1,750 research outputs found

    Bounding network spectra for network design

    Full text link
    The identification of the limiting factors in the dynamical behavior of complex systems is an important interdisciplinary problem which often can be traced to the spectral properties of an underlying network. By deriving a general relation between the eigenvalues of weighted and unweighted networks, here I show that for a wide class of networks the dynamical behavior is tightly bounded by few network parameters. This result provides rigorous conditions for the design of networks with predefined dynamical properties and for the structural control of physical processes in complex systems. The results are illustrated using synchronization phenomena as a model process.Comment: 17 pages, 4 figure

    Maximum Performance at Minimum Cost in Network Synchronization

    Full text link
    We consider two optimization problems on synchronization of oscillator networks: maximization of synchronizability and minimization of synchronization cost. We first develop an extension of the well-known master stability framework to the case of non-diagonalizable Laplacian matrices. We then show that the solution sets of the two optimization problems coincide and are simultaneously characterized by a simple condition on the Laplacian eigenvalues. Among the optimal networks, we identify a subclass of hierarchical networks, characterized by the absence of feedback loops and the normalization of inputs. We show that most optimal networks are directed and non-diagonalizable, necessitating the extension of the framework. We also show how oriented spanning trees can be used to explicitly and systematically construct optimal networks under network topological constraints. Our results may provide insights into the evolutionary origin of structures in complex networks for which synchronization plays a significant role.Comment: 29 pages, 9 figures, accepted for publication in Physica D, minor correction

    Model reduction of networked passive systems through clustering

    Full text link
    In this paper, a model reduction procedure for a network of interconnected identical passive subsystems is presented. Here, rather than performing model reduction on the subsystems, adjacent subsystems are clustered, leading to a reduced-order networked system that allows for a convenient physical interpretation. The identification of the subsystems to be clustered is performed through controllability and observability analysis of an associated edge system and it is shown that the property of synchronization (i.e., the convergence of trajectories of the subsystems to each other) is preserved during reduction. The results are illustrated by means of an example.Comment: 7 pages, 2 figures; minor changes in the final version, as accepted for publication at the 13th European Control Conference, Strasbourg, Franc
    corecore