20mm3 UHMWPE particles are released per million cycles (approximately 1 year) of 

TKR implantation life and approximately 1 billion wear particles generated per year143, 

resulting ina calculated average particle diameter (from wear debris volume and 

approximate numbers) is 3.4 microns.  Moreau and colleagues reported that an 

alendronate concentration of 10-4M inhibits cell proliferation and induce apoptosis in 

murine macrophage-like cells (J774 A.1)144.  Im and colleagues have shown an increase 

in cell proliferation in osteoblasts (MG-63 osteoblast-like cell line) occurred with BP 

concentration between 10-7 and 10-8M141.  Therefore, a 2% by weight was selected in this 

studyAs the addition of BP within the UHMWPE matrix can lead to formation of stress 

risers that would result in crack initition, this low concentration will minimize this 

incidence.   

  The effect of molding on the fluorescent tag has been investigated as the 

literature from the distributor (Sigma) does not provide its melting point.  Digital 

scanning calorimetery (DSC) was performed using the following protocol.  The sample 

was first heated in a Mettler Toledo DSC823e system (Columbus, Ohio) to 25°C and held 

for 2 minutes.  Then, it was heated at 10°C /minute to 200°C and held there for 2 
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minutes.  DSC showed that the melting temperature of the 2% w/w tagged UHMWPE 

(PE-tag) has a lower melting temperature (TM = 134.1 ± 1.2°C) compared to UHMWPE 

alone (TM=135°C).  As this was lower, a preliminary test of only the tag was completed 

demonstrating the tag had a TM = 102°C. 

    

Tensile Test 

  In order to assess the mechanical properties of the 2% w/w 8-Anilino-1-

naphthalenesulfonic acid hemimagnesium salt hydrate (Sigma) by weight enriched 

UHMWPE (PE-tag), a uniaxial tensile test was performed.  Two millimeter thick blocks 

of UHMWPE (PE) and UHMWPE-tag (PE-tag) were prepared and compression molded 

as detailed above.  Dogbone-shaped specimens (20mm gage length & 4.9mm width) were 

cut from each block (n=7-8) using a die (Figure 2.2).    After specimens were cut, all 

specimens were then cleaned using ASTM F1715 protocol followed by ethylene oxide 

sterilization.  A total of specimens 86 specimens were used for the tensile test (n=43 for 

PE and n=43 for PE-tag).  Specimens were tested at room temperature in air to failure at a 

constant strain rate of 5mm/sec using a servohydraulic testing system with a 25kN load 

cell (Instron 8874, Instron Corporation, Canton, MA).  Stress-strain curves were plotted 

using the results of the tensile test; from these curves several material properties were 

determined including elastic modulus, yield stress, ultimate stress, and toughness.  Yield 

stress was calculated at 0.3% strain.  A Student t-test was used to assess the statistical 

differences between the material properties of both groups (α=0.05). 
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Pin-on-Disk Testing 

  Preliminary pin-on-disk wear tests were conducted using the OrthoPod 

machine, which is a six station pin-on-disk machine (AMTI, Figure 2.3).64  Blocks of PE 

and PE-tag were molded using compression molding as previously described in the larger 

custom mold.  Half inch thick blocks of both PE and PE-tag were fabricated and then 

9.5mm diameter pins with 3mm flat tip (n=12) were cut from each block of PE and PE-

tag (Figure 2.4).  Each tribosystem was lubricated with 25mL of 50% bovine serum 

(Hyclone) diluted with deionized water + 0.2% w/v sodium azide (NaN3, Sigma) as an 

anti-microbial agent per station.  During the trial, lubrication levels were checked and 

deionized water was added as necessary to maintain appropriate serum levels.  Soak 

controls were used for these experiments and maintained in an environmental chamber at 

37°C.  The portion of the pin that was in fluid was controlled to be similar to that in the 

OrthoPod due to the hydrophilic nature of the tag.   

 

 

PE-tag: PE: 

Figure 2.2:  Dogbone die and sample blocks from which specimens 

were cut for tensile testing 
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Figure 2.3:  OrthoPod pin-on-disk tribological  

tester 

 

 

 

 

  For this experiment, diamond-coated CoCrMo specimens (Ra = 22.4 ± 1.8 

nm) were used as the countersurface (Figure 2.4).  These were mounted in custom 

OrthoPod fixtures.  A circle-shaped wear pattern (19mm Ø) was selected as it has the 

highest wear factor; a speed of 1Hz was selected yielding a velocity of 60mm/sec, which 

is within pin-on-disk ASTM standard (F732).  Applied loads of 21.2N and 42.4N (3MPa 

and 6MPa pin tip pressure, respectively) were used in 2 separate experiments.  Data from 

the experiment was recorded every ½ km over the 40km.   Every 10km, the experiment 

was stopped, disassembled, and cleaned using ASTM F1715 method; additionally the 

soak controls were removed from the environmental chamber and cleaned via the same 

methodology.  Each of the specimens (experimental as well as soak controls) were dried 
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in a vacuum oven maintained at 37°C for a minimum of 30 minutes and then weighed 

(Mettler Toledo, d=.01mg).  The use of a vacuum oven allowed a control for the 

temperature as well as humidity in lieu of simply humidity as stated in ASTM F1715 

methodology.  Additionally, at each 10km interval, the tips of the pins were imaged using 

non-contact surface profilometry (Wyko).  Once gravitational weights and imaging was 

complete, the OrthoPod was reassembled with application of new bovine serum.   A two-

tailed t-test (α=.05) was used to analyze the results for significance.  

 

 

 

  

 

 

 

 

2.3  Results 

Tensile Test 

Results showed that the yield stress of the enriched material (PE-tag) was not 

significantly different from that of PE (Table 2.2).  Other material properties were 

however significantly different including elastic modulus (p=.004), ultimate stress 

Figure 2.4:  (a) Diamond-coated CoCrMo countersureface and (b) UHMWPE 

pin in OrthoPOD holder 

(a) 

(b) 
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(p=.002), and toughness (p<.001).  Additional graphs are shown in Appendix B, Figures 

B-1 and B-2. 

Table 2.2:  Summary of results of tensile test for virgin UHMWPE (PE) and 

UHMWPE enriched with a 2% tag (PE-tag) (n=43 for each material) 

  PE PE-tag p-values 

Elastic Modulus MPa 529±38* 509±37* 0.004 

Yield Stress MPa 20±0.7 20±0.8 0.091 

Ultimate Stress MPa 38±2.0* 36±2.0* 0.002 

Max Load N 391±21* 375±20* 0.002 

Ultimate Strain % 403±67* 347±47* <0.001 

Toughness MPa 125±24* 105±18* <0.001 

* denotes significance (p<0.05)  

 

OrthoPod Pin-On-Disk Testing 

  A preliminary trial using 3MPa of pressure (n=3 for PE and PE-tag) at pin tip 

using a circle wear pattern did not generate measurable wear over the 40km.  The force 

was increased to 42.4N to generate a clinically relevant pin tip pressure of 6MPa.  

UHMWPE manufacturers suggest no more than 10MPa compressive stresses for 

UHMWPE and recommend less than 5MPa145.  However, it has been reported that peak 

stresses may exceed 15MPa in some TKR designs143, 146.  Two experiments using the 

previously described protocol (including soak controls) and n=3 of each material type 

were completed.  The 6MPa pressure did generate sufficient wear over the 40km trial 

(Figure 2.5).  However, there was no significant difference in the gravimetric weight loss 
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between the two material types at 40km (p=0.78).  All pin results with an overlay of the 

averages are shown in Appendix B, Figure B-3.   

 

Figure 2.5: Average change in gravimetric weights over 40km OrthoPod trial 

(6MPa contact pressure) 

 

From these preliminary studies, it can be concluded that the BP-UHMWPE blend is a 

viable bearing material for the application targeted in this study.   

 

2.4  Discussion 

Tensile Test 

There are a number of properties shown that differ from those of standard PE.  The 

modulus of elasticity and the yield strength are of a particular interest.  The lower elastic 

modulus of PE-tag may be advantageousas it may yield better lubrication when used in 

vivo147, 148.  While the ultimate stress of PE-tag was shown to be significantly lower than 

that PE, the material will likely never experience stresses comparable to its ultimate 
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stress.  Research has shown that during walking the knee experiences loads up to 

approximately 2-4 times body weight during normal walking gait 35.  The yield stress, 

however, was critical to the mechanical properties of this material as the material will be 

frequently challenged at its yield stress.  Yield stress was shown to have non-significant 

differences for the two materials.  

  

OrthoPod Pin-On-Disk Testing 

  Though initial 3MPa trials did not generate adequate wear for measurement 

over the 40km trial, measureable wear was achieved by increasing the applied force.  The 

force was increased to 42.4N to generate a clinically relevant pin tip pressure of 6MPa.  

UHMWPE manufacturers suggests no more than 10MPa compressive stresses for 

UHMWPE and recommend less than 5MPa145.  However, it has been reported that peak 

stresses may exceed 15MPa in some TKR designs143, 146 thus this experiment does not 

attempt to fully describe wear that would occur even over a short trial.  The 6MPa trial 

showed non-significant differences between the two materials (PE and PE-tag), which 

indicates that this material should be further investigated using a bisphosphonate to 

determine if the same tribological properties are seen.  It is likely that as the tag and 

bisphosphonates are similar in size (thus the ‘defect’ in the PE matrix) and hydrophilicity, 

that they will in fact act similarly.  For this reason, one of the two mechanical 

experiments should be replicated with bisphosphonate substitution to confirm these early 

results.     
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2.5  Conclusion 

These initial studies indicate that it may be feasible to incorporate bisphosphonate 

into the UHMWPE matrix for total joint replacement based upon the results of these 

preliminary tag-based studies.  Future studies should incorporate the actual 

bisphosphonate to confirm the tribological results obtained in this preliminary study.   
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— CHAPTER THREE — 

AIM 2:  in vitro & Functional Drug Elution Testing 

 

3.1  Introduction 

  Several experimental studies have focused on the effects of both particles as 

well as treatment with bisphosphonate on cell and tissue response in vitro (osteoblasts141, 

149, osteoclasts150, macrophages151, 152) and in vivo using animal models2, 3, 132, 153-155.  For 

approximately two decades, osteoclasts (OCs) have been investigated as one of the 

primary cause of osteolysis leading to implant failure.  Initially, researchers assessed the 

inhibitory effect of BPs on osteoclastic activity in an attempt to mitigate early failure as 

osteolysis is the most common cause of failure in TJRs.  In vitro research confirmed in 

vivo has shown that BPs induce OC apoptosis and thus reduce overall osteoclastic 

activity.   Work by others has shown that the IC50 (concentration required for 50% 

inhibition in vivo) of alendronate is 50nM150. The goal of BP-loaded UHMWPE is to be 

in the range to down-regulate OC activity thus functioning as a local drug delivery 

system.   

  The scope of this study was not to reproduce well known therapeutic and 

prophylactic effects of BPs on OBs and OCs, but a brief overview of the results from the 

literature will be discussed.  However, It has been shown that BPs affect the maturation 

and proliferation of OBs in vitro; this has been shown via increases in number of cells, as 

well as increased alkaline phosphatase activity and gene expression of OB markers 

(BMP-2, type I collagen, osteocalcin)141, 149.  Im and colleagues indicated that a 
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concentration between 10-7 and 10-8M increases OB proliferation with peak levels of OB 

proliferation at 10-8M141.  Further, research has also shown that in high concentrations, 

bisphosphonates may also have an effect on macrophages; Moreau and colleagues 

reported that an alendronate concentration of 10-4M significantly decreases the number of 

macrophages in vitro144.  These authors found that more potent bisphosphonates such as 

zolendronate require a lower concentration for apoptotic evidence (10-5M - 10-6M) 

  Based on the 10-6 and 10-8M targeted BP concentration to inhibit OC 

proliferation with a neutral effect on OBs and estimated wear debris average size, a 

concentration of 2% w/v of BP in UHMWPE has been determined to provide optimal 

effect (see earlier calculations in UHMWPE + 2% Tag Preparation section). 

The purpose of this study was to characterize the release of alendronate from bulk 

and thin film samples of enriched UHMWPE in a constantly moving water solution.  The 

results of the study were aimed at elucidating whether the alendronate migrates out of the 

PE, if the release is from the exterior only, or if there is migration occurring from slightly 

below the surface (e.g. first 10 microns).  This study will be useful as proof of concept 

that bisphosphonate does in fact elute from the surface of the PE to confirm the utility of 

enriching with bisphosphonate.  Further, this will be useful to confirm specifically which 

published experiments show what would happen if the enriched material was placed into 

contact with them.   

From previous studies, we know that the polyethylene (PE) enriched with a 

fluorescent tag (PE-tag) had similar yield strength and wear rates from 40km pin-on-disk 

studies to virgin PE.  Additionally, the aim of this study is to investigate whether PE-BP 
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performs similarly to PE-tag in 40km pin-on-disk wear tests to confirm earlier pilot study 

results.  In addition, to confirm static drug elution results, we will attempt to measure the 

BP released into the lubricant during the wear study.  It is our hypothesis that the PE-BP 

will in fact perform similarly to PE-tag and that BP will be released into the lubricant.   

 

3.2  Materials and Methods 

This aim consists of three drug elution experiments.  The first two are performed 

under static conditions (thin film and bulk) while the third is performed on samples that 

have undergone wear in the OrthoPOD.   

 

Static Thin Film Elution 

Drug elution tests were performed using small blocks (1.0cm x 1.0cm x 1.0cm) of 

PE (n=6) and PE-BP (2% w/w of bisphosphonate, n=6) molded using a custom mold.  

Each PE specimen was molded using 950±0. 5mg GUR 4150 UHMWPE.  Each PE-BP 

specimen was molded using the same amount of PE (950±0.5mg GUR 4150 UHMWPE) 

with the addition of 19.4±0.2mg alendronate sodium (ALN), a bisphosphonate (BP).  All 

specimens were compression molded as previously described.  Dimensions of each 

specimen as well as gravimetric weights were obtained prior to the experiment as some 

material was lost in the compression molding process due to flashing.  Data allowed for 

estimations of actual alendronate content in each block for drug elution calculations.  

Specimens were not washed prior to drug elution tests to ensure that alendronate would 

be in a measurable range.  Dimensions of each specimen as well as gravimetric weights 
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were obtained prior to the experiment as some material was lost in the compression 

molding process due to flashing.  Measurements and weights allowed for estimations of 

actual alendronate content in each block and therefore slices from each block for drug 

elution calculations.  Specimens were not washed prior to drug elution tests to ensure that 

alendronate would be in a measurable range.   

In vitro alendronate release study was performed in an environmental chamber 

maintained at 35° ± 2°C; for the duration of the experiment, the specimens undergo 

shaking using a VWR mini shaker at 300rpm. 

Thin film drug elution tests were performed using thin slices (15μm x 1.0cm x 

1.0cm) of PE and PE-BP (2% w/w) cut (PolycutE, Leica) from 1cm3 blocks molded using 

the same mold as bulk elution drug elution tests.  Thin films for pilot studies were cut 

from either the top or the center of blocks of PE and PE-BP (see Figure 3.1).  For the 

experimental studies, 1 slice (0-15um) was cut from the outside of 15 separate blocks and 

placed in a centrifuge tube.  A second slice (15-30um) was cut from the outside of the 15 

blocks and placed in a second centrifuge tube.  This pattern was repeated for a total of 8 

sample tubes (0 – 120um surface depth) of PE-BP (see Figure 3.2).   

 

 

 

 

 

 Figure 3.1: Pilot thin film drug elution experiment 

 
 

 
  

 20 ‘slices’ (t=15μm) 

20 ‘slices’ (t=15μm) 
 

1cm 
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The thin film samples were maintained in 10 mL of HPLC-grade water (Fisher) 

on a shaker at 37°C. Aliquots of 1mL was collected at the indicated time intervals 

(1,2,3,5, and 7 days  for the pilot study) with equal amounts of HPLC-grade water being 

re-added.  For the experimental study, aliquots of 1mL were taken over the course of 28 

days with equal amounts of water re-added for (time points in hours): 1, 2, 4, 8, 12, 24, 

48 (2 days), 72 (3 days), 120 (5 days), 168 (7 days), 336 (14 days), 404 (21 days), 572 

(28 days) with equal fluid amounts being re-added for pilot studies. Samples (n=4; 

triplicate) were analyzed using high pressure liquid chromatography (HPLC, Waters, 

Milford, MA).  

Several methods for measuring alendronate sodium using HPLC have been 

reported in the literature.  However, many of these methods either require time-intensive 

ion complexing as alendronate lacks a chromophore or methodology that requires 

perchloric acid, which is undesirable as it is flammable, corrosive, and explosive.  Ion 

chromatography with refractive index detection methods previously published by Han & 

1 ‘slice’ (t=15μm) 

1cm 

1cm 1cm 
1cm 

Figure 3.2: Thin film drug elution experiment 
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Qin156 were used for pilot experiments; however, the needed sensitivity was not achieved.  

Thus, another method157 that uses in-line complexation of copper II nitrate with the 

bisphosphonate and detection via the UV detector was used.  A Waters HPLC (Milford, 

MA) with an anion-exchange column (Waters IC-Pak anion HR column) packed with 

polymethacrylate resin with a quaternary ammonium functional group (6μm particles 

size, 4.6x75mm ID) was used.   The following parameters replicated those previously 

published by others157:  column temperature of 25°C, 0.85mL/minute flow rate, and 

injection volume of 50μL. It should be noted that for our experiment a flow rate of 

0.85ml/min was used instead of 1.0mL/min as published due to maximum recommended 

flow rate for our column of 1.0mL/min and our slightly lower value was selected to 

insure we remained below that desired limit.  Dilute nitric acid (Fluka) at a concentration 

of 6mM with copper II nitrate (0.5mM, Alfa Aesar) will be used for the mobile phase as 

that concentration yielded the sharpest peak and shortest retention time of alendronate 

within the column157.  A calibration curve was generated prior to beginning any elution 

experiments.  The same HPLC column was used throughout the duration of the elution 

experiments; further, the column was equilibrated via injection of the standard 

alendronate solution till reproducible retention times & peak shapes are generated.  A 

0.4mg/mL standard alendronate solution was produced by dispersing 2mg of alendronate 

sodium in 5mL of deionized water and stirring for 30 minutes.  Then, the solution is 

passed through a 0.2μm filter (Nalgene) for HPLC use.  Each individual sample was 

filtered using 0.45 μm polypropylene syringe filters (National Scientific) prior to 

injection in an HPLC vial (Waters).  From our experiments, it has been found that the 
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alendronate peak had a retention time of approximately 4 min with a detection level of 

0.4μg/mL.  This was similar to published values reporting a detection limit of 

0.3μg/mL157. 

 

Static Bulk Elution 

Drug elution tests were performed using small blocks (1.0cm x 1.0cm x 1.0cm) of 

PE (n=6) and PE-BP (2% w/w of bisphosphonate, n=6) compression molded using a 

custom mold as previously described.  Each PE specimen was molded using 950±0.5mg 

GUR 4150 UHMWPE.  Each PE-BP specimen was molded using the same amount of PE 

(950±0.5mg GUR 4150 UHMWPE) with the addition of 019.4±0.2mg alendronate 

sodium (ALN), a bisphosphonate (BP).   

In vitro alendronate release study was performed in an environmental chamber 

maintained at 35° ± 2°C; for the duration of the experiment, the specimens undergo 

shaking using a VWR mini shaker at 300rpm.  A 1cm3 block of PE or PE-BP is placed 

into 10mL of HPLC-grade water.  Measurements were found using the HPLC 

methodology described above.  HPLC measurements were repeated in triplicate.     

Aliquots of 1ml were taken over the course of 28 days (time points in hours): 1, 2, 

4, 8, 12, 24, 48 (2 days), 72 (3 days), 120 (5 days), 168 (7 days), 336 (14 days), 404 (21 

days), 572 (28 days).  At the end of 28 days, the percent of drug eluted was calculated as 

determined by HPLC.  The latter time points will show whether or not BP is migrating 

towards the surface of the PE-BP or remaining locked within the bulk region if no 

additional drug is released at later time points.  Samples (n=6; triplicate) were analyzed 
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using high pressure liquid chromatography (HPLC, Waters, Milford, MA) anion 

exchange using in-line complexation3. A 6mM nitric acid (Fluka) + 1.5mM copper II 

nitrate (Alfa Aesar) mobile phase were used at a flow rate of 0.85mL/min using a Waters 

IC-Pak Anion HR column as previously described in the Static Thin Film Elution section.  

 

Dynamic Elution Using the OrthoPOD 

  Pin-on-disk wear tests were conducted using the OrthoPod machine (AMTI).  

This experiment was completed as before with the PE versus PE-tag.  Briefly, 6412.7mm 

thick blocks of PE and PE-ALN (alendronate, 2% w/w) were molded using compression 

molding as previously described.  Pins (9.5mm diameter, 3mm flat tip, n=12) were 

machined from two 12.7mm thick blocks.  Three pins of each material as well as 2 soak 

controls were used in individual trials with a total of 6 pins of each material 

experimentally tested.  Each tribosystem was lubricated with 25mL of 50% bovine serum 

diluted with deionized water; lubrication levels were monitored during the trial and 

deionized water was added as necessary to maintain appropriate serum levels.  Soak 

controls were used as previously described.  Six diamond-coated CoCrMo specimens (Ra 

= 22.4 ± 1.8 nm) mounted in custom fixtures were used as the countersurface.  A 40-km 

were test was used (circle-shaped wear pattern 19mm Ø wear pattern; 1Hz), which is 

within ASTM standard F732 for pin-on-disk testing.  Applied pin tip pressure was 6MPa.  

Every 10km, all specimens (experimental and soak controls) were cleaned (ASTM F1715 

method).  Additionally, the bovine serum was collected and frozen from each of the 

tribosystem for later HPLC analysis.  Pins were imaged using non-contact surface 
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profilometery (NT-2000 Non-Contacting Surface Profilometer; Wyko, Tucson, AZ).  

Additionally, gross images at 12X and 25X of the pin tips were recorded using a 

stereomicroscope (Model K400P, Motic Inc, Xiamen, China) with attachments for image 

acquisition including a fluorescent ring lamp illuminator and a color digital camera 

(Model Inifinity 2-1C, Lumenera Corp., Ottawa, Ontario, Canada) with 1392x1040 pixel 

resolution.  

  Each of the specimens were dried in a vacuum oven maintained at 37°C for a 

minimum of 30 minutes and then weighed (Mettler Toledo, d=.01mg).  Once 

gravitational weights and imaging was complete, the OrthoPod was reassembled with 

application of new bovine serum.   A two-tailed t-test (α=.05) was used to analyze the 

results for significance. 

  Bovine serum samples that were collected at the end of each 10km segment 

were thawed at room temperature for 4 hours.  Bovine serum from six stations containing 

PE-ALN pins were used for this experiment with bovine serum thawed for each 10km 

segment (24 total samples).  In order to remove the proteins from the bovine serum so 

that it could be analyzed using HPLC, Microsep 3k filters (Pall Life Sciences) were used.  

These filters contain Omega (modified polyethersuflone membranes); further, they are 

designed for filtering HPLC samples and are reported to have over 90% recovery of 

sample.  The 3kDa filter was selected as it was larger than the drug we are trying to 

measure as well as significantly smaller than bovine serum albumin (66-69kDa), which 

would damage the anion column used in the HPLC methodology.  Samples were placed 

in the Microsep filters and then centrifuged at 3000g for 180min (in two 90 minute 
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increments) using an Eppendorf Centrifuge 5702R.  Ninety minute increments were used 

as they were the maximum time for the centrifuge.   The 1mL of the resultant filtrate was 

removed using a syringe and filtered through a 0.45 μm polypropylene syringe filters 

(National Scientific) prior to injection in an HPLC vial (Waters).  Samples were then 

analyzed as previously reported in Static Thin Film Elution section above.   

 

 

3.3  Results 

Static Thin Film Elution 

Pilot 7-day drug elution tests showed ALN being eluted from the PE-BP thin 

films predominantly between day 0 and day 1 (Figure 3.3). After Day 1, the graph 

remained flat indicating that there was negligible continued release from the 15μm thick 

thin film samples.  Control (PE) thin films showed no measurable peak at the ALN peak 

time (data not shown).      

 

Figure 3.3:  Pilot 7-day drug elution results from thin films 
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Static Thin Film Elution 

Longer studies (28-days) confirmed that most of the ALN that would elute is 

eluted within the first 24 hours.  The 28-day thin film elution studies showed that the 

predominant portion of ALN eluting was within the first 4 hours and after 4 hours little to 

no ALN was eluting from these 15μm thick thin films (Figure 3.4).  Total release was 

approximately 6% release from PE-BP thin films (60.5 ± 2.2μg) Using ANOVA, there 

was a significant difference between the ALN released at different depths over the 

experiment (p=0.000) as shown in Figure 3.5.  Samples show approximately 5-7% 

release regardless of whether they were cut from the exterior or 120um into the sample 

blocks.   

 

              

. 

 

 

 

 

Figure 3.4:  Results of 28-day 

elution test of ALN from 15um 

thin film slices of PE-ALN with 

expansion plot of first 24 hours. 
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Figure 3.5:  Results of 28-day elution test of ALN from 15um thin film slices – Data 

separated by individual depth of slices (S1 represents 0-15um, S2 = 16-30um, S3=31-

45um, etc.; Refer to Figure 3.2 for complete diagrammed list) 

 

Static Bulk Elution 

Elution from the bulk samples showed similar results with the majority of ALN 

being eluted within the first 24-hour time period (Figure 3.6).  After day 14, little to no 

ALN continued to be released from the PE-ALN blocks.  After 28 days, approximately 

0.14 ± 0.04% of the ALN had eluted from the bulk specimens (82.0 ± 33.4μg ALN).  

Again, no ALN peaks were evident in the control samples (data not shown).  
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Figure 3.6:  Results of 28-day 

elution test of ALN from bulk PE-

ALN blocks with expansion plot of 

first 48 hours. 
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Dynamic Elution Using the OrthoPOD 

Results of the gravitational weight loss over the 40km time period showed non-

significant differences (p=0.26) for the PE-ALN and control pins.  Data for each segment 

of the 40km wear test is shown in Figure 3.7.   

 

 

Figure 3.7:  Gravitational weight loss over 40km OrthoPOD trial for PE and PE-

ALN pins 

  

  There was no significant difference (p=0.53) between the average roughness 

of the two material types over the 40km trial as shown in Table . Both materials showed a 

decrease in average roughness over time as the materials burnished and initial machining 

marks worn off.  The diamond-coated CoCrMo countersurfaces had an average 

roughness (Ra) of 20.28±2.92nm at 0km and 13.12 ± 2.06nm at 40km.  The crystalline 

surface is shown in the profilometry image (Figure ) 
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Figure 3.8:  Representative topographical image of diamond-coated CoCrMo disks 

(28.7X) 

  

Table 3.1:  Summary of mean roughness (nm) of PE bearing surfaces cycled against 

diamond-coated CoCrMo over 40km trial 

 PE (nm) PE-ALN 

(nm) 

0km 3940 ± 2667 1069 ± 568 

10km 367 ± 436 810 ± 723 

20km 188 ± 115 354 ± 346 

30km 220 ± 152 346 ± 89 

40km 118 ± 47 157 ± 48 

  

Analysis of startup friction showed no-significant differences between the two 

materials at both timepoints.  At start-up, coefficient of friction was found to be 

0.15±0.05 for PE and 0.14±0.06 for PE-ALN (p=0.76).  For mid-cycle, it was 0.17±0.06 

for PE and 0.13±0.05 for PE-ALN (p=0.28).   
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Gross microscopy showed that all pins at 0km had machining marks on the 

surface.  The concentric circle pattern was more evident on the PE-only pins.  PE pins 

showed burnishing over the wear period and very few surface scratches were evident 

under gross microscopy at later distances.  Additionally, the BP was clearly evident on 

the surfaces both in the initial 0km images as well as throughout the experiment.  BP was 

evident as bright white spots on the grey-toned PE surface.  It should be noted that no BP 

can be seen on the PE only images.  PE-ALN pins also showed burnishing and fewer 

scratch marks as the experiment progressed (See Figure 3.9).  Additionally, some of the 

PE-ALN pins showed voids where the ALN had eluted out during the last 10km segment 

of the wear test.  An example of this is shown below in Figure 3.10.  For microscopy of 

diamond-coated CoCrMo counter surface and all pins from this experiment (0, 10, 20, 30, 

and 40km), see Appendix C.   
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 PE Only PE - ALN 

 12X 25X 12X 25X 

0km 

    

10km 

    

20km 

    

30km 

    

40km 

    

Figure 3.9:  Representative images of PE and PE-ALN pins during 40km OrthoPOD 

wear test 
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 12X 25X 25X 

0km 

   
10km 

   
20km 

   
30km 

   
40km 

   
Figure 3.10:  Example of a PE-ALN pin showing drug elution pits on pin tip 

 



 95 

  HPLC results for the functional drug elution were not as clean as previous 

results as these results are in filtered bovine serum instead of water.  There are several 

unknown peaks in the bovine serum that are small (<3kDa) unidentified biomolecules 

that were not filtered out.  Further, there are small peaks within the filtered ALN in 

bovine serum that were not shown in the filtered bovine serum only (Figure 3.12).  A 

peak was identified at the same time point (t=1.6min) as the alendronate standards (See 

Figure 3.11), however, it is not the only peak in the area around the alendronate peak.  

Below are representative chromatograms from the experiment (Figure 3.13).   

 

 

 

Figure 3.11:  HPLC results for alendronate standards (0.4, 0.2, 0.08, 0.04, 0.004) in 

water (a) full view and (b) expanded view 

(a) 

(b) 
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Figure 3.12:  HPLC results for filtered 50% bovine serum 

 

 

 

Figure 3.13:  ALN release from a representative pin at 10km, 20km, 30km, and 

40km  (a) time points only and (b) time points with ALN curve from standards 

overlaid (shown in black) 

 

From the analysis of the ALN standards, the ALN peak is shown at 1.6 minutes.  The 

ALN peak is still visible in the filtered bovine serum samples from the OrthoPOD, 

however the chromatographs are not as precised.  These graphs clearly show that there is 

ALN released from the pins, however, with multiple peaks within the analysis region, it 

makes quantifying those peaks challenging.  From the data, if looking at the sole ALN 

(b) ALN 
Peak 

0.4mg/mL Std. 

(a) ALN 
Peak 
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peak only and ignoring all other peaks, we find that there is an average percent ALN 

release of 0.56 ± 0.12% over each of the 10km intervals.  Figure 3.14 shows the 

cumulative ALN release over the 40km trial.   

 

 

Figure 3.14:  Cumulative ALN release over 40km 



 98 

3.4  Discussion 

Both the short and long-term thin film elution studies showed a majority release 

during the first 24 hours after the material comes in contact with water.  This indicates 

that the thin films will begin releasing ALN immediately upon generation.  Further, it 

should be re-iterated that average particle size from failed total joint arthroplasties is 

0.53μm for the hip and 1.190μm for the knee158.  Therefore, with the particles being much 

smaller, they will have a larger surface area to volume ratio and thus should release a 

much higher percentage of the drug contained within the particle.  While 1.0cm x 1.0cm 

x 15μm thick particles are not representative of the most frequent particles generated, the 

15μm size is representative of particulate generated via delamination, which is common 

in TKRs159.  The size for the thin films used in this experiment was selected as it was the 

smallest ‘particle’ we could consistently compression mold and then generate to allow for 

standardization of our trials.   

While the results showed that there was a significant difference between ALN 

released from thin film slices at different depths, this is due to the extremely small 

standard deviation for each point as 3 injections were taken from each sample vial.  

Regardless of whether the sample was cut from the shallowest depth (0-15um) or the 

deepest (106-120um), there was 5-7% ALN release.  Further, there was not a clear 

gradient of release where the higher release came from the exterior or the interior 

indicating that it is small inconsistencies of the mixing of the ALN within the material 

that is attributing to the variation.  It should be noted however that these are in fact small 

differences and there is ALN present and being released at all 8 depths showing that the 
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drug did not accumulate at the bottom or top surface during molding.  This is important 

as it allows for a continuous pool of ALN present within the PE-ALN components of a 

total joint replacement allowing extended release of the drug over an extended period of 

time.  It has been reported that the linear wear rate for total hip replacements (THRs) is 

0.18mm/year for the first 5 years and then it drops to 0.10mm/yr for years 5-10 in a 10-

year study160.  Therefore, looking at linear wear rate alone, we have shown that there is 

ALN in the first 120μm (or 0.12mm) and therefore there would be ALN present for at 

least 8months of implantation.  It is likely that the concentration of ALN within the 

UHMWPE construct is similar deeper into the blocks, however, only the first 120μm 

superficial thickness was studied.        

Additionally, the total concentration of ALN released after 40km was 

0.08mg/mL.  Moreau and colleagues have previously reported that an alendronate 

concentration of 10-4M significantly decreases the number of macrophages in vitro144 and 

this concentration is well above that value.  Additionally,   Research has shown that the 

IC50 of alendronate is 50nM150 and our values are also well above this.  However, not all 

of the ALN released into the synovial capsule will make its way to bone so a higher value 

of ALN is acceptable and should still decrease the number of macrophages as well as 

osteoclasts in the bone surrounding the implant. 

From the results, it is evident that the ALN exhibits little migration as the bulk 

elution reached its maximum release over the 28 days by day 14 and then was constant 

afterwards.  This gives credit to the concept that the ALN will remain in the PE once it is 
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placed in vivo.   Using the known surface area, volume, and density of each cube the 

depth of release can be calculated using  

 

 
 

 
 

Using each block’s respective drug elution at day 14, the calculated drug elution only 

occurs from the outer 0.05±0.01 micron of the blocks.  These results are in strong 

contrast to previous studies where BPs were encapsulated into Poly(D,L-lactide-co-

glycolide-D-glucose) microspheres (abbreviated PLG-GLU) 138, 139, this UHMWPE 

appears to have a high enough hydrophobicity as well as a tight enough matrix that the 

100% release within the first 24 hours seen with those microspheres.  The highly 

hydrophobic UHMWPE, even though it is known to absorb some liquid in aqueous 

environments, appears to maintain the ALN within its matrix even though ALN is highly 

hydrophilic.   

For the pin-on-disk experiment, as expected, the pins at 0km were rougher than at 

completion of the trial after 40km.  This is expected due to machining marks present on 

the surface of the pins at the beginning of the trial that are removed by 20km distance.  

Further, the PE-ALN had a lower initial roughness as the pin tip of one of these pins was 

1 of these pins did not have a machined edge but had the compression molded edge from 

the edge of the block.  While all pins were machined at the same time by the same 
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machinist, there still exists variability between the pins.  Further, each pin had 5 points 

where the average roughness was measured.  This is a small percentage of the overall 

area and these measurements are indicators only and not the penultimate surface 

roughness.   

Over the course of the 40km trial, it can be observed that the bisphosphonate is 

eluting out of the pin tips as voids are present in the pin tips when viewed using light 

microscopy.  These voids do have the potential for increasing the wear of the surface as 

they decrease the contact area thus increasing the pin tip contact stress.  However, short 

term wear studies have not shown this to increase wear rates rates.  This may be 

attributed to the lower modulus of elasticity shown in earlier experiments leading to 

better elastohydrodynamic lubrication 147, 148.  It should be noted that the BP is not as 

evenly distributed as was in the earlier PE-tag experiments.  No clumps could be visually 

seen in the PE-tag experiment however, early PE-BP components had clear evidence of 

clumping.  Attempts to separate the drug were completed by grinding using a mortar and 

pestle for 10minutes followed by immediate measurement then mixing with PE using the 

vortexer.  This achieved non-visible at the gross level clumping of the drug.  However, 

during the pin-on-disk experiment, it was noticed that there was still non-uniformity of 

the drug dispersion within the pin tips as shown in the images.  Mixing using high shear 

rates available in commercial equipment may help alleviate this problem.   

The HPLC studies do show that there is some release of the drug at each of the 

10km time points along the 40km trial.  There are a number of small peaks within the 

normal area that the ALN peak is found that are not found in the filtered bovine serum 
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alone.  These may be other biomolecules or degraded drug that is bound to other 

biomolecules within the filtered bovine serum.  The peak data doses show a small release 

which mimics that of the earlier drug elution experiments.  In contrast to previous studies 

where BPs were encapsulated into Poly(D,L-lactide-co-glycolide-D-glucose) 

microspheres (abbreviated PLG-GLU) 138, 139, this UHMWPE appears to have a high 

enough hydrophobicity as well as a tight enough matrix that the 100% release within the 

first 24 hours seen with those microspheres has not been shown with the current material.  

Further, the continuous release over the 40km experiment shows that the drug is in fact 

present in the pin tips and is eluting as the surfaces are wearing.  It should be noted that 

the apparent percentage released is lower for pin-on-disk testing as only the pin tips were 

in lubricant, not the entire pins from which percent released is calculated. 

 

3.5  Conclusion 

Pin-on-disk tests showed no significant differences between the wear of these two 

materials for short test duration.  Further, BP can be seen in the wear pins over the course 

of experiment indicating that there is in fact drug remaining in the pins throughout these 

experiments.  Additionally, HPLC results indicated that there are small amounts of BP 

release over the course of the trial.  However, a more aggressive and in-depth experiment 

such as a knee simulator test is needed to validate whether a difference exists between the 

wear rates of these two materials.       



 103 

— CHAPTER FOUR — 

AIM 3:  Knee Simulator Experiment 

 

4.1  Introduction 

Currently, ultra-high molecular weight polyethylene (UHMWPE) is the bearing 

countersurface used in all total knee replacements.  This UHMWPE undergoes high 

repetitive stresses both compressive as well as shear that leads to wear particle generation 

and possible delamination. Ultimately the body’s reaction to these particles results in 

osteolysis and failure of the implant.  Therefore the driving force in development of new 

UHMWPEs and sacrificial bearing surfaces is the reduction of osteolysis.   

High doses of gamma radiation as well as gamma radiation + vitamin E doping 

have previously been used to reduce the generated particulate.  However, even if wear 

rates are reduced, there is still particulate generated and therefore osteolysis is still a 

potential problem.  This research approaches the problem differently in that it is not 

attempting to decrease the amount of wear generated but using the wear generated for a 

positive outcome.   

Previously in this research, we showed that bisphosphonate (BP) could be blended 

into UHMWPE; this methodology has also been used for integrating Vitamin E into 

UHMWPE87.  Then, pin-on-disk tests gave us an initial idea as to whether the material 

would be successful in the short term.  While pin-on-disk tests are good for initial 

examination of the tribological properties of a material, a deeper understanding using a 

more robust experiment set-up is needed.  A knee joint simulator with full-scale 
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components that could be used in vivo was used to examine longer term tribological 

properties.  The goal of this study was to show that bisphosphonate-enriched UHMWPE 

tibial inserts are tribologically comparable to virgin UHMWPE tibial inserts.  Ultimately, 

the goal of these inserts is not to reduce the wear of the material but rather to use the 

particles as local drug delivery systems to manage the effects of the particles on the 

surrounding tissue. 

 

4.2  Materials and Methods 

A total knee simulator experiment was conducted as a more rigorous wear test 

and generic right tibial plateau and femoral component.  This design was selected to use 

already existent custom compression mold for the tibial insert allowing for compression 

molded components instead of machined.   

Tibial components were molded using solely GUR 4150 UHMWPE (Ticona) or 

GUR 4150 UHMWPE with 2% alendronate sodium (ALN), a bisphosphonate (BP). Each 

PE and PE-BP specimen was molded using the same methodology previously described 

in Specific Aim 1.     

A 4-station Stanmore/Instron Knee Simulator was used with two stations 

containing PE and PE-BP for a 2-million cycle experiment.  The molded components 

were machined to lock within the tibial plateau.  The bearing surfaces of these 

components were compression molded; however, to have proper use of the locking 

mechanism, grooves had to be machined into the anterior and posterior non-weight 

bearing surfaces of the components.   



 105 

Lubricant used was 50% defined calf bovine serum (Hyclone, Logan, UT) diluted 

with deionized water + 0.2% w/v sodium azide (NaN3, Sigma) as an anti-microbial agent 

per station.  Approximately 0.5L of the lubricant was cycled through each station 

throughout each segment of the trial.  Each station had its own lubricant reservoir to 

minimize potential contamination.  Lubricant containers were maintained at the base of 

the knee simulator with a sensor at the tibial cup to ensure that the stations always had 

lubricant.  Additionally, the simulator was set to ‘automatic pumping mode’ so that 

lubricant was circulated every 10 minutes for the duration of the experiment.  Due to 

evaporation, lubricant levels were checked and topped off twice a day to ensure that a 

50% concentration of bovine serum was maintained.   

For 0 to 1 million cycles, the samples were removed and cleaned at every 250,000 

cycles to assess if early failure occurred.  From 1-2 million cycles, segments of 500,000 

cycles will be used.  The testing environment was maintained at 35°±2°C to mimic 

physiological conditions.  To supply and track the actual waveforms, an external 

computer interface was used (General Robotics Ltd., Milton Keynes, England) to ensure 

that the input waveforms were performing adequately.  ISO standard 14243 for force 

controlled-simulators was used as a guideline for this experiment to determining 

appropriate waveform inputs with cycles occurring at 1Hz.  Waveforms inputs were 

determined through an iterative process prior to the start of the experiment; they were 

considered acceptable if the average deviation over the gait cycle was less than 10% of 

the ISO 14243 standard.  Deviation from the ISO standard was monitored throughout the 

experiment.     
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The duration for the study was two million cycles, which represents 

approximately one year of use in patients.  This experiment was aimed at elucidating 

whether PE-BP does in fact wear at a similar rate to UHMWPE using a more rigorous 

test.  Every 250,000 cycles (0-1M) or 500,000 million cycles (1-2M), the simulator was 

stopped to weigh the tibial inserts following cleaning and drying.  All the test specimens 

were cycled between stations every 250,000 or 500,000 million cycles depending on 

which segment of the test was occurring.  This was done to minimize the effects of inter-

station variability on resulting wear rates as there were slight differences in the 

roughnesses of each of the four femurs.    

Kinematic and kinetic data were recorded by logging files from the simulator 

approximately every 12 hours.  Each file included 15 seconds of data measured at 50Hz.  

Logged files were assessed daily to ensure that simulator operation was maintained 

within 10% of the ISO standard.  Files included information such as flexion angle, axial 

load, anterior/posterior displacement, internal/external tibial rotation, anterior/posterior 

implant shear reaction force, and internal/external implant reaction torque.  

Two specimens of each material (PE and PE-BP) were maintained as non-loaded 

soak controls in 50% bovine serum with 0.2% sodium azide within a 35° ± 2°C 

environmental chamber to allow for calculation of fluid absorbed into the specimens.  

The tibial inserts (both experimental and soak) were cleaned using ASTM F1715 method 

at the end of each interval (1/4 or 1/2M cycles).  After cleaning, the tibial inserts were 

allowed to dry for 24 hours in a desiccator under vacuum prior to weighing (Mettler 
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Toledo, d=.01mg).  Tibial components, cups holding the components and the tubing in 

the knee simulator were cleaned with a bleach and detergent mixture at each time point.   

Finally, non-contact profilometery and stereomicroscopy were conducted at 0 and 

2 million cycles to analyze the surface for microscopic changes in wear that may not be 

apparent via the gravimetric weights. Non-contact profilometery (NT-2000 Non-

Contacting Surface Profilometer; Wyko, Tucson, AZ) was performed on 8 points per 

insert (4 points/condyle) at the prior to and after the experiment.  The gross images of the 

tibial inserts were recorded using stereomicroscopy (Model K400P, Motic Inc, Xiamen, 

China) at 6X & 12X magnification to view the center of medial and lateral bearing 

surfaces at the beginning and end of the study (0 and 2M cycles). Stereomicroscope used   

attachments for image acquisition including a fluorescent ring lamp illuminator and a 

color digital camera (Model Inifinity 2-1C, Lumenera Corp., Ottawa, Ontario, Canada) 

with 1392x1040 pixel resolution.    

 The femurs were analyzed using non-contact profilometry (6 points per condyle 

(12 points/femur)) and stereomicroscopy (12X, 6 points/femur) before and after the 

experiment.   

Further, two tibial plateaus were imaged using a Hitachi S-3400N SEM after 

experimentation had finished to compare the surfaces within the wear condylar wear 

path.  Variable pressure (30Pa) SEM at 100X and 250X was used to investigate the 

primary modes of wear.  It was expected that these would be polishing and burnishing, 

however, as this is a composite material other modes may be seen such as abrasion if the 

drug is harder than the polyethylene and scratches its surface.  Additionally, we used 
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Energy-dispersive X-ray spectroscopy (abbreviated EDX or EDS) to analyze the surface 

to evaluate whether there was ALN on the surface of the tibial inserts.  For analysis of the 

EDX spectrogram, it is important to know that the k-line for phosphorus appears at 2.0.     

Finally, calculation of wear for this experiment was soak control-corrected using 

the gravimetric weights from the 4 specimens in the environmental chamber.  Two-tailed 

t-tests (α=.05) will be used to analyze the results for significance. 

 

4.3  Results 

Simulator Performance 

Figure  4.1 shows that the ISO standard for walking was followed during the trial.    

Further, Figure 4.2 shows the results of the maintenance of the waveform within 10% of 

the ISO standards.  Flexion, axial, and internal/external torque were maintained within 

the “good”0-5% error) throughout the experiment while A/P actuation force was 

maintained within the acceptable region (5-7.5%) as shown in Figure 4.2).    
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Figure 4.1:  Simulator performance from beginning of trial (0.75M cycles, pink) to 

end of trial (2M cycles, green) superimposed over the ISO Standard 
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Figure 4.2:  Loading waveform error analysis ISO waveform matching with 

modified simulator input waveforms 

 

TKR Kinetic and Kinematic Results 

All stations performed similarly in kinetic and kinematic performance.  Figure 4.3 and 

Figure 4.4 illustrate a comparison of the averaged 4-station values for 0.75M and 2M 

cycles.  The shift in tibial global A/P motion is attributed to replacement of the axial 

bearing during the experiment.   
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Figure 4.3:  TKR kinematics over the gait cycle (0.75M – 2M cycles) 

  

 

Figure 4.4:  TKR implant and soft tissue forces over the gait cycle (0.75M – 2M 

cycles) 
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Femoral Countersurface 

Using non-contact profilometery, it was found that the 4 femurs had an average 

roughness of 43.5 ± 23.4nm at the beginning of the TKR experiment.  Representative 

images are shown in Figure 4.5. 

Stereomicroscopy was also completed of the femurs (12X) prior to starting the 

test to have a better visualization of the differences in roughness among the femoral 

components.  It can clearly be seen that the femurs have abrasion along the wear track. 

All images in Figure 4.6 are from the medial side of the femur along the wear track 

(Lateral images were similar, but are not shown below).   

 

  

  

Figure 4.5:  Representative images of non-contact profilometry scans of femurs at 

0M cycles (28.7X) 
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 Femur 1 Femur 2 Femur 3 Femur 4 

0° 

    

45° 

    

90° 

    

Figure 4.6:  Stereomicroscopic images (12X) of femurs at 0°, 45°, and 90° prior to 

TKR study (Note:  each measurement bar represents 1000μm) 

 

Material Performance 

The roughnesses of the PE and PE-ALN components decreased by 31.6% and 

56.4% respectively (See Table 4.1).  There was not a significant difference in the Ra 

(p=0.51) or Rq (0.57) values at 0M between the two materials.  At 2 million cycles, PE-

ALN was significantly rougher than the PE only, both for Ra (Ra, p=0.002) and Rq 

(0.01). Representative images for PE and PE-ALN at 0M and 2M cycles are shown in 

Figure 4.7. 
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 PE Only PE - ALN 

0M  

  
0M  

  
2M 

  
2M 

  
Figure 4.7:  Representative images of non-contact profilometry scans of PE and PE-

ALN at 0M and 2M cycles (28.7X) 
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Table 4.1:  Summary of mean roughness (nm) and root mean squared roughness 

(Rq) of PE bearing surfaces cycled against roughened CoCrMo femurs over 2 

million cycles 

 Ra (nm) Rq (nm) 

 PE  PE-ALN  PE PE-ALN  

0M 156.8 ± 53.7 276.4 ± 127.5 221.3 ± 66.1 388.6 ± 176.3 

2M 107.3 ± 46.6* 120.5 ± 30.6* 138.8 ± 56.9† 154.3 ± 41.0† 

 
* p = 0.002 † p = 0.01 

 

   

  Stereomicroscopy was also completed before and after the experiment.  

Images from the beginning of the experiment showed uniform compression molded 

surfaces for both materials with a few scratches from the molding process (Figure 4.8).  

Images at 2M cycles exhibited the expected wear track on both condyles (Figure 4.9 and 

Figure 4.10).  Images from the center of the wear track show burnishing and scratching.  

It is evident at the anterior and posterior of the tibial insert the delineation between the 

wear path and the unworn compression molded surfaces.  Additionally, bisphosphonate is 

apparent in the surfaces of the PE-ALN samples at both timepoints (Figure 4.8 - 4.10).      
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 PE Only PE - ALN 

0M 

(6X) 

  
0M 

(12X) 

  
Figure 4.8:  Representative stereomicroscopic images of PE and PE-ALN at 6X & 

12X magnification 
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PE Only PE - ALN 

  

  

  
Figure 4.9:  Representative stereomicroscopic images of (a) anterior, (b) center,     

and (c) posterior of wear track at 6X magnification 
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PE Only PE - ALN 

  

  

  
Figure 4.10:  Representative stereomicroscopic images of (a) anterior, (b) center,    

and (c) posterior of wear track at 12X magnification 

 

 

 

(a) (a) 

(b) (b) 

(c) (c) 
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The SEM images show non-worn specimens at 0M (Figure 4.11 and Figure 4.12).  

These specimens show residual Teflon in the outer surface of the implant as evidenced by 

the white spots on the SEM images.  This was confirmed using EDX.  The only peaks 

shown in the EDX spectra were carbon (C) and Fluorine (F) (Figure 4.13).   UHMWPE is 

comprised of carbon and hydrogen while Teflon is comprised of carbon and fluorine.  No 

ALN (specifically the phosphorus) was found using EDX.  The primary modes of wear 

that can be observed in these images are scratching and burnishing. 



 120 

 
100X 250X 

  

  

  
Figure 4.11:  Representative SEM images of PE-ALN at 0M and 2M cycles (100X & 

250X magnification) 
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100X 250X 

  

  

  
Figure 4.12:  Representative SEM images of PE  at 0M and 2M cycles (100X & 250X 

magnification) 
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Spectrum processing :  
No peaks omitted 
 
Processing option : All elements analyzed 
(Normalised) 
Number of iterations = 5 
 
Standard : 
C    CaCO3   1-Jun-1999 12:00 AM 
F    MgF2   1-Jun-1999 12:00 AM 
 
Element Weight% Atomic%  
         
C K 89.15 92.86  
F K 10.85 7.14  
    
Totals 100.00   

 
 

Figure 4.13:  Representative EDX spectra 
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Gravimeteric Weight Loss Results 

All specimens showed steady raw weight loss over the 2M cycle trial (Figure 

4.14).  Further, the soak control specimens continued to gain weight over the course of 

the trial (Figure 4.16).   

From the graphs it can be observed that over the 2 million cycles, the tibial 

components showed similar gravitational loss (Figure 4.15).    The lines diverged more at 

2M.  The average weight loss per million cycles was not statistically different between 

the two materials (p=0.14) with 37.2 ± 14.2mg for PE and 47.3 ± 16.9mg for PE-ALN 

(Figure 4.17).   

 

  
Figure 4.14:  Summary of the total change in weight of PE and PE-ALN over 2M 

cycles 
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Figure 4.15:  Summary of the soak control corrected total change in weight of PE 

and PE-ALN over 2M cycles 

 

 

 

Figure 4.16:  Expanded view of non-loaded soak control specimens over 2 million 

cycles 
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Figure 4.17:  Average per-million weight loss of PE and PE-ALN over 2M cycle trial 

 

 

4.4  Discussion 

The results of this test show that there is a non-significant difference between the 

two materials.  This is an aggressive test due to the higher Ra of the femoral components 

that is run over a short number of cycles (2M instead of 5M).  It is unknown whether the 

divergence seen at 2M cycles is an anomaly or an actual increase in wear rate (and thus 

decrease in gravitational weight) of the PE-ALN.  It should be noted that there exists 

much more variability in a total knee simulator test than a pin-on-disk test as there are 

many more moving components and more variables that can affect the outcome.  A 5M 

cycle test would help elucidate this issue.   

p = 0.14 
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One additional concern is the shelf life of bisphosphonate.  From the 

manufacturers, the shelf life of bisphosphonate is two years.  Bisphosphonate released 

will bind to the exposed hydroxyapatite, where it will remain bound until osteoclasts 

attempt to resorb that section of bone.  The drug does not become active until both the 

drug and a small amount of the bone (specifically the hydroxyapatite) have been ingested 

by an osteoclast.  Merck has reported in its prescribing information that alendronate has a 

terminal half-life of more than 10 years in the human skeleton if it can become bound 

before being excreted.  However, while the drug is bound to bone, it is inactive.  At a 

minimum, if using the shelf life only, the drug will be relased for the first two years.  

However, the drug is likely to be active longer than its shelf life, the first two years.  

Further, there is already precedent on the market for drug loaded materials that are left in 

place after the drug would expire, namely the antibiotic-doped polymethylmethacrylate 

(bone cement) products used in orthopaedics that remain in the body until revision or the 

patient expires. There are several currently on the market but some examples are Simplex 

P with Tobramycin (Stryker) and Palacos R+G (includes Gentamicin; Zimmer). 

 

4.5  Conclusion 

The overall wear rates of PE-ALN in comparison to standard PE was not 

significantly different and therefore this material does have the potential to be a new 

enriched UHMWPE for future use in vivo.   
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— CHAPTER FIVE — 

CONCLUSIONS 

 

The objective of this investigation was to develop and characterize a 

bisphosphonate-enriched ultra-high molecular weight polyethylene (UHMWPE) for 

biomedical applications.  The mechanical and tribological properties of the novel material 

were evaluated using standard tests such as tensile testing, pin-on-disk tests, and total 

knee simulator experimentation.  The main hypothetical question was whether a BP-

enriched UHMWPE that would wear similarly to the current gold standard of UHMWPE 

could be developed.   It has been shown through tensile testing that a material with 

similar yield strength can be generated.  Further, pin-on-disk and total knee simulator 

tests showed no significant differences in the gravitational weight loss during the process.  

The other main concern with this material was whether or not the drug would release.  

High pressure liquid chromatography (HPLC) experiments have shown that there is very 

little migration of the drug over 28 days and functional wear tests have shown a 

continued release of drug over a 40km wear regime.  Based on comparisons with virgin 

UHMWPE, this material possesses sufficient mechanical and tribological properties to 

merit consideration for use in the orthopaedic bearing applications. 
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— CHAPTER SIX — 

PROJECT RECOMMENDATIONS 

 

Future project recommendations: 

 Repeat the HPLC for the OrthoPOD pin-on-disk test as there is still 10mL of 

frozen serum.  This time, however, run 3 groups of deproteinated bovine serum:  

PE-ALN, PE only, and new filtered serum.  The reason to this would be to 

elucidate what the small peaks in the range of ALN are; whether they are resultant 

of the degrading bovine serum, if they are degraded drug, or a combination of 

both. 

 A 5 million cycle test to ensure the two materials have similar wear rates.  

 A long-term animal model in order to look at 4-6 month performance of this 

material compared to a standard PE model.  The recommendation would be to do 

a canine model.  This would require either a large grant or industry support.  But, 

prior to in vivo tests, a large animal model is necessary.  As both materials have 

already been tested in vitro and in vivo a small animal model may not be 

necessary.      

 Determine whether the PE-ALN can be cleaned and gamma sterilized at the 

higher doses used for crosslinking.  It is known that the ALN can be sterilized at 

normal sterilization doses from previous PMMA-ALN studies performed in other 

labs.  This would allow for secondary material, XLPE-ALN, for applications that 

prefer the highly crosslinked polyethylene.  If ALN is still viable after the high 
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doses of gamma sterilization, then do tensile testing, OrthoPOD testing, and a 5M 

cycle knee simulator test. 

 Once patenting has been completed and if XLPE-ALN is viable, create a new 

blend using 0.2% vitamin E or other antioxidant in conjunction with a lower dose 

(e.g. 1%) ALN.  If this blend can be made, then do tensile testing, OrthoPOD 

testing, and a 5M cycle knee simulator test. 
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APPENDIX A 

Additional Results from Specific Aim 1 

 
Additional graph of uniaxial tensile test data for UHMWPE and UHMWPE + tag 
specimens.   
 

 
Figure A-1:  Uniaxial Tensile Test Data for UHMWPE and UHMWPE + tag 
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Figure A-2:  Results of tensile test (a) Modulus of Elasticity [MPa] (b) Yield Stress 

at 3% Strain [MPa], (c) Ultimate Stress at Failure [MPa], (d) Ultimate Strain (%), 

(e) Ultimate Load [N], and (f) Toughness [MPa] 

 

(a) (b) 

(c) (d) 

(e) (f) 
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Figure A-3:  Average change in gravimetric weights over 40km OrthoPod trial 

(6MPa contact pressure) with all individual points superimposed 
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APPENDIX B 

Additional Images of OrthoPOD pins from Functional Drug Elution Experiment 

 

Included in this appendix are the additional images of the OrthoPOD pins (PE or PE-BP) 

and the diamond-coated CoCrMo countersurfaces used in the 40km OrthoPOD test of 

Aim 2.  Pins 1, 2, 3, 5, 6, and 8 are PE-only pins (PE).  Pins 21, 22, 23, 27, 28, and 29 are 

PE-BP pins. 

 

  

  
Figure B-1:  Representative Images (4) of Diamond-like Coated CoCrMo disks used 

as the countersurface of the OrthoPOD experiment (Aim 2) 
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Table B-1:  Microscope Images of each pin from the OrthoPOD 40km wear test 

presented in Aim 2 

Pin 1 (PE) 
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Pin 2 (PE) 
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Pin 3 (PE) 
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Pin 21 (PE-BP) 
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Pin 22 (PE-BP) 
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Pin 23 (PE-BP) 
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Pin 5 (PE) 
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Pin 6 (PE) 
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