28,496 research outputs found

    Transfer Learning for Improving Model Predictions in Highly Configurable Software

    Full text link
    Modern software systems are built to be used in dynamic environments using configuration capabilities to adapt to changes and external uncertainties. In a self-adaptation context, we are often interested in reasoning about the performance of the systems under different configurations. Usually, we learn a black-box model based on real measurements to predict the performance of the system given a specific configuration. However, as modern systems become more complex, there are many configuration parameters that may interact and we end up learning an exponentially large configuration space. Naturally, this does not scale when relying on real measurements in the actual changing environment. We propose a different solution: Instead of taking the measurements from the real system, we learn the model using samples from other sources, such as simulators that approximate performance of the real system at low cost. We define a cost model that transform the traditional view of model learning into a multi-objective problem that not only takes into account model accuracy but also measurements effort as well. We evaluate our cost-aware transfer learning solution using real-world configurable software including (i) a robotic system, (ii) 3 different stream processing applications, and (iii) a NoSQL database system. The experimental results demonstrate that our approach can achieve (a) a high prediction accuracy, as well as (b) a high model reliability.Comment: To be published in the proceedings of the 12th International Symposium on Software Engineering for Adaptive and Self-Managing Systems (SEAMS'17

    On the User Perception of Configurable Reference Process Models - Initial Insights

    Get PDF
    Enterprise Systems potentially lead to significant efficiency gains but require a well-conducted configuration process. A configurable reference modelling language based on the widely used EPC notation, which can be used to specify Configurable EPCs (C-EPCs), has been developed to support the task of Enterprise Systems configuration. This paper presents a laboratory experiment on C-EPCs and discusses empirical data on the comparison of C-EPCs to regular EPCs. Using the Method Adoption Model we report on modeller’s perceptions as to the usefulness and ease of use of C-EPCs, concluding that C-EPCs provide sufficient yet improvable conceptual support towards reference model configuration

    Improving reconfigurable systems reliability by combining periodical test and redundancy techniques: a case study

    Get PDF
    This paper revises and introduces to the field of reconfigurable computer systems, some traditional techniques used in the fields of fault-tolerance and testing of digital circuits. The target area is that of on-board spacecraft electronics, as this class of application is a good candidate for the use of reconfigurable computing technology. Fault tolerant strategies are used in order for the system to adapt itself to the severe conditions found in space. In addition, the paper describes some problems and possible solutions for the use of reconfigurable components, based on programmable logic, in space applications

    Test them all, is it worth it? Assessing configuration sampling on the JHipster Web development stack

    Get PDF
    Many approaches for testing configurable software systems start from the same assumption: it is impossible to test all configurations. This motivated the definition of variability-aware abstractions and sampling techniques to cope with large configuration spaces. Yet, there is no theoretical barrier that prevents the exhaustive testing of all configurations by simply enumerating them if the effort required to do so remains acceptable. Not only this: we believe there is a lot to be learned by systematically and exhaustively testing a configurable system. In this case study, we report on the first ever endeavour to test all possible configurations of the industry-strength, open source configurable software system JHipster, a popular code generator for web applications. We built a testing scaffold for the 26,000+ configurations of JHipster using a cluster of 80 machines during 4 nights for a total of 4,376 hours (182 days) CPU time. We find that 35.70% configurations fail and we identify the feature interactions that cause the errors. We show that sampling strategies (like dissimilarity and 2-wise): (1) are more effective to find faults than the 12 default configurations used in the JHipster continuous integration; (2) can be too costly and exceed the available testing budget. We cross this quantitative analysis with the qualitative assessment of JHipster’s lead developers.</p
    • …
    corecore