164 research outputs found

    Analysis Of The Simulatability Of An Oblivious Transfer

    Get PDF
    In the Journal of Cryptology (25(1): 158-193. 2012), Shai Halevi and Yael Kalai proposed a general framework for constructing two-message oblivious transfer protocols using smooth projective hashing. The authors asserts that this framework gives a simulation-based security guarantee when the sender is corrupted. Later this work has been believed to be half-simulatable in literatures. In this paper, we show that the assertion is not true and present our ideas to construct a fully-simulatable oblivious transfer framework

    Composability in quantum cryptography

    Full text link
    In this article, we review several aspects of composability in the context of quantum cryptography. The first part is devoted to key distribution. We discuss the security criteria that a quantum key distribution protocol must fulfill to allow its safe use within a larger security application (e.g., for secure message transmission). To illustrate the practical use of composability, we show how to generate a continuous key stream by sequentially composing rounds of a quantum key distribution protocol. In a second part, we take a more general point of view, which is necessary for the study of cryptographic situations involving, for example, mutually distrustful parties. We explain the universal composability framework and state the composition theorem which guarantees that secure protocols can securely be composed to larger applicationsComment: 18 pages, 2 figure

    Universally Composable Quantum Multi-Party Computation

    Full text link
    The Universal Composability model (UC) by Canetti (FOCS 2001) allows for secure composition of arbitrary protocols. We present a quantum version of the UC model which enjoys the same compositionality guarantees. We prove that in this model statistically secure oblivious transfer protocols can be constructed from commitments. Furthermore, we show that every statistically classically UC secure protocol is also statistically quantum UC secure. Such implications are not known for other quantum security definitions. As a corollary, we get that quantum UC secure protocols for general multi-party computation can be constructed from commitments

    Secure Multi-party Computation Protocols from a High-Level Programming Language

    Get PDF
    Turvalise ühisarvutuse abil on võimalik sooritada privaatsust säilitavaid arvutusi mitmelt osapoolelt kogutud andmetega. Tänapäeva digitaalses maailmas on andmete konfidentsiaalsuse tagamine üha raskemini teostatav. Turvalise ühisarvutuse meetodid nagu ühissalastus ja Yao sogastatud loogikaskeemid võimaldavad teostada privaatsust säilitavaid arvutusprotokolle, mis ei lekita konfidentsiaalseid sisendandmeid. Aditiivne ühissalastuse skeem on väga efektiivne algebraliste ringide tehete sooritamiseks fikseeritud bitilaiusega andmetüüpide peal. Samas on seda kasutades raske ehitada protokolle, mis nõuavad paindlikumaid bititaseme operatsioone. Yao sogastatud loogikaskeemide meetod töötab aga igasuguse bitilaiusega andmete peal ja võimaldab väärtustada mistahes Boole'i funktsioone. Neid kahte meetodit koos kasutades ehitame turvalise hübriidprotokolli, mis kujutab endast üldist meetodit privaatsust säilitavate arvutuste teostamiseks bitikaupa ühissalastatud andmete peal. Loogikaskeeme vajalikeks arvutusteks on lihtne saada kahe kaasaegse turvalise ühisarvutuse jaoks mõeldud kompilaatori abil, mis muundavad C programmi loogikaskeemiks --- PCF ja CBMC-GC. Meie hübriidprotokolli prototüüp privaatsust säilitaval arvutusplatvormil Sharemind saavutab praktilisi jõudlustulemusi, mis on võrreldavad teiste kaasaegsete lahendustega. Lisaks kahe osapoolega arvutustele pakub meie prototüüp võimekust teostada mitmekesiseid arvutusi üldises turvalise ühisarvutuse arvutusmudelis. Hübriidprotokoll ja loogikaskeemide kompilaatorid võimaldavad koos kasutades lihtsalt ja efektiivselt luua üldkasutatavaid turvalise ühisarvutuse protokolle mistahes Boole'i funktsioonide väärtustamiseks.Secure multi-party computation (SMC) enables privacy-preserving computations on data originating from a number of parties. In today's digital world, data privacy is increasingly more difficult to provide. With SMC methods like secret sharing and Yao's garbled circuits, it is possible to build privacy-preserving computational protocols that do not leak confidential inputs to other parties. The additive secret sharing scheme is very efficient for algebraic ring operations on fixed bit-length data types. However, it is difficult to build protocols that require robust bit-level manipulation. Yao's garbled circuits approach, in contrast, works on arbitrary bit-length data and allows the evaluation of any Boolean function. Combining the two methods, we build a secure hybrid protocol, which provides a general method for building arbitrary secure computations on bitwise secret-shared data. We are able to generate circuits for the protocol easily by using two state-of-the-art C to circuit compilers designed for SMC applications --- PCF and CBMC-GC. Our hybrid protocol prototype on the Sharemind privacy-preserving computational platform achieves practical performance comparable to other recent work. In addition to two-party computations, our prototype provides the ability to perform a set of diverse computations in a generic SMC computational model. The hybrid protocol together with the circuit compilers provides a simple and efficient toolchain to build general-purpose SMC protocols for evaluating any Boolean function

    08491 Abstracts Collection -- Theoretical Foundations of Practical Information Security

    Get PDF
    From 30.11. to 05.12.2008, the Dagstuhl Seminar 08491 ``Theoretical Foundations of Practical Information Security \u27\u27 was held in Schloss Dagstuhl~--~Leibniz Center for Informatics. During the seminar, several participants presented their current research, and ongoing work and open problems were discussed. Abstracts of the presentations given during the seminar as well as abstracts of seminar results and ideas are put together in this paper. The first section describes the seminar topics and goals in general. Links to extended abstracts or full papers are provided, if available
    corecore