1,269 research outputs found

    Supporting Internet Access and Quality of Service in Distributed Wireless Ad Hoc Networks

    Get PDF
    In this era of wireless hysteria, with continuous technological advances in wireless communication and new wireless technologies becoming standardized at a fast rate, we can expect an increased interest for wireless networks, such as ad hoc and mesh networks. These networks operate in a distributed manner, independent of any centralized device. In order to realize the practical benefits of ad hoc networks, two challenges (among others) need to be considered: distributed QoS guarantees and multi-hop Internet access. In this thesis we present conceivable solutions to both of these problems. An autonomous, stand-alone ad hoc network is useful in many cases, such as search and rescue operations and meetings where participants wish to quickly share information. However, an ad hoc network connected to the Internet is even more desirable. This is because Internet plays an important role in the daily life of many people by offering a broad range of services. In this thesis we present AODV+, which is our solution to achieve this network interconnection between a wireless ad hoc network and the wired Internet. Providing QoS in distributed wireless networks is another challenging, but yet important, task mainly because there is no central device controlling the medium access. In this thesis we propose EDCA with Resource Reservation (EDCA/RR), which is a fully distributed MAC scheme that provides QoS guarantees by allowing applications with strict QoS requirements to reserve transmission time for contention-free medium access. Our scheme is compatible with existing standards and provides both parameterized and prioritized QoS. In addition, we present the Distributed Deterministic Channel Access (DDCA) scheme, which is a multi-hop extension of EDCA/RR and can be used in wireless mesh networks. Finally, we have complemented our simulation studies with real-world ad hoc and mesh network experiments. With the experience from these experiments, we obtained a clear insight into the limitations of wireless channels. We could conclude that a wise design of the network architecture that limits the number of consecutive wireless hops may result in a wireless mesh network that is able to satisfy users’ needs. Moreover, by using QoS mechanisms like EDCA/RR or DDCA we are able to provide different priorities to traffic flows and reserve resources for the most time-critical applications

    Packet aggregation for voice over internet protocol on wireless mesh networks

    Get PDF
    >Magister Scientiae - MScThis thesis validates that packet aggregation is a viable technique to increase call ca-pacity for Voice over Internet Protocol over wireless mesh networks. Wireless mesh networks are attractive ways to provide voice services to rural communities. Due to the ad-hoc routing nature of mesh networks, packet loss and delay can reduce voice quality.Even on non-mesh networks, voice quality is reduced by high overhead, associated with the transmission of multiple small packets. Packet aggregation techniques are proven to increase VoIP performance and thus can be deployed in wireless mesh networks. Kernel level packet aggregation was initially implemented and tested on a small mesh network of PCs running Linux, and standard baseline vs. aggregation tests were conducted with a realistic voice tra c pro le in hop-to-hop mode. Modi cations of the kernel were then transferred to either end of a nine node 'mesh potato' network and those tests were conducted with only the end nodes modi ed to perform aggregation duties. Packet ag- gregation increased call capacity expectedly, while quality of service was maintained in both instances, and hop-to-hop aggregation outperformed the end-to-end con guration. However, implementing hop-to-hop in a scalable fashion is prohibitive, due to the extensive kernel level debugging that must be done to achieve the call capacity increase.Therefore, end-to-end call capacity increase is an acceptable compromise for eventual scalable deployment of voice over wireless mesh networks

    Joint ERCIM eMobility and MobiSense Workshop

    Get PDF

    Study on QoS support in 802.11e-based multi-hop vehicular wireless ad hoc networks

    Get PDF
    Multimedia communications over vehicular ad hoc networks (VANET) will play an important role in the future intelligent transport system (ITS). QoS support for VANET therefore becomes an essential problem. In this paper, we first study the QoS performance in multi-hop VANET by using the standard IEEE 802.11e EDCA MAC and our proposed triple-constraint QoS routing protocol, Delay-Reliability-Hop (DeReHQ). In particular, we evaluate the DeReHQ protocol together with EDCA in highway and urban areas. Simulation results show that end-to-end delay performance can sometimes be achieved when both 802.11e EDCA and DeReHQ extended AODV are used. However, further studies on cross-layer optimization for QoS support in multi-hop environment are required
    corecore