

Edinburgh Research Explorer

List Oblivious Transfer and Applications to Round-Optimal
Black-Box Multiparty Coin Tossing
Citation for published version:
Ciampi, M, Ostrovsky, R, Siniscalchi, L & Waldner, H 2023, List Oblivious Transfer and Applications to
Round-Optimal Black-Box Multiparty Coin Tossing. in CRYPTO 2023: 43rd International Cryptology
Conference. vol. 14081, Lecture Notes in Computer Science, vol. 14081, Springer, pp. 459-488, 43rd
International Cryptology Conference, Santa Barbara, California, United States, 19/08/23.
https://doi.org/10.1007/978-3-031-38557-5_15

Digital Object Identifier (DOI):
https://doi.org/10.1007/978-3-031-38557-5_15

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Peer reviewed version

Published In:
CRYPTO 2023

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 26. Oct. 2023

https://doi.org/10.1007/978-3-031-38557-5_15
https://doi.org/10.1007/978-3-031-38557-5_15
https://www.research.ed.ac.uk/en/publications/fa025f0d-18ef-412c-9952-2ffdfa2cb456

List Oblivious Transfer and Applications to Round-Optimal
Black-Box Multiparty Coin Tossing

Michele Ciampi1 , Rafail Ostrovsky2 ,
Luisa Siniscalchi3, and Hendrik Waldner4,5

1 The University of Edinburgh, Edinburgh, UK
michele.ciampi@ed.ac.uk

2 University of California, Los Angeles, US
rafail@cs.ucla.edu

3 Technical University of Denmark, Copenhagen, Denmark
luisi@dtu.dk

4 University of Maryland, College Park, US
hwaldner@umd.edu

5 Max Planck Institute for Security and Privacy, Bochum, Germany

Abstract. In this work we study the problem of minimizing the round complexity for securely evaluating
multiparty functionalities while making black-box use of polynomial time assumptions. In Eurocrypt
2016, Garg et al. showed that, assuming all parties have access to a broadcast channel, then at least four
rounds of communication are required to securely realize non-trivial functionalities in the plain model.
A sequence of works follow-up the result of Garg et al. matching this lower bound under a variety of
assumptions. Unfortunately, none of these works make black-box use of the underlying cryptographic
primitives. In Crypto 2021, Ishai, Khurana, Sahai, and Srinivasan came closer to matching the four-round
lower bound, obtaining a five-round protocol that makes black-box use of oblivious transfer and PKE
with pseudorandom public keys.
In this work, we show how to realize any input-less functionality (e.g., coin-tossing, generation of
key-pairs, and so on) in four rounds while making black-box use of two-round oblivious transfer. As an
additional result, we construct the first four-round MPC protocol for generic functionalities that makes
black-box use of the underlying primitives, achieving security against non-aborting adversaries.
Our protocols are based on a new primitive called list two-party computation. This primitive offers relaxed
security compared to the standard notion of secure two-party computation. Despite this relaxation, we
argue that this tool suffices for our applications. List two-party computation is of independent interest,
as we argue it can also be used for the generation of setups, like oblivious transfer correlated randomness,
in three rounds. Prior to our work, generating such a setup required at least four rounds of interactions
or a trusted third party.

https://orcid.org/0000-0001-5062-0388
https://orcid.org/0000-0002-1501-1330
https://orcid.org/0000-0002-9083-5794
mailto:michele.ciampi@ed.ac.uk
mailto:rafail@cs.ucla.edu
mailto:luisi@dtu.dk
mailto:hwaldner@umd.edu

Table of Contents

1 Introduction . 3
1.1 Our Contribution . 3
1.2 Technical overview . 4

2 Preliminaries . 9
2.1 t-out-of-n Secret Sharing . 9
2.2 Extractable Commitments . 9
2.3 Non-Malleable Commitment Scheme . 10
2.4 Private Two-Message Oblivious Transfer . 11
2.5 Special Two-Round Oblivious Transfer . 11
2.6 Non-malleable Codes . 12
2.7 Low-Depth Proofs . 13
2.8 MPC Definitions . 13
2.9 Outer Protocol . 15

3 Bounded-Rewind Secure List 2-party Computation . 15
3.1 List Multiparty Computation . 17
3.2 List 2PC with delayed-input function selection . 17
3.3 Bounded Rewind Receiver Private OT . 19

4 Sender List Simulatable OT . 20
4.1 List Simulatability against a malicious Receiver . 21
4.2 Indistinguishability Security against Sometimes aborting R∗. 27
4.3 Receiver Privacy Against a Malicious Sender . 30

5 Sender List Simulatable and Rewind-Secure Receiver Private OT . 31
5.1 List Simulatability Against Malicious Receivers . 32
5.2 B-Rewind Security . 36
5.3 Parallel Repetition of OTListRew . 38
5.4 Enhancing B-rewind Security of OTListRew . 40
5.5 Parallel Repetition . 40

6 List Sender Simulatable and B-rewind Receiver Private k-out-of-n OT . 40
6.1 List Simulatability Against Malicious Receivers . 42
6.2 Proof of the Sender Privacy . 47
6.3 Proof of B-rewind Receiver Security . 47

7 Two-Party Computation . 48
7.1 Simulation based security against adversarial senders . 50
7.2 Proof against corrupted receivers . 54

8 List Non-Malleable OT . 63
8.1 Definition `-Non-Malleable k-out-of-m Oblivious Transfer . 63
8.2 Construction of `-Non-Malleable k-out-of-m OT . 65
8.3 List-Simultaneous Multiparty OT . 73

9 Four-Round Multiparty Computation . 76
A Inner Protocol . 86

1 Introduction

Secure multiparty computation (MPC) [Yao86,GMW87] allows a group of mutually distrustful parties to
jointly evaluate any function over their private inputs in such a way that no one learns anything beyond the
output of the function. Since its introduction, MPC has been extensively studied in terms of assumptions,
complexity, security definitions, and execution models [GMW87,Kil88, IPS08,BMR90,KOS03,KO04,Pas04,
PW10,Wee10,Goy11,GMPP16,ACJ17,BHP17,COWZ22,CRSW22]. In [GMPP16] Garg et al. established
that four rounds are necessary to securely realize non-trivial functionalities (e.g., coin tossing) in the plain
model with static corruption and black-box simulation6 in the dishonest majority setting. A sequence of works
tried to match this lower bound for the multiparty setting [ACJ17,BHP17], and finally [BGJ+18,HHPV18]
showed the first four-round protocols based on polynomial time number theoretic assumptions. This result
was later improved in [CCG+20] proposing a four-round scheme based on malicious secure oblivious transfer
(OT).

Unfortunately, all these round-optimal protocols make non-black-box use of the underlying primitives.
Recently, Ishai, Khurana, Sahai, and Srinivasan [IKSS21] came close to closing this gap, proposing a five-round
protocol that makes black-box use of oblivious transfer and public-key encryption (PKE) with pseudorandom
public keys. Prior to their work, MPC protocols that use the underlying primitives in a black-box way needed
more than 15 rounds [IPS08,Wee10,Goy11]. This leaves open the following questions:

What is the best-possible round complexity for securely evaluating any multiparty functionality in the
plain model when the majority of the parties are corrupted while using the underlying cryptographic
primitives in a black-box way?

1.1 Our Contribution

In this work, we partially answer the above question by constructing the first round-optimal MPC protocol
for computing any input-less functionality (e.g., coin tossing), while making black-box use of any perfect
correct two-round private OT protocol7. The notion of private OT, introduced in [NP01,AIR01], requires
that the receiver’s only message is computationally indistinguishable between the cases where its input bit b
is equal to 0 or 1. Moreover, regardless of the receiver’s first message, the sender’s message hides at least one
of its inputs (denoted by s0 and s1). Private OT can be obtained from LWE [BD18], or number theoretic
assumptions such as DDH [NP01,AIR01] and DCR [Kal05]. As an additional contribution, we show how to
securely realize any efficiently computable functionality in four rounds, while relying on the same assumptions,
against a weaker form of adversaries that promises to not abort during the computation with some unknown
non-negligible probability. We will refer to this type of adversary as sometimes aborting. In summary, we
prove the following theorems.

Theorem 1 (informal). Assuming two-round private OTs, then there exists a 4-round MPC protocol that
realizes any multiparty input-less functionality with black-box use of the underlying primitives.

Theorem 2 (informal). Assuming two-round private OTs, then there exists a 4-round MPC protocol
that realizes any multiparty functionality with black-box use of the underlying primitives in the presence of
sometimes aborting adversaries.

Our protocols are based on a new primitive called list two-party computation. This notion is an extension
of the definition of list coin-tossing introduced in [BGJ+18]. List coin tossing relaxes the standard simulation-
based security definition, by allowing the adversary (hence, the simulator) to query the ideal functionality
multiple times, thus obtaining multiple outputs (uniform random strings in this case). The adversary can
then force the output of the honest parties to be one of the strings received from the ideal functionality.
6 All the results discussed and presented in this paper are with respect to black-box simulation. Hence, we will not
specify this in the remainder of the paper.

7 In a concurrent and independent work [IKSS23], the authors show a 4-round protocol for any functionality relying
on assumptions secure against sub-exponential time adversaries. In our work, we make only use of polynomial time
assumptions while focusing on the class of input-less functionalities.

3

List two-party computation (2PC) extends the notion of list coin-tossing to generic functionalities. In
particular, we start by considering the list OT functionality. In this setting, for a corrupted receiver, the ideal
world is formalized as follows: the adversary provides its input b and a parameter κ to the ideal functionality.
The ideal functionality then samples κ random pairs (si0, si1)i∈κ uniformly at random, and provides (sib)i∈k to
the adversary. The adversary now picks an index j ∈ [κ] and sends it to the ideal functionality, who delivers
(sj0, s

j
1) to the sender in the ideal world. In summary, we allow the adversarial receiver to slightly bias the

output of the computation. In [BGJ+18] the authors observe that list coin-tossing suffices to generate a
common random setup (e.g., for non-interactive zero-knowledge arguments). Similarly, we can argue that
list-OT is sufficient for the generation of correlated OT randomness.

As previously mentioned, we propose a notion that is generic for any two-party functionality f . Suppose
that only one party receives the output, so we can distinguish between a sender S and a receiver R, and let us
assume that R is corrupted. The ideal functionality, upon receiving the input of the corrupted party xR and
κ, samples for each i ∈ [κ] an input (according to some distribution by which the ideal world is parametrized)
from the input domain of the sender, obtaining xiS . Afterwards, it computes yi ← f(xiR, xiS) and delivers
{yi}i∈[k] to the adversary. Upon receiving j from the adversary, the functionality returns (xjR) to the ideal
world sender.

We show how to instantiate a list two-party protocol in just three rounds, where, in each round, both of
the parties speak at the same time (this communication model is often referred to as the simultaneous message
model), while making black-box use of the underlying cryptographic primitives. This tool will form the basis
to instantiate our 3-round list-simulatable non-malleable OT protocol, which we will then plug into the MPC
protocol proposed in [IKSS21] to obtain the first 4-round MPC protocol for input-less functionalities. We give
more details on this in the next section. Additionally, we also show that a slight modification of this protocol
yields the first round-optimal MPC protocol that realizes any functionality against sometimes aborting
adversaries. We finally note that our list-OT protocol can be used to generate OT-correlated randomness
in just three rounds. Prior results, required the execution of a four-round protocol or needed to rely on a
trusted party for generating this type of setup. Closing the gap completely, and showing how to obtain a
round optimal MPC protocol for generic functionalities from polynomial time assumptions while making
black-box use of the underlying primitives, remains an important open question.

1.2 Technical overview

List oblivious transfer. The first tool we construct, which will form the base of our three-round 2PC
protocol, is a list OT protocol. Our protocol is based on a two-round private OT protocol which we denote
with OTpriv. Our list OT protocol, which we denote with OTlist, works as follows: the sender and receiver run
an OT combiner8 on two instances of OTpriv. In the second round, the sender tosses a random coin c and asks
the receiver to send a valid defence9 for the c-th execution of OTpriv. The receiver sends the defence to the
sender, which accepts if the defence is valid. The security of the combiner guarantees that the input choice
of the receiver remains protected, even if the randomness of one of the OT instances is leaked. Hence, the
obtained protocol preserves the privacy of the receiver’s input. To prove that the protocol is list simulatable
against corrupted receivers, we construct a simulator that rewinds the second round by sending a new coin
c′ 6= c. Upon receiving the defence for the remaining OT protocol, the simulator is able to reconstruct the
input of the receiver.

There are many aspects that have not been taken into account in this high level description. For example,
the list simulator needs to receive a valid third round to complete the simulation. If the corrupted receiver
is rushing, then the simulator needs to complete an entire execution of the protocol before starting the
extraction procedure. To do this, the simulator uses random inputs, during the main thread and the rewinding
8 We recall that an OT combiner allows combining two (or more) OT instances to obtain a new OT instance, that is
guaranteed to be secure, as long as one of the input instances is not compromise. We refer to [HKN+05] for more
details on OT combiners. Moreover, for our formal constructions we will not rely on a combiner in a black-box way,
we will instead use techniques similar to those proposed in [HKN+05] to properly combine our OT protocols.

9 A defence of a protocol execution is represented by the randomness and input that explain the generated transcript.

4

threads, and behaves as an honest sender would. After the extraction is performed, the simulator can query
the ideal functionality with the choice bit of the receiver b and obtains as a reply sb, which can then be used
in the simulation. In more detail, the simulator rewinds the adversary and uses the input (sb, sb) to execute
the OT combiner as the honest sender would. This approach is still unsatisfactory since it encounters the
same issue as observed in [IKSS21]. Indeed, it may be that the receiver aborts when receiving the output sb,
whereas it did not abort in the main thread (where the simulator may have used s′b 6= sb). This is the reason
why Badrinarayanan et al. [BGJ+18] considered a relaxed ideal functionality, that returns many possible
outputs to the adversary (and the simulator), which gives the simulator multiple opportunities to force the
output to the receiver.

There are two main aspects left to clarify. The protocol just described works under the assumption that
the input of the sender is sampled uniformly at random from a sampling space of exponential size (or at least
with high min-entropy). This condition is necessary to prove the security of all the list-protocols we propose
in this work. We also note that the protocol just described is still not secure. A receiver could decide to
complete the protocol when c = 0 and abort when c = 1. Against such an adversary the simulator clearly fails.
To solve this problem, the sender performs an n-out-of-n (where n is polynomial in the security parameter)
secret sharing of its two inputs, thus obtaining (s1

0, . . . , s
n
0), (s1

1, . . . , s
n
1). Then, the sender and the receiver

engage in n repetitions of the described protocol, where the sender uses as its input to the i-th combiner the
values (si0, si1), and the receiver uses its bit b. We can now argue that the simulator will successfully extract
from at least one of the executions after an (expected) polynomially many rewinds. We highlight that if the
corrupted receiver uses different inputs in different executions of the combiner, the receiver will not obtain
enough shares to reconstruct neither s0 nor s1.

Unfortunately, we are only able to prove the property of list simulation against an adversary that does
not abort in the third round. If a corrupted receiver does abort, then there is no hope of extracting its input.
We can still argue that, in this case, the privacy of the sender’s input remains, in the same way as for OTpriv.

Another crucial property we require from our OT protocol is B-rewind security (we elaborate more on
the reason why we require it later in this section). This property guarantees that all the parties’ inputs
remain protected even if the adversary is able to rewind the receiver B times, thus getting multiple valid
third rounds computed with respect to B + 1 different second rounds. Our protocol OTlist trivially does not
achieve this property in the case of a corrupted sender (i.e., a corrupted sender could act as the list-simulator
and extract the receiver’s input). To achieve 1-rewind security, we iterate the idea of the combiners, twice.
More precisely, in each of the n iterations, we consider four executions of OTpriv (let us denote each instance
as leaf), and apply a combiner on the first two leaves, therefore obtaining a new OT protocol (which we
call left node). We do the same for the second two leaves thus obtaining a new OT protocol (denoted by
right node). Afterwards, we apply a combiner on the two nodes (obtaining the root). The sender now sends a
challenge c ∈ {0, 1}2 that determines how to navigate the constructed tree. In more detail, the first bit of c
selects the node, and the last bit selects the leaf. For the selected leaf, the receiver will provide the defence.
Now, even if a corrupted sender rewinds the receiver, the best it can achieve is to extract 2 out of 4 defenses
among the four different executions of OTpriv, and the security achieved by the combiners protects the input
of the receiver. To increase the rewind security of the protocol, we can iterate the above approach recursively.

To construct a list protocol for generic functionalities, we use the 1-out-of-2 OT protocol just described,
and a (B-rewind secure) k-out-of-n list OT protocol. To obtain such a protocol, we devise a compiler inspired
by [SSR08] that turns our 1-out-of-2 OT protocol into a k-out-of-n OT protocol while preserving the round
complexity and all the security properties of the underlying 1-out-of-2 protocol. In the remainder of this
section, we denote by OTListRew

1,2 and OTListRew
k,n the 1-out-of-2 and the k-out-of-n list-oblivious transfer B-rewind

secure protocols, respectively.

List two-party computation. The main structure of our two-party protocol is the same as the one
proposed in [IKSS21]. The protocol of [IKSS21] can be seen as being composed of two main components: a
four-round oblivious transfer protocol, and an application of the IPS [IPS08] compiler that uses the OT to
perform a cut-and-choose (this is often referred as the watchlist mechanism). The main reason why the 2PC

5

protocol of [IKSS21] requires four-rounds is due to the use of a simulation based secure oblivious transfer
protocol. Indeed, to obtain such an OT protocol four rounds of communication are necessary.

At a very high level, to obtain our three-round protocol we replace the 4-round OT protocol with a
3-round OT protocol, that is simulation based secure against corrupted senders, and list simulatable against
corrupted receivers. Our main contribution is to construct such a 3-round OT protocol. We now give a sketch
of this protocol.10

To achieve our goal, we need to enhance the security of OTListRew
1,2 , and make it simulation based secure

against corrupted senders, while preserving the list simulatability against corrupted receivers. To do that,
we need a way to force the sender to compute its messages honestly and employ a mechanism that allows
the extraction of the sender’s inputs. The general idea to achieve this is the following: we let the sender and
the receiver engage in multiple executions of OTListRew

1,2 , and run a cut-and-choose to check that the sender is
behaving correctly in a big portion of the OT executions (for this to work, the input of the sender needs to
be properly secret shared among the executions. For simplicity, we will ignore this aspect in this overview).
Unfortunately, this approach does not work in our case, because we only have a total of three rounds, and
the first message of the sender of OTListRew

1,2 appears in the second round. Hence, there is no room for the
cut-and-choose (if the receiver sends the challenge in the first or the second round the sender can adaptively
decide which execution to perform correctly and which to perform incorrectly). To solve this problem we hide
the challenge of the cut-and-choose using our k-out-of-n OT protocol OTListRew

k,n . The protocol to hide the
challenge is run in parallel with the executions of OTListRew

1,2 . In this protocol, the receiver inputs a random set
of indices denoted with K, where |K| = k (with k being a parameter that depends on the cut-and-choose),
and the sender uses as its input the n defences for the executions of OTListRew

1,2 . At the end of the protocol,
the receiver accepts the output only if all the k defences obtained from OTListRew

k,n are valid. Intuitively, this
approach should guarantee that a big portion of the 1-out-of-2 OT executions are correct. Unfortunately, it is
not clear how this can be formally argued. Indeed, one would like to claim that if this does not hold (i.e., the
majority of the 1-out-of-2 OTs are not correct), then we can construct a reduction that breaks the receiver
privacy of OTListRew

k,n .
The reason why this is non-trivial is that the reduction would need to check in which of the OTListRew

1,2
executions the sender is behaving correctly, and this would reveal information about what input is used by the
challenger (which is acting as the receiver) of OTListRew

k,n in the reduction. For example, if we could detect that
the sender’s messages in the i-th execution of OTListRew

1,2 are not well-formed, then we know that i /∈ K with
some non-negligible probability. The problem is that the reduction cannot efficiently check which executions
are correct and which executions are not. To enable an efficient check, we modify the protocol requiring the
sender to commit to the defence via a three-round extractable commitment scheme. We also require the sender,
to input to the OTListRew

k,n the randomness used to compute the extractable commitments. Hence, the honest
receiver accepts the output if the randomness obtained via OTListRew

k,n is valid with respect to the extractable
commitments, and, moreover, the messages committed are valid defences for k executions of OTListRew

1,2 . The
reduction to the receiver security of OTListRew

k,n can now extract from the extractable commitments, and check
which OTListRew

1,2 executions are executed honestly by the sender. This information can then be used by the
reduction to infer what is the value K is used by the challenger, thus reaching a contradiction. We note that
this reduction crucially relies on the rewind security of OTListRew

k,n . Indeed, we need to make sure that we can
extract from the extractable commitments while not perturbing the reduction to the receiver security of
OTListRew

k,n . The addition of the extractable commitments helps us also in designing the simulator, allowing the
simulator to extract the sender’s input using the extractable commitments.

Now, we have constructed a three-round protocol that is simulation based secure against corrupted senders.
We further need to make sure that this protocol is list-simulatable against corrupted receivers. At a high
level, the list simulator runs the list simulators for OTListRew

k,n and OTListRew
1,2 , where the input extracted by

the simulator of OTListRew
1,2 defines the choice bit of the receiver, and the values returned by the simulator of

10 Our formal construction directly uses OTlist to obtain a 3-round list 2PC protocol, so we do not need an intermediate
step where we instantiate this special OT protocol, which is instead implicit in our 2PC protocol.

6

OTListRew
k,n help to program which of the extractable commitments must contain a valid defence, and which

commitments instead should contain a dummy value (e.g., the all-zero string). There are two subtleties in
this simulation strategy. First, once K is extracted, the extractable commitments need to be programmed
accordingly. Unfortunately, this is not possible if the extractable commitments are binding in the first round.
This problem can be easily solved by using a delayed-input extractable commitment scheme. The other
problem is related to the fact that in the security proof we need to rely on the hiding of the extractable
commitments. In particular, we would need to rely on the hiding property while we are running the simulator of
OTListRew

1,2 , hence, we need an extractable commitment that is secure against rewinds. This creates a circularity,
since we already require OTListRew

1,2 to be 1-rewind secure, but 1-rewind security is already sufficient to extract
from the extractable commitment. Furthermore, we want to extract the input by rewinding OTListRew

1,2 while
maintaining the hiding of the extractable commitment. To break this circularity, we rely on an extractable
commitment that has a simulatable third round [HHPV21]. In a nutshell, this property allows to simulate
a third round of the extractable commitment without knowing the randomness used to compute the first
message. This property breaks the circularity, but it inherently makes the commitment extractable with
over-extraction, hence, some effort is needed to show that all the arguments we have summarized in this
section still hold.

Unfortunately, our 2PC has a limitation. The proof against corrupted receivers crucially relies on the fact
that the value K can be extracted. This indicates which defences of the executions of OTListRew

1,2 the adversary
will not obtain, and allows us to rely on the sender security of OTListRew

1,2 . If a corrupted sender aborts in the
third round, the extraction of K is not possible, which results in the simulator being stuck. For this reason,
we prove that our 2PC enjoys a relaxed form of security, which guarantees that the simulation succeeds only
when the corrupted sender provides an accepting transcript in the main-thread. Despite this limitation, we
show that our 2PC suffices for our main applications.

List non-malleable OT. The notion of non-malleable oblivious transfer has been introduced in [IKSS21].
In this notion, there is a man-in-the-middle adversary MiM that acts as a receiver in a subset of OT sessions
(referred to as the left sessions) and as a sender in a different subset of OT sessions (referred to as the right
sessions). A non-malleable OT requires the input used by the MiM acting as the sender being independent of
the input used by the honest senders in the left sessions. This is formalized by requiring the existence of a
simulator-extractor, that, given the inputs of all honest receivers participating in the right sessions, is able to
extract all the implicit inputs used by the MiM in its right sessions. Note that the simulator does not have
access to the inputs of the senders in the left session.

We recall how the Ishai et al. (four-round) construction, which we denote by OTNM, works and then explain
how we squeeze it into three rounds allowing us to obtain a list simulatable version of the protocol. The
1-out-of-2 NM-OT protocol of [IKSS21], uses a 4-round simulation secure two-party computation protocol Π
that enjoys some special properties (we will elaborate more on this later) and a two split-state non-malleable
code NM = (Code,Decode).11 The sender of OTNM uses inputs L0, R0 and L1, R1 which are obtained by
running Code on s0 and s1 respectively (where s0 and s1 represent the inputs of the OT sender). The receiver
of OTNM uses as its input the choice bit b. Then sender and receiver execute Π for the functionality fc, where
c is a random bit chosen by the receiver in the third round. fc takes as input L0, R0, L1, R1, s0, s1, c, b and
returns mb, L0, L1 if c = 0 and mb, R0, R1 otherwise.

The authors of [IKSS21] require that Π has the following properties: (1) the receiver input b is committed
in the first round and security holds even if the receiver can adaptively select the function to be computed
(i.e., the parameter c) in the third round; (2) the inputs of the sender are committed in the 2nd round; (3) Π
is 1-rewinding sender secure. To argue that non-malleability holds, Ishai et.al. rely on an extractor, that can

11 A split state non-malleable code has an encoding algorithm Code that, on input a message m returns two codewords
L and R. The security of the non-malleable code guarantees that there are no tampering functions f and g, that
taking as an input L and R, respectively, return L̃ and R̃, such that the decoding of these tampered codewords has
a relation with the message m.

7

compute all the codewords of the MiM acting as senders in the right sessions, by sending different values of c
through multiple rewinds.

In our approach, we follow a similar blueprint but use our three-round two-party computation protocol Π
that satisfies the notion of list simulatability. We can prove that our 2PC also satisfies properties (1) and (3)
mentioned above. However, the input of the sender in our Π is fixed in the last round. Hence the inputs of the
sender can change during the rewinds executed to extract from MiM. Therefore, we modify the non-malleable
OT protocols as follows: We require the sender to commit via a three rounds non-malleable commitment
scheme to each codeword. We then modify the function computed by the 2PC protocol in such a way that
when c = 0, the opening of the commitment for the left state codewords is sent as an additional output of
the 2PC, and, if c = 1, the opening of the commitment for the right state codeword is sent. Unfortunately,
forcing the sender to commit to their inputs causes problems in the list simulation proof. In particular, we
have the same issue we had when designing the 2PC. That is, the list-simulator needs to use random inputs
during the extraction phase but if we commit to the codewords, we are implicitly committing to the sender’s
input in the first round. This prevents the simulator from changing those values after the extraction. To solve
this issue, we do not commit to the codeword, instead, we commit to a share of each codeword and output
the other share in the clear in the third round. Now, even if the input of the sender is specified in the third
round, we have the advantage that the extractor can collect the openings of all the commitments via rewinds.
The opened value can then be combined with the shares sent in the clear in the third round of the main
thread to finally reconstruct the codewords used by the MiM (in the main thread).

There still remains a single issue. We recall that the receiver specifies the c value in the second round,
hence, the MiM could adaptively commit to an invalid codeword by sending a random share instead of the
correct codeword share in the third round. We prevent this by hiding the c values as follows: the receiver
will send c⊕ k, where k is an input given to the 2PC protocol. Hence, the 2PC protocol can compute c and
return either the opening of the commitment for the left codeword or the opening of the commitment for the
right codeword, but the sender does not know what c has been used by the receiver. We recall that our 2PC
protocol Π does not provide any protection of the sender’s input if the receiver is aborting. This limitation is
inherited by our non-malleable OT protocol. For more details on how our non-malleable OT protocol works,
we refer to the technical section of this work.

Four-round multiparty computation. Also in this last step we follow the approach proposed in [IKSS21],
which in turns is based on the IPS compiler [IPS08]. This compiler combines an information-theoretic MPC
protocol Φ (called outer protocol), secure in the honest majority setting, and a semi-honest protocol secure
against a dishonest majority Πh called inner protocol.

The inner protocol is used to emulate an execution of Φ, which guarantees that the messages of Φ are
generated honestly, as long as the parties running Πh behave semi-honestly. To guarantee security in the
malicious setting, the IPS compiler requires to perform a cut-and-choose to check that the majority of the
parties are running Πh honestly. This cut-and-choose is performed by relying on correlated OT randomness.
In [IKSS21] the authors manage to make this paradigm work in just 5 rounds, using a 4-round inner protocol,
and a 4-round non-malleable OT protocol for the generation of the correlated randomness.

In this work, we follow the same approach by relying on our three-round non-malleable OT protocol, and
on a three-round semi-honest MPC protocol to realize the inner protocol. The main difference is that we are
able to prove the security of the MPC protocol only against non-aborting adversaries. But, as mentioned
before, this still suffices to securely realize any input-less functionality with standard simulation based security.
Furthermore, our inner-protocol also needs to achieve our a special security notion in which the inputs of the
honest parties are sampled from a certain distribution by the ideal functionality in a similar fashion as in our
list-2PC definition. This modification, with respect to the inner-protocol of [IKSS21], is needed to allow for
later equivocality of the simulator to ensure that the overall protocol can be simulated in four-rounds.

8

2 Preliminaries

Notation. We let ViewBΠ,A(λ, x, y) be the random variable corresponding to the view of A in an execution of Π
with B where A uses x as its input and B uses y as its input. If an algorithm A outputs a transcript τ , then
we call Defense the input that explains the output, i.e. τ = A(Defense). We denote the security parameter
with λ ∈ N. A randomized algorithm A is running in probabilistic polynomial time (PPT) if there exists a
polynomial p(·) such that for every input x the running time of A(x) is bounded by p(|x|). We use “=” to
check equality of two different elements (i.e. a = b then...) and “:=” as the assigning operator (e.g. to assign to
a the value of b we write a := b). A randomized assignment is denoted with a← A, where A is a randomized
algorithm and the randomness used by A is not explicit. If the randomness is explicit we write a := A(x; r)
where x is the input and r is the randomness. When it is clear from the context, to not overburden the
notation, we do not specify the randomness used in the algorithms unless needed for other purposes.

2.1 t-out-of-n Secret Sharing

Now, we present the definition of a t-out-of-n secret sharing as it has been presented in [MOSV22].
A threshold secret sharing scheme allows to split a secret s ∈ {0, 1}λ into n shares s1, . . . , sn ∈ {0, 1}λ in

such a way that it is possible to efficiently recover s from any subset of at least t shares, while, at the same
time, not revealing anything about the secret as long as an attacker only corrupts up to (t− 1) of the share
holders. More formally:

Definition 2.1 (t-out-of-n Secret Sharing). A (n, t)-secret sharing scheme over {0, 1}λ is defined by
a pair of algorithms (Share,Rec), where Share is a randomized algorithm taking as input s ∈ {0, 1}λ and
outputs the shares (s1, . . . , sn) ∈ ({0, 1}λ)n, and Rec is a function mapping a subset I of [n], along with the
corresponding shares sI = (si)i∈I , to a value in {0, 1}λ, such that the following holds:

Reconstruction: For all s ∈ {0, 1}λ, and for all sets I ⊆ [n] with |I| ≥ t, the output of Rec(I, sI) such
that (s1, . . . , sn)← Share(s) is equal to s.

Security: For all s ∈ {0, 1}λ, and for all sets I ⊆ [n] with |I| < t, the joint distribution sI = (si)i∈I of
shares received by the subset of parties I, where (s1, . . . , sn)← Share(s), is independent of the secret s.

2.2 Extractable Commitments

In this section, we present the definition of an extractable commitment scheme as well as the notion of delayed
inputness.

Definition 2.2 ([BGJ+18]). Consider any statistically binding, computationally hiding commitment
scheme (C,R). Let Tr〈C(m, rC), R(rR)〉 denote a commitment transcript with committer input m, committer
randomness rC and receiver randomness rR, and let Decom(τ,m, rC)〉 denote the algorithm that on input a
commitment transcript τ , committer message m and randomness rC outputs 1 or 0 to denote whether or
not the decommitment was accepted (we explicitly require the decommitment phase to not require receiver
randomness rR). Then 〈C,R〉 is said to be extractable if there exists an expected PPT oracle algorithm Ext,
such that for any PPT cheating committer C∗ the following holds. Let Tr〈C∗, R(rR)〉 denote the transcript of
the interaction between C∗ and R. The extractor Ext on input Tr〈C∗, R(rR)〉 and with oracle access to C∗
outputs m s.t. over the randomness of Ext and of sampling Tr〈C∗, R(rR)〉:

Pr [∃(m̃ 6= m, r̃C) s.t. Decom(τ, m̃, r̃C) = 1] = negl(λ)

We note that this definition does not say anything about the correctness of the extracted value for the
case where the commitment is ill-formed (i.e., it does not admit an opening)

9

Definition 2.3. A three-round extractable commitment satisfying Definition 2.2 is said to be k-extractable if
there exists a PPT extractor algorithm Ext such that, given a set of k well-formed execution transcripts of
the commitment scheme where each transcript consists of the same first round sender message, and different
second rounds from the receiver, the extractor successfully extracts the value committed in each transcript,
except with negligible probability.

Definition 2.4. We say that an extractable commitment is delayed input if the committer uses the input
message m only in the last round of the protocol.

Furthermore, we also define the notion of 1-rewind security for a commitment.
1-rewind security. Let (C,R) be a three-round commitment scheme. (C,R) is 1-rewind secure if the

following games are indistinguishable for b = 0 and b = 1, for any pair of messages m0 and m1.
Game(b): Compute the first round of the protocol C for a message mb using randomness r thus obtaining

com1, and send it to the adversary. The adversary sends two challenge messages (com0
2, com1

2), and the
challenger computes a third round, as the honest sender would do with respect to the message mb (using
always randomness r) for the challenges com0

2 and com1
2 thus obtaining com0

3 and com1
3 respectively. The

challenger sends (com0
3, com1

3) to the adversary.

Rewind Secure Extractable Commitment Scheme. After presenting the different definitions for an
extractable commitment scheme, we propose, in Figure 2.1, a delayed-input, 1-rewind secure 3-extractable
commitment scheme ExtCom (we refer to Section 2.2 for the formal definitions). This commitment scheme is
inspired by [GRRV14,KOS18]. We prove the 3-extractability property as follows.

Figure 2.1: Rewind secure Extractable Commitment.

Public parameters: Prime q > λ.
Senders’ private input: message m ∈ Fq (available to the sender only in the third round).

1) Sender. Sample r, s,m0 ← Fq, compute and send com← Com(m0||r||s).
2) Receiver. Sample and send α← Fq.
3) Sender Compute m1 ← m+m0 and a← m+ αr + α2s, and send (a,m1).

Let (com, α1, (a1,m1
1)), (com, α2, (a2,m2

1)), (com, α3, (a3,m3
1)) be three accepting transcripts generated

by an honest sender of ExtCom. The 3-extractor interpolates (α1, a1), (α2, a2), (α3, a3) thus obtaining a
quadratic polynomial. Let m̃0 be the constant term of this quadratic, then we can compute the committed
message in each of the input transcripts as mi = m̃0 +mi

1 for each i ∈ [3]. The 1-rewind security comes from
hiding on the non-interactive commitment, and the observation that two accepting transcripts with the same
first round and different second round give 0 information to the adversary (other than what the adversary
can learn by attacking the hiding of the non-interactive commitment). ExtCom also enjoys the property of
simulatability [HHPV18]. The simulatable property requires that the following games are indistinguishable
for b = 0 and b = 1. For any pair of messages m0 and m1.

Game(b): Sample r, s,← F, compute the first round of the protocol ExtCom using mb||r||s thus obtaining
com1, and send it to the adversary. The adversary sends the second round com1 and the challenger responds
according to m0, r, s. The simulatability property of ExtCom comes from the hiding property of the non-
interactive commitment scheme used to generate the first message. We note that this is similar to the property
described (and required) in [HHPV18,GKP17].

2.3 Non-Malleable Commitment Scheme

The following definition is taken verbatim from [GPR16]. Non-malleable commitment is defined using the
real/ideal paradigm. In the real interaction, there is a man-in-the-middle adversary MIM interacting with
a sender, S, in the left session a receiver R in the right. We denote the various quantities associated with

10

the right interaction as “tilde’d” versions of their left counterparts. So for example, S commits to v in the
left interaction while MIM commits to ṽ in the right. Let ViewvMIM denote a random variable that describes
(VIEW, ṽ), consisting of MIM’s view in the experiment and the value MIM commits to in the right interaction,
given that S has committed to v in the left interaction. The ideal interaction is the same, except that S
commits to an arbitrary fixed value, say 0, on the left. Let View0

MIM be the random variable describing (VIEW,
ṽ) in this interaction. We will use id-based commitment schemes and we force MIM to use an identity ĩd on
the right which is distinct from id used on the left. We enforce this by stipulating that View0

MIM and ViewvMIM
output the special symbol ⊥id when MIM has used the same identity on the right which he has received on
the left. This is analogous to the uninteresting case when MIM is simply acting as a channel, forwarding
messages from S to R and back. We let View0

MIM(y) and ViewvMIM(y) be the distributions where M gets a
string y as an auxiliary input.

Definition 2.5. (Non-Malleable Commitments). A commitment scheme ΠNMC is non-malleable if for every
PPT adversary MIM and for all v we have {ViewvMIM(y)}y∈0,1λ ≈ {View0

MIM(y)}y∈0,1λ

A non-malleable commitment is said to enjoy the public-coin property if R at each round simply toss a
predetermined number of coins (random challenge) and sends them to S. A non-malleable commitment is
said to be synchronous if the MIM sends the i-th round message on the right immediately after getting the
i-th round message in the left interaction. We note that the synchronous non-malleable commitment scheme
construct in [GPR16] satisfies the public-coin property and the simulatability property and makes black-box
use of OWPs.

2.4 Private Two-Message Oblivious Transfer

A two-message oblivious transfer protocol consists of a tuple PPT algorithm OT = (OT1,OT2,OT3) with the
following syntax.

– OT1(1λ, β) takes the security parameter λ and a selection bit β and outputs a message ot1 and secret
state st.

– OT2(1λ, (ν0, ν1), ot1) takes the security parameter λ and two inputs (ν0, ν1) ∈ {0, 1}len (where len is a
parameter of the scheme) and a message ot1. It outputs a message ot2.

– OT3(1λ, st, ot2, β) takes the security parameter, the bit β, secret state st and message ot2 and outputs
νβ ∈ {0, 1}len.

Correctness and security are defined as follows.

Definition 2.6 ([BD18]). A tuple PPT algorithm OT = (OT1,OT2,OT3) is a private-OT scheme id the
following hold.

Correctness For all λ, β, ν0, ν1, letting (ot1, st) = OT1(1λ, β), ot2 = OT2(1λ, (ν0, ν1), ot1), ν′ = OT3(1λ, st, ot2, β),
it holds that ν′ = νβ with probability 1.

Receiver Privacy Consider the distribution Dβ(λ) defined by running (ot1, st) = OT1(1λ, β) and outputting
ot1. Then D0,D1 are computationally indistinguishable.

Sender Privacy There exists an (not necessarily efficient) extractor OTExt s.t. for any sequence of messages
ot1 = ot1(λ) and inputs (ν0, ν1), the distribution ensembles OT2(1λ, (ν0, ν1), ot1) and OT2(1λ, (νβ′ , νβ′), ot1),
where β′ = OTExt(ot1), are statistically indistinguishable.

2.5 Special Two-Round Oblivious Transfer

In this section, we introduce the security property and the syntax of the special two-round OT that we use in
this work. This definition is taken from [IKSS21].

11

Syntax. Let (OT1,OT1,OT3) be a two-round OT with the following syntax. OT1 takes the security parameter
1λ and the receiver’s choice bit b and outputs the first round message ot1 along with some secret state st.
OT2 takes ot1 and the two sender inputs s0 and s1 as an input and outputs ot2. OT3 takes ot2 and (b, st) as
an input and outputs mb. We require the OT protocol to satisfy the following properties:

Correctness: For every input b of the receiver and s0, s1 of the sender:

Pr[OT3(ot2, (b, st)) = sb] = 1

where (ot1, st)← OT1(1λ, b) and ot2 ← OT2(ot1, (s0, s1)).
Equivocal Receiver Security: There exists a special algorithm Simeq

OT that on input 1λ outputs (ot1, st0, st1)
such that for any b ∈ {0, 1}:

{(ot1, stb) : (ot1, st0, st1)← Simeq
OT(1λ)} ≈c {(ot1, st) : (ot1, st)← OT1(1λ, b)}

Security in the No Corruption Setting: For any two bits b, b′ and two sets of sender inputs (s0, s1) and
(s′0, s′1), we have:

{(ot1, ot2) : (ot1, st)← OT1(1λ, b), ot2 ← OT2(ot1, (s0, s1))} ≈c
{(ot1, ot2) : (ot1, st)← OT1(1λ, b′), ot2 ← OT2(ot1, (s′0, s′1))}

Sender Privacy: For any input s0, s1 of the sender and any bit b and a string r ∈ {0, 1}∗:

{b, r, ot1 := OT1(1λ, b; r),OT2(ot1, (s0, s1))}
≈c{b, r, ot1 := OT1(1λ, b; r),OT2(ot1, (sb, sb))}

An OT that achieves the above notion is presented in [IKSS21, Appendix B], which can be instantiated,
for example, using the OT protocols presented in [AIR01,Kal05,HK12,BD18].

2.6 Non-malleable Codes

Here, we recap the notion of non-malleable codes in the split-state model with one-many security and a
special augmented non-malleability [AAG+16] property as they have been defined in [IKSS21].

Definition 2.7 (One-many augmented split-state non-malleable codes). Fix any polynomials
`(·), p(·). An `(·)-augmented non-malleable code with error ε(·) for messages m ∈ {0, 1}p(λ) consists of
algorithms NM = (Code,Decode) where Code(m) → (L,R), where L ∈ L and R ∈ R (we will assume that
L = R) such that for every m ∈ {0, 1}p(λ),

Decode(Code(m)) = m

and for every set of functions f = (f1, f2, . . . , f`(λ)), g = (g1, g2, . . . , g`(λ)) there exists a random variable Df,g
on R× {{0, 1}p(λ) ∪ same∗}`(λ) which is independent of the randomness in Code such that for all messages
m ∈ {0, 1}p(λ) it holds that

|
(
R, {Decode(fi(L), gi(R))}i∈[`(λ)]| ((L,R)← Code(m))

)
, (replace(Df,g,m))| ≤ ε(λ) and

|
(
R, {Decode(gi(L), fi(R))}i∈[`(λ)]| ((L,R)← Code(m))

)
, (replace(Df,g,m))| ≤ ε(λ)

where the function replace : {0, 1}∗ × {0, 1}∗ → {0, 1} replaces all occurrences of same∗ in its first input with
its second input, and outputs the result.

12

As already mentioned in [IKSS21], it was shown in [GSZ20, ADN+19] that the CGL one-many non-
malleable codes constructed in [CGL16] are also one-many augmented. Furthermore, as observed in [GJK15],
to guarantee that a message obtained by decoding the tampered codewords with left and right shares
interchanged is unrelated with the original message, any non-malleable code with symmetric decoding, i.e.
where Decode(L,R) = Decode(R,L) can be achieved by modifying any split-state code to attach “`” to the
left part of the codeword and “r” to the right part of the codeword. This results in the following imported
lemma as stated in [IKSS21]:
Lemma 2.8 (Imported from [GJK15]). For every polynomial `(·), there exists a polynomial q(·) such that
for every λ ∈ N, there exists an explicit `-augmented, split-state non-malleable code satisfying Definition 2.7
with efficient encoding and decoding algorithms with code length q(λ), rate q(λ)−Ω(1) and error 2−q(λ)Ω(1) .

2.7 Low-Depth Proofs
Now, we recap the notion of low-depth proof provided in [IKSS21]. Such a proof can be verified by a family of
circuits in NC1 and proves any computation performed by a polynomial sized circuits. Let R be an efficiently
computable binary relation. Let L be the language consisting of statements in R, i.e. for which R(x) = 1.
Definition 2.9 (Low-Depth Non-Interactive Proofs). A low-depth non-interactive proof with perfect
completeness and soundness for a relation R consists fo an (efficient) prover P and a verifier V that satisfy:
Perfect completeness: A proof system is perfectly complete if an honest provers can always convince an

honest verifier. For all x ∈ L we have
Pr[V (π) = 1|π ← P (x)] = 1.

Perfect soundness: A proof system is perfectly sound if it is infeasible to convince an honest verifier when
the statement is false. For all x /∈ L and all (even unbounded) adversaries A we have

Pr[V (x, π) = 1|π ← A(x)] = 0.
Low depth. The verifier V can be implemented in NC1.

A simple construction of a low-depth non-interactive proof has been introduced in [GGH+13] and recapped
in [IKSS21]. We refer to these works for further details.

2.8 MPC Definitions
Here, we provide a formal definition of secure multiparty computation verbatim taked from [IKSS21] which,
in turn has been taken from [Ode09].

A multiparty protocol is cast by specifying a random process that maps pairs of inputs to pairs of outputs
(one for each party). We refer to such a process as a functionality. The security of a protocol is defined
with respect to a functionality f . In particular, let n denote the number of parties. A non-reactive n-party
functionality f is a (possibly randomized) mapping of n inputs ro n outputs. A multiparty protocol with
security parameter λ for computing a non-reactive functionality f is a protocol running in time poly(λ) and
satisfying the following correctness requirement: if parties P1, . . . , Pn with inputs (x1, . . . , xn) respectively,
all run an honest execution of the protocol, then the joint distribution of the outputs y1, . . . , yn of the parties
is statistically close to f(x1, . . . , xn). A reactive functionality f is a sequence of non-reactive functionalities
f = (f1, . . . , f`) computed in a stateful fashion in a series of phases. Let xji denote the input of Pi in phase j,
and let sj denote the state of the computation after phase j. Computation of f proceeds by setting s0 equal
to the empty string and then computing (yj1, . . . , yjn, sj)← fj(sj−1, xj1, . . . , x

j
n) for j ∈ [`], where yji denotes

the output of Pi at the end of phase j. A multiparty protocol computing f also runs in ` phases, at the
beginning of which each party holds an input and at the end of which each party obtains an output. (Note
that parties may wait to decide on their phase-j input until the beginning of that phase.) Parties maintain
state throughout the entire execution. The correctness requirement is that, in an honest execution of the
protocol, the joint distribution of all the outputs {yj1, . . . , yjn}`j=1 of all the phases is statistically close to the
joint distribution of all the outputs of all the phases in a computation of f on the same inputs used by the
parties.

13

Defining Security We assume that the reader is familiar with standard simulation-based definitions
of security multiparty computation in the standalone setting. We provide a self-contained definition for
completeness and refer to [Ode09] for a more complete description. The security of a protocol (w.r.t. a
functionality f) is defined by comparing the real-world execution of the protocol with an ideal-world evaluation
of f by a trusted party. More concretely, it is required that for every adversary A, which attacks the real
execution of the protocol, there exists an adversary Sim, also referred to as the simulator, which can achieve
the same effect in the ideal-world. We denote ~x = (x1, . . . , xn).

The real execution. In the real execution the n-party protocol π for computing f is executed in the presence
of an adversary A. The honest parties follow the instructions of π. The adversary A takes as input the security
parameter λ, the set I ⊂ [n] of corrupted parties, the inputs of the corrupted parties, and an auxiliary input
z. A sends all messages in place of corrupted parties and may follow an arbitrary polynomial-time strategy.

The interaction of A with a protocol π defines a random variable Realπ,A(z),I(λ, ~x) whose value is
determined by the coin tosses of the adversary and the honest players. This random variable contains the
output of the adversary (which may be an arbitrary function of its view) as well as the outputs of the
uncorrupted parties. We let Realπ,A(z),I denote the distribution ensemble {Realπ,A(z),I(λ, ~x)}λ∈N,~x,z∈{0,1}∗ .

The ideal execution - security with abort. In this model, an ideal execution for a function f proceeds
as follows:

– Send inputs to the trusted party: As before, the parties send their inputs to the trusted party, and
we let x′i denote the value sent by Pi.

– Trusted party sends output to the adversary: The trusted party computes f(x′1, . . . , x′n) =
(y1, . . . , yn) and sends {yi}i∈I to the adversary.

– Adversary instructs trusted party to abort or continue: This is formalized by having the adversary
send either a continue or abort message to the trusted party. (A semi-honest adversary never aborts.) In
the latter case, the trusted party sends to each uncorrupted party Pi its output value yi. In the former
case, the trusted party sends the special symbol ⊥ to each uncorrupted party.

– Outputs: Sim outputs an arbitrary function of its view, and the honest parties output the values obtained
from the trusted party.

The interaction of Sim with the trusted party defines a random variable Idealf,Sim(z)(λ, ~x) as above, and
we let {Idealf,Sim(z),I(λ, ~x)}λ∈N,~x,z∈{0,1}∗ . Having defined the real and the ideal worlds, we can now proceed
to define the security notion.

Definition 2.10. Let λ be the security parameter, f an n-party randomized functionality, and Π an n-party
protocol for n ∈ N. We say that Π t-securely computes f in the presence of malicious adversaries if for every
PPT adversary A there exists a PPT adversary Sim such that for any I ⊂ [n] with |I| ≤ t the following
quantity is negligible:

|Pr[Realπ,A(z),I(λ, ~x) = 1]− Pr[Idealf,A(z),I(λ, ~x) = 1]|,

where ~x = {xi}I∈[n] ∈ {0, 1}∗ and z ∈ {0, 1}∗.

Remark 2.11 (Security with Selective Abort). We can consider a slightly weaker definition of security where
the ideal world adversary can instruct the trusted party to send aborts to a subset of the uncorrupted parties.
For the rest of the uncorrupted parties, it instructs the trusted functionality to deliver their output. This
weakened definition is called security with selective abort.

Remark 2.12 (Privacy with Knowledge of Outputs). Ishai et al. [IKP10] considered a further weakening of
the security definition where the trusted party first delivers the output to the ideal world adversary which
then provides an output to be delivered to all the honest parties. They called this security notion privacy
with knowledge of outputs and showed a transformation from this notion to security with selective abort
using unconditional MACs.

14

Security against Semi-Malicious Adversaries We take this definition almost verbatim from [AJL+12].
We consider a notion of a semi-malicious adversary that is stronger than the standard notion of semi-honest
adversary and formalize security against semi-malicious adversaries. A semi-malicious adversary is modeled
as an interactive Turing machine (ITM) which, in addition to the standard tape, has a special witness tape.
In each round of the protocol, whenever the adversary produces a new protocol message msg on behalf of
some party Pk, it must also write to its special witness tape some pair (x, r) of input x and randomness r
that explains its behavior. More specifically, all of the protocol messages sent by the adversary on behalf of
Pk up to that point, including the new message m, must exactly match the honest protocol specification for
Pk when executed with input x and randomness r. Note that the witnesses given in different rounds need to
be consistent. Also, we assume that the attacker is rushing and hence may choose the message m and the
witness (x, r) in each round adaptively, after seeing the protocol messages of the honest parties in that round
(and all prior rounds). Lastly, the adversary may also choose to abort the execution on behalf of Pk in any
step of the interaction.

Definition 2.13. We say that a protocol Π securely realizes f for semi-malicious adversaries if it satis-
fies Definition 2.10 when we only quantify over all semi-malicious adversaries A.

2.9 Outer Protocol

The outer protocol that is used in this work needs to achieve the same properties as the outer protocol used
in [IKSS21] which we recap here verbatim.

Their outer protocol is a 2-round, n-client, m-server MPC protocol achieving privacy with knowledge of
outputs (Remark 2.12) against a malicious, adaptive adversary corrupting up to n−1 clients and t = (m−1)/3
servers. Such a protocol was constructed in [IKP10] making black-box use of a pseudorandom generator
(PRG). We set m = 8λn2. We now give details about the syntax of this protocol:

1. In the first round, the i’th client runs Φ1 on input 1λ, the index i and its private input xi to obtain
(φi→1

1 , . . . , φi→m1). Here, φi→j1 denotes the private message that this client needs to send to the j’th server
(for each j ∈ [m]) in the first round.

2. In the second round, the j’th server runs Φ2(j, (φ1→j
1 , . . . , φn→j1)) to obtain φj2 and this is sent to the

output client in the second round.
3. Finally, the output client runs outΦ(φ1

2, . . . , φ
m
2) to compute the output fo the protocol.

Remark 2.14. We require the functions computed by the servers to be information-theoretic and not involve
any cryptographic operations. In the protocol of [IKP10], the server have to perform several PRG computations.
To deal with this challenge, we delegate the computation of the PRG to each of the clients. Specifically,
for every PRG computation to be done by each server, every client chooses a random seed and gives the
output of the PRG on this seed to the server. Let (seedi,PRG(seedi)) be the contribution from the i’th
client where PRG has a sufficiently long stretch. The server sets seed = (seed1, . . . , seedn) and defines a new
PRG′(seed) = ⊕iPRG(seedi). The seed and the PRG computation is sent as part of the first message from
the client to the servers. The watchlist protocol is then used to ensure that the PRG computations done the
honest servers are correct.

3 Bounded-Rewind Secure List 2-party Computation

In this section, we introduce the notion of bounded-rewind secure list 2-party computation. Let f be the
function that the two parties P0 and P1 want to compute. f : X0 ×X1 → Y is a function that takes two
inputs and returns two outputs (one for each party). We denote with X d a PPT sampler for Xd for each
d ∈ {0, 1}.

The notion of list 2PC differs from the standard notion of 2PC as follows. Let us say that the party P0 is
corrupted and P1 is honest. In the ideal world experiment, the adversary sends its input x0 ∈ X 0 to the ideal
functionality, which we denote with FX 1 , together with an integer k. The ideal functionality does not wait to

15

receive the input from the honest party, instead, it samples k inputs uniformly at random from the input
domain of the honest party x1

1, . . . , x
1
k ← X 1, and, for each j ∈ [k] computes (out0

j , out1
j)← f(x0, x1

j). Then
the values (out0

1, . . . , out0
k) are given to the adversary. The adversary now sends an index i ∈ [k] to the ideal

functionality, which then sends (x1
i , out1

i) to the ideal-world honest party.
In our work, we focus on constructing and studying 3-round list 2PC protocols, where in each round both

parties speak at the same time. We study our notion in a stronger adversarial setting where the adversary can
ask the honest party to receive multiple third rounds for multiple second rounds. A protocol that is proven
secure in this setting is usually said to be B-rewind secure, which means that the adversary can send B + 1
second rounds and receive B + 1 third rounds (one for each second round). We propose the formal definition
of the real and the ideal world in Figure 3.2, where the party P d is assumed to be corrupted with d ∈ {0, 1}.
To make a protocol that satisfies our definition usable as a sub-routine of other protocols, we need to make
sure that the distinguisher has somehow access to the inputs of the honest parties. In the ideal world, we do
that by explicitly giving this input to the adversary together with the second round of the protocol. In the
ideal world experiment, we do something similar, by allowing sending to the adversary the input of the honest
parties upon request of the simulator. More precisely, if the simulator sends a message to the adversary (π, j),
then the real-world experiment would forward to the adversary the message (π, x1−d

j). This guarantees that
the distinguisher will get access to the honest party’s input, while the simulator does not (this is exactly
what makes our definition non-trivial to realize). We refer to Figure 3.2 for the formal specification of real
and ideal world and state the following:

Definition 3.1 (B-rewind secure list 2PC). We say that a protocol Π is a B-rewind secure List 2PC if
for every malicious PPT P1−d, with d ∈ {0, 1}, there exists a (expected) PPT simulator Sim = {Sim1,Sim2}
such that

{RealA,Π(1λ, 1B)}λ,B ≈c {IdealSim,FXd (1λ, 1B)}λ,B ,

where λ,B ∈ N.

Sometimes aborting adversaries. As previously mentioned, in this paper we consider the notion of sometimes
aborting adversaries. This notion is the same as the list simulation notion, but it requires the list simulator
to provide a simulated transcript with overwhelming probability, conditioned on the adversary providing an
accepting transcript in the main thread. We still provide no security requirements (unless otherwise specified),
in the case the adversary aborts with overwhelming probability, or it does not provide an accepting transcript
in the main thread.

Figure 3.1: Real and ideal world

RealA,Π(1λ, 1B):

1. Sample xd ← Xd, and compute the first round πd1 of
Π as the honest Pd would do on input xd and the
randomness r ← {0, 1}λ and send πd1 to A.

2. Upon receiving π1−d
1 from A, compute the second

round πd2 of Π as the honest party Pd on input (r, xd)
would do and send (πd2 , xd) to A.

3. Upon receiving {π1−d
2,i }i∈[B] from A, for each i ∈ [B],

compute πd3,i as the honest party Pd would do having
on input (π1−d

1 , π1−d
2,i , r, xd).

4. Send {πd3,i}i∈[B] to A.
5. Upon receiving π1−d

3 , compute the output out as Pd
would do, and return the view of A.

IdealSim,FXd (1λ, 1B):

1. (x1−d, 1k, z)← SimA1 (1λ, 1B)
2. Send x1−d to the ideal functionality FX

d
which com-

putes {out0
j , out1

j}j∈[k] as described using the sam-
pled inputs {xdj }j∈[k].

3. Whenever SimA2 (out1−d
1 , . . . , out1−d

k
, z) queries A

with a message (π, j), replace the query with (π, xdj)
and forward the pair to A.

4. (i,View) ← SimA2 (out1−d
1 , . . . , out1−d

k
, z) with i ∈

[k] ∪ {⊥}.
5. Send i to the ideal functionality, or abort if i = ⊥ to

instruct the honest party to abort, and return View.

List Oblivious Transfer. One of the main tools we construct is a protocol that realizes the OT functionality
FOT with list simulation against corrupted sometimes aborting receivers. Then we show how to use such an
OT to construct a 2PC protocol (where only one party gets the output) that is list simulatable against a

16

corrupted sender, and list simulatable against sometimes aborting receivers. We then use the 2PC protocol to
obtain a non-malleable OT protocol, which retains the same security as the 2PC protocol.

3.1 List Multiparty Computation

Following what we have done in Section 3 we present the notion of List Multiparty Computation. Let f be
the function that n parties P1, . . . , Pn want to compute: f : X0 × · · · ×Xn → Y 1 × · · · × Y n. We denote with
X i a PPT sampler for Xi for each i ∈ [n]. The notion of list MPC differs from the standard notion of MPC
as follows. Let M ⊆ [n] denote the indices of the corrupted parties and H := [n] \M . In the ideal world
experiment, the adversary sends its inputs {xi ∈ X i}i∈M to the ideal functionality, which we denote with
F{X i}i∈H , together with an integer k. The ideal functionality does not wait to receive the input from the
honest parties, instead, it samples k inputs uniformly at random from the input domains of the honest parties
{xi1 ← X i}i∈H , . . . , {xik ← X i}i∈H , and, for each j ∈ [k] computes (out1

j , . . . , outnj)← f({xij}i∈H , {xij}i∈M).
Then the values {outi1, . . . , outik}i∈M are given to the adversary. The adversary now sends an index j ∈ [k] to
the ideal functionality, which then sends (xij , outij) to the ideal-world honest party Pi for each i ∈ H.

We propose the formal definition of the real and the ideal world in Figure 3.2, and below we state the
formal security definition.

Definition 3.2 (List MPC). We say that a protocol Π is a secure List MPC protocol if for every malicious
PPT adversary A corrupting an arbitrary set of parties in indices M ⊆ [n] (the indices of the honest parties
are denoted with H := [n] \M), there exists a (expected) PPT simulator Sim = {Sim1,Sim2} such that

{RealA,Π(1λ,M,H)}λ ≈c {Ideal
Sim,F{X

i}i∈[H] (1
λ,M,H)}λ,

where λ ∈ N.

Figure 3.2: Real and ideal world

RealA,Π(1λ,M,H):

1. For each i ∈ H sample xi ← X i, and compute the
first round πi1 of Π as the honest Pi would do on
input xi and the randomness ri ← {0, 1}λ and send
πi1 to A.

2. Upon receiving {πi1}i∈M from A, for each i ∈ H

compute the second round πi2 of Π as the honest
party Pi on input (r, xi) would do and send (πi2, xi)
to A.

3. Upon receiving {πi2}i∈M from A, for each i ∈ H

compute πi3 as the honest party Pi would do having
on input (πi1, π

i
2, ri, xi) and send πi3 to A.

4. Upon receiving {πi3}i∈M , compute the output outi
as Pi would do, and return the view of A.

IdealSim,F{Xi}i∈M (1λ,M,H):

1. ({xi}i∈M , 1k, z)← SimA1 (1λ)
2. Send {xi}i∈M to the ideal functionality F{X

i}i∈M

which computes {outij}i∈M,j∈[k] as described using
the sampled inputs {xij}j∈[k].

3. Whenever SimA2 ({outij}i∈M,j∈[k], z) queries A with
a message ({πi}i∈H , j), replace the query with
({πi, xij}i∈H) and forward the pair to A.

4. (i,View) ← SimA2 ({outij}i∈M,j∈[k], z) with i ∈ [k] ∪
{⊥}.

5. Send i to the ideal functionality, or abort if i = ⊥ to
instruct the honest party to abort, and return View.

3.2 List 2PC with delayed-input function selection

Definition 3.3 (Adapted from [IKSS21]). Let Π = ((ΠS
1 , Π

R
1), (ΠS

2 , Π
R
2), (ΠS

3 , Π
R
3), (ΠS

4 , Π
R
4), out) be

a 3-round protocol (in the simultaneous message model) between a receiver R and a sender S with the receiver
computing the output at the end of the third round. We say that Π is 1-rewinding secure list-simulatable with
delayed function selection for NC1 circuits if it satisfies the following:

Delayed function Selection. The first message functions ΠS
1 , Π

R
1 and the second message function of the

sender ΠS
2 take as input the size of the function f ∈ NC1 to be securely computed and are otherwise,

independent of the function description. The second round message from R contains the explicit description
of the function f to be computed.

17

1-Rewind receiver security. For every malicious PPT adversary A that corrupts the sender, there exists
an expected polynomial (black-box) simulator SimS = (Sim1

S ,Sim2
S) such that for all choices of honest

receiver input xR and the function f ∈ NC1 the joint distribution of the view of A and R’s output in the
real execution is computationally indistinguishable from the output of the ideal experiment described in
Figure 3.3.

Figure 3.3: 1-Rewind receiver security

RealA,Π(xR):
1. Initialize A with a uniform random tape s.
2. Compute πR1 ← ΠR1 (xR) and send it to A.
3. Upon receiving πS1 , use it to run ΠR2 thus obtain-

ing πR2 , and send it to A.
4. Upon receiving (πS2 [0], πS2 [1]) from A use ΠR2 to

compute the third round πR3 [b] for each b ∈ {0, 1}
and send (πR3 [0], πR3 [1]) to A.

5. Output whatever A outputs.

IdealSimS ,F (xR):
1. Initialize A with a uniform random tape s.
2. (xS , z)← Sim1

S(1λ).
3. Send (xS) to the ideal functionality F which re-

turns out← f(xS , xR).
4. (abort,View)← Sim2

S(out, z).
5. If abort = 1 then return abort to the ideal func-

tionality, else return continue.
6. Return View.

1-Rewind sender security. As in the definition of list-simulation security, ideal and real world are parametrized
by a distribution XS. The input of the sender is sampled from XS in the real-world experiment and used
to execute Π. The ideal-world experiment is exactly the same as the one of Definition 3.2, with the
difference that the ideal functionality FXS , in addition to the input of the corrupted receiver xR and 1k,
receives two functions (f0, f1). The ideal functionality then, for each i ∈ [k] sample xS ← XS and compute
out0

i ← f0(xS , xR), out1
i ← f1(xS , xR). Then the ideal functionality returns {out0

i , out1
i }i∈[k]. We provide

the formal description of the ideal and real-world in Figure 3.4, and we say that a protocol Π is 1-rewind
sender secure if for every malicious adversary A corrupting the receiver which is non-aborting in the last
round, there exists an expected polynomial time simulator SimR = (Sim1

R,Sim2
R) such that, given XS we

have {RealA,Π(1λ)} ≈ {IdealSimR,FXS (1λ)}.

Figure 3.4: 1-Rewind sender security.

RealA,Π(1λ):
1. Initialize A with a uniform random tape s, and

sample xS ← XS.
2. Compute πS1 ← ΠS1 (xS) and send it to A.
3. Upon receiving πR1 , use it to run ΠS2 thus obtain-

ing πS2 , and send (πS2 , xS) to A.
4. Upon receiving (f0, f1, π

R
2 [0], πR2 [1]) from A use

(fb, πR2 [b]) to compute the third round πS3 [b] for
each b ∈ {0, 1} and send πS3 [0], πS3 [1] to A.

5. Output whatever A outputs.

IdealSimR,FXS (1λ):

1. Initialize A with a uniform random tape s.
2. (xR, f0, f1, 1k, z)← Sim1

R(1λ, 1B)
3. Send (xR, f0, f1) to the ideal functionality FXS

which returns {out0
j , out1

j}j∈[k] computed as de-
scribed using the sampled inputs {xS,j}j∈k.

4. Whenever Sim2
R queries A with a message (πR, j),

replace the query with (πR, xS,j).
5. (i,View) ← Sim2

R((out0
1, out1

1), . . . , (out0
k, out0

k), z)
with i ∈ [k] ∪ {⊥}.

6. Send i to the ideal functionality, or abort if i = ⊥
to instruct the honest party to abort, and return
View.

Definition 3.4. Let Π = ((ΠS
1 , Π

R
1), (ΠS

2 , Π
R
2), (ΠS

3 , Π
R
3), (ΠS

4 , Π
R
4), out) be a 3-round protocol (in the

simultaneous message model) between a receiver R and a sender S with the receiver computing the output
at the end of the third round. We say that Π is 1-rewinding secure `-senders list-simulatable with delayed
function selection for NC1 circuits if it satisfies the properties of delayed function selection and 1-rewind
receiver security as defined in Definition 3.3 and moreover it enjoys the following property:

1-Rewind `-senders security. In this definition we consider a real-world experiment where ` ∈ poly(λ)
senders S1, . . . , S` interact with ` malicious receivers R∗1, . . . , R∗` in an execution of Π; specifically the Sj
interacts with R∗j for j ∈ [`]. The ideal and real world are parametrized by distributions {X jS}j∈[`]. The
input of the j-th sender Sj is sampled from X jS in the real-world experiment and used to execute Π. The
ideal-world experiment is exactly the same as the one of Definition 3.3, with the difference that the ideal

18

functionality F{X
j
S
}j∈[`] computes the output for ` executions of Π. We provide the formal description of

the ideal and real-world in Figure 3.5, and we say that a protocol Π is 1-rewind `-senders secure if for
every malicious non-uniform adversary A corrupting the ` receivers which are non-aborting in the last
round, there exists an expected polynomial time simulator SimS = (Sim1

S ,Sim2
S) such that, given {X jS}j∈[`]

we have {RealA,Π(1λ)} ≈ {Ideal
SimS ,F

{Xj
S
}j∈[`]

(1λ)}.

Figure 3.5: 1-Rewind `-senders security.

RealA,Π(1λ):
1. Initialize A with a uniform random tape s, and

sample xSj ← X
j
S
, for j ∈ [`].

2. Compute π
Sj
1 ← Π

Sj
1 (xSj) and send it to A, for

j ∈ [`].
3. Upon receiving π

Rj
1 , use it to run Π

Sj
2 thus ob-

taining π
Sj
2 , and send (π

Sj
2 , xSj) to A, for j ∈ [`].

4. Upon receiving (fj0 , f
j
1 , π

Rj
2 [0], π

Rj
2 [1]) from A use

(fj
b
, π
Rj
2 [b]) to compute the third round π

Sj
3 [b] for

each b ∈ {0, 1} and send π
Sj
3 [0], π

Sj
3 [1] to A, for

j ∈ [`].
5. Output whatever A outputs.

Ideal
SimS ,F

{Xj
S
}j∈[`]

(1λ):

1. Initialize A with a uniform random tape s.
2. {(xRj , f

j
0 , f

j
1 , 1

κ, z)}j∈[`] ← Sim1
S(1λ, 1B)

3. Send {(xRj , f
j
0 , f

j
1)}j∈[`] to the ideal

functionality F{X
j
S
}j∈[`] which returns

{out0
j,k, out1

j,k}j∈[`],k∈[κ] computed as described
using the sampled inputs {xSj,k}j∈[`],k∈[κ].

4. Whenever Sim2
S queries A with a message

(πRj , k), replace the query with (πRj , xdSj,k).
5. (i,View) ←

Sim2
S(({out0

j,1, out1
j,1), . . . , (out0

j,κ, out0
j,κ}j∈[`]), z)

with i ∈ [κ] ∪ {⊥}.
6. Send i to the ideal functionality, or abort if i = ⊥

to instruct the honest party to abort, and return
View.

3.3 Bounded Rewind Receiver Private OT

Definition 3.5 (Bounded Rewind Receiver Private OT). Let OT = (OT1,OT2,OT3,OT4) be an
OT protocol sender list simulatable, then we say that OT is special B-rewindable secure against malicious
senders with B rewinds if the output distributions of the adversary in the experiments E0 and E1 (where Eσ
is defined in Figure 1) are computationally indistinguishable for any k ∈ [B] and all {b0[j], b1[j]}j∈[B] with
bσ[j] ∈ {0, 1}λ for all j ∈ [B] and σ ∈ {0, 1} and with bσ[j − 1] = bσ[j].

Adversary A Challenger CH

ot1 ← OT1(1λ, bσ[j]):
ot1←−−−−−−−

{ot2[j]}j∈[B]−−−−−−−−→
For each j ∈ [B]:

ot3[j]← OT3(ot1, ot2[j])
{ot3[j]}j∈[B]←−−−−−−−−

Fig. 1: The experiment Eσ.

We note that this definition is similar to the one proposed in [CCG+20] except for the fact that we require
the adversary to pick the same inputs in the B rewinds. We call a protocol receiver private if it is 1-rewind
secure. Finally we notice that this notion compose under parallel repetition.

19

4 Sender List Simulatable OT

In this section, we construct a three-round OT protocol that is: sender side list simulatable against a sometimes
aborting adversaries, and sender private otherwise.

As an intermediate step, we propose a 3-round oblivious transfer in the alternating message model that is
not rewind-secure. This protocol consists of the following algorithms OT′ = (OT′1,OT′2,OT′3, (OT′S4 ,OT′R4))
where OT′R4 is the procedure used to compute the output of the OT protocol by the receiver and OT′S4
is the procedure run by the sender to decide whether to abort or not. We present the formal description
of the protocol in Figure 4.1, and refer the reader to the introductory part of the paper for an informal
description of the scheme. The only tool that we need for this construction is a maliciously private two-round
OT protocol denoted as OT = (OT1,OT2,OT3) (Definition 2.6), where OT3 is the procedure used by the
receiver to compute the output of the OT protocol.

Figure 4.1: 3-round sender list simulatable and receiver private OT OT′

Initialization: The receiver uses as its input a bit b and the sender has input s0, s1. The parties also
receive a common parameter m = poly(λ) as an input.

Round 1 (Receiver).
1. Sample bi ← {0, 1} and compute di = bi ⊕ b for all i ∈ [m].
2. Generate ot1,i := OT1(1λ, bi; ri) and ot′1,i := OT1(1λ, di; r′i) with ri, r′i ← {0, 1}

λ for all i ∈ [m].
3. Send {ot1,i, ot′1,i}i∈[m] to S.

Round 2 (Sender).
1. Sample kic, sc,j ← {0, 1}

λ for all i ∈ [m], j ∈ [m−1], c ∈ {0, 1}. Set sc,m := sc⊕sc,1⊕· · ·⊕sc,m−1
for both c ∈ {0, 1}.

2. Compute ct0,i
c := kic ⊕ sc,i and ct1,i

c := ki1⊕c ⊕ sc,i for all i ∈ [m], c ∈ {0, 1}.
3. Generate ot2,i ← OT2(ot1,i, (ki0, ki1)) and ot′2,i ← OT2(ot′1,i, ((ct0,i

0 , ct0,i
1), (ct1,i

0 , ct1,i
1))) for all

i ∈ [m].
4. Sample I ← {0, 1}m.
5. Send {ot2,i, ot′2,i}i∈[m] and I to R.

Round 3 (Receiver).
1. Send {bi, ri}i∈[m]:Ii=1 and {di, r′i}i∈[m]:Ii=0 to S.

Offline computation.
Sender:

1. Check that ot1,i := OT1(1λ, bi; ri) for all i ∈ [m] where Ii = 1 and ot′1,i := OT1(1λ, di; r′i)
for all i ∈ [m] where Ii = 0.

2. If the previous check does not succeed output ⊥.
Receiver:

1. Obtain kibi := OT3(ot1,i, ot2,i) and (ctdi,i0 , ctdi,i1) := OT3(ot1,i, ot2,i) for all i ∈ [m].
2. Compute s′b,i := kibi ⊕ ctdi,ib for all i ∈ [m] and output s′b :=

⊕
i∈[m] s

′
b,i.

Before we argue the security of our OT protocol OT′, we prove its correctness. To argue the correctness,
we need to show that s′b = sb if the sender and the receiver followed the protocol. If both parties are honest,
it follows that:

s′b =
⊕
i∈[m]

s′b,i =
⊕
i∈[m]

(kibi ⊕ ctdi,ib) =
⊕
i∈[m]

(kibi ⊕ kidi⊕b ⊕ sb,i)

=
⊕
i∈[m]

(kibi ⊕ kibi⊕b⊕b ⊕ sb,i) =
⊕
i∈[m]

(kibi ⊕ kibi ⊕ sb,i) =
⊕
i∈[m]

sb,i = sb

Theorem 4.1. Let X be a high min-entropy random variable defined by a probability distribution D and
let OT be a two round maliciously private OT protocol, then the OT protocol OT′ described in Figure 4.1

20

is a three-round sender list simulatable OT against sometimes aborting receivers for the functionality FDOT
(according to Definition 3.2) and sender private OT otherwise (according to Definition 2.6). Moreover, OT′
is receiver private (according to Definition 2.6). OT′ makes black-box use of OT.

We split the theorem into three lemmas, the first two focusing on the simulatability (Lemma 4.2) and
privacy (Lemma 4.9) against a malicious receiver and the third focusing on the privacy of the receiver against
a malicious sender (Lemma 4.14). The first two lemmas are stated and proven in Sections 4.1 and 4.2, whereas
the third is proven in Section 4.3.

4.1 List Simulatability against a malicious Receiver

In this section, we prove the list-simulatability against a malicious receiver.

Lemma 4.2. Let X be a high min-entropy random variable defined by a probability distribution D and let
OT be a two-round maliciously private OT protocol, then the OT protocol OT′ described in Figure 4.1 is a
three-round sender list simulatable OT against a non-aborting receiver for the functionality FDOT (accordingly
to Definition 3.2).

Proof. We prove that the OT OT′ described in Figure 4.1 is sender list simulatable by showing that a
malicious (non-aborting) receiver is not able to distinguish between a real execution of the protocol and an
ideal execution using the simulator Sim′ = (Sim′1,Sim′2) described in Figure 4.2. The proof that this simulator
runs in expected polynomial-time and succeeds with overwhelming probability can be found in Claim 4.3
& Claim 4.4.

We prove the indistinguishability between the real world and the ideal world using a sequence of hybrids
that we describe below:

Hybrid H0: This hybrid corresponds to the real world.
Hybrid H1: This hybrid is almost identical to the previous hybrid with the only difference that the input

bit b of the receiver is extracted. In order to do so the hybrid follows the steps (1), (2) and (3) of Sim′
described in Figure 4.2, the hybrid outputs the view of R∗ in the first thread. The indistinguishability of
this and the previous hybrid follows with similar arguments to the one described in Claim 4.3 & (first
part of claim) Claim 4.4.

Hybrid H′1: In this hybrid, we proceed as in the previous hybrid except that, after the extraction of the
input, the hybrid proceeds as explained in steps (4) and (6) of Sim′ described in Figure 4.2, with the
difference that the second round is computed honestly (as in steps (2) and (3)). The hybrid outputs
the same output as Sim′. The indistinguishability of this and the previous hybrid follows with similar
arguments to the one described in Claim 4.3 & (first two parts of) Claim 4.4.

Hybrid Hx2 : In this hybrid, we proceed as in the previous hybrid but in step (x).g the message ot2,j∗ is
generated as described in step (x).g of Figure 4.2 (where x is used to denote the 4th or the 6th stage of
the simulator, namely x = 4 or x = 6). In more detail the hybrid only samples one of the keys kj

∗

0 and
kj
∗

1 that are used for the generation of the OT messages ot2,j∗ randomly and sets the other to the all-zero
string. Formally, kj

∗

bj∗
← {0, 1}λ and kj

∗

1⊕bj∗ := 0λ. For the remaining indices i ∈ [m] \ {j∗} both of the
keys remain randomly sampled ki0, ki1 ← {0, 1}

λ. The indistinguishability of this and the previous hybrid
follows from the sender privacy of the underlying OT protocol OT, which we formally prove in Claim 4.5.

Hybrid Hx3 : In this hybrid, we proceed as in the previous hybrid except that in step (x).2.e the ciphertexts
ctdj∗ ,j

∗

0 , ctdj∗ ,j
∗

1 are generated correctly12 while the ciphertexts for the other slot ctdj∗⊕1,j∗
0 , ctdj∗⊕1,j∗

1 are
set to the all-zero string, i.e. ctdj∗⊕1,j∗

0 := 0λ, ctdj∗⊕1,j∗
1 := 0λ. For the remaining indices i ∈ [m] \ {j∗} all

of the ciphertexts remain correctly generated, i.e. ct0,i
c := kic ⊕ sc,i and ct1,i

c := ki1⊕c ⊕ sc,i for c ∈ {0, 1}.
The indistinguishability this and the previous hybrid follows, similar to the previous two hybrids, i.e.
from the sender privacy of the underlying OT protocol OT, which we formally prove in Claim 4.6.

12 Here, for the generation of the ciphertext ctdj∗ ,j
∗

1⊕b , we still use a random key k′j
∗

1⊕bj∗
for the encryption and not the

all-zero key kj
∗

1⊕bj∗
.

21

Hybrid Hx4 : In this hybrid, we proceed as in the previous hybrid except that in step (x).2.e the ciphertext
ctdj∗ ,j

∗

1⊕b := k′j
∗

1⊕bj∗ ⊕ s1⊕b,j∗ is changed to a randomly sampled ciphertext ctdj∗ ,j
∗

1⊕b ← {0, 1}λ. For the
remaining indices i ∈ [m] \ {j∗} all the ciphertexts remain generated as described in the protocol. Since,
due to the previous hybrid, the key kj

∗

1⊕bj∗/k
′j∗
1⊕bj∗ is not part of the execution anymore, we can rely

on the perfect security of the one-time pad to show that this and the previous hybrid are perfectly
indistinguishable, which we formally prove in Claim 4.7.

Hybrid Hx5 : In this hybrid, we proceed as in the previous hybrid except that in step (x).2.d the n-out-of-n
secret sharing of the input s1−b is changed to an n-out-of-n secret sharing of a random value r (where
x is used to denote the 4th or the 6th stage of the simulator, namely x = 4 or x = 6). The shares
s1−b,1, . . . , s1−b,j∗−1, s1−b,j∗+1, . . . , s1−b,m are then used as in the previous hybrid for the generation of
the ciphertexts ct0,i

c , ct1,i
c for all i ∈ [m] \ {j∗}, c ∈ {0, 1}. The perfect indistinguishability between this

and the previous hybrid follows from the security of the n-out-of-n secret sharing scheme, this is formally
proven in Claim 4.8

Hybrid H6: This hybrid corresponds to the simulator described in Figure 5.2.
From the above arguments, we can conclude that H0 ≈ H1 ≈ H′1 ≈c H4

2 ≈c H4
3 ≈ H4

4 ≈ H4
5 ≈c H6

2 ≈c H6
3 ≈

H6
4 ≈ H6

5 ≈ H6.
ut

Figure 4.2: Simulator Sim′ = (Sim′1,Sim′2) of OT′

Input. The simulator Sim′1 takes as input the distribution D of s and 1λ.

1) First thread: Sim′1 computes the following steps:
1. Upon receiving {ot1,i, ot′1,i}i∈[m] from R∗ compute {ot2,i, ot′2,i}i∈[m] and I as the honest sender would do and send

them to R∗.
2. If R∗ does not send a third round, abort and output the view of R∗.
3. Upon receiving {bi, ri}i∈[m]:Ii=1 and {di, r′i}i∈[m]:Ii=0 from R∗, add them to the initially empty set Defense, if their

are valid w.r.t. the previously received messages {ot1,i, ot′1,i}i∈[m].
2) Estimate the abort probability: Sim′1 initializes ctr := 0, T := 0 and computes the following steps:

1. Increment T , i.e. T := T + 1.
2. Compute and send a new 2nd round with fresh randomness to R∗ as an honest sender would do. If a valid third round

is received from R∗ increment ctr, i.e. ctr := ctr + 1.
3. If ctr = 12λ then output p = 12λ

T , otherwise, perform a new rewind, i.e. return to step (2).1.
4. Set maxrew = dλp e.

3) Extracting the input of R∗: Sim′1 initializes ctr := 0 and computes the following steps:
1. Perform the rewinds as follows:

Rewinding Threads: Sim′1 computes the following steps:
(a) Increment ctr, i.e. ctr := ctr + 1.
(b) Repeat the step (2).2 using fresh randomness, and therefore also a fresh I′, and upon receiv-

ing {bi, ri}i∈[m]:I′
i

=1 and {di, r′i}i∈[m]:I′
i

=0 from R∗ check that these values are valid w.r.t.
{ot∗1,i, ot1,i}i∈[m]. If this is the case, then add the values that are not already contained in Defense
to Defense.

(c) If ctr > maxrew output fail.
(d) Check that there exists at least a single slot j∗ such that {bj∗ , rj∗} and {dj∗ , r′j∗} are contained in

Defense. If this is the case, proceed to next step; else continue rewinding, i.e. return to step (3).1.a.

2. Uses the values {bj∗ , rj∗} and {dj∗ , r′j∗} to extract the bit b used by R∗ to construct ot1,j∗ , ot′1,j∗ , i.e. compute
b := bj∗ ⊕ dj∗ .

4) Estimate the abort probability: Sim initializes ctr := 0, T := 0 and computes the following steps:
1. Increment T , i.e. T := T + 1.
2. Repeat the steps of round 2 using fresh randomness and compute {ot2,i, ot′2,i}i∈[m] as follows:

(a) Sample sb, r at random from the distribution D.
(b) Sample kj

∗
bj∗
← {0, 1}λ, kj

∗
1⊕bj∗

:= 0λ and sample ki0, k
i
1 ← {0, 1}

λ for all i ∈ [m] \ {j∗}.

(c) Sample sb,l ← {0, 1}λ for all l ∈ [m] \ {j∗} and set sb,j∗ := sb ⊕ sb,1 ⊕ · · · ⊕ sb,m.
(d) Sample s1−b,l ← {0, 1}λ for all l ∈ [m] \ {j∗} and set s1−b,j∗ := r ⊕ s1−b,1 ⊕ · · · ⊕ s1−b,m.

(e) Set ct
dj∗ ,j

∗

b
:= kj

∗
dj∗⊕bj∗

⊕ sbj∗ ,j∗ , ct
dj∗ ,j

∗

1⊕b ← {0, 1}λ and ct
1⊕dj∗ ,j

∗

0 := 0λ, ct
1⊕dj∗ ,j

∗

1 := 0λ.

(f) For all i ∈ [m] \ {j∗}, set ct0,i
c := kic ⊕ sc,i and ct1,i

c := ki1⊕c ⊕ sc,i for all i ∈ [m] \ {j∗}, c ∈ {0, 1}.

22

(g) Generate ot2,i ← OT2(ot′1,i, (ki0, k
i
1)) and ot′2,i ← OT2(ot1,i, ((ct0,i

0 , ct0,i
1), (ct1,i

0 , ct1,i
1))) for all i ∈ [m].

If a valid third round is received from R∗ increment ctr, i.e. ctr := ctr + 1.
3. If ctr = 12λ then output q = 12λ

T , otherwise, perform a new rewind, i.e. return to step (4).1.
4. Set maxrew′ = dλq e.

5) Query the ideal functionality: Sim′1 sets d := λ · maxrew′ and queries the ideal functionality using (b, 1d) to obtain
(s1
b , . . . , s

d
b).

6) Forcing the output Sim′2 on input (s1
b , . . . , s

d
b) initializes ctr := 0 and computes the following steps:

Forcing the output:
1. Increment ctr, i.e. ctr := ctr + 1
2. Compute {ot2,i, ot′2,i}i∈[m] as described in Step 4 “Estimate the abort probability” but using sctr

b as its
input.

3. If ctr > λ · maxrew′ output fail.
4. If R∗ outputs an accepting third round, then output the view of R∗ in this thread; else continue the

rewinding, i.e. return to step (6).1.

Sim also keeps a count of its overall running time and if it reaches 2λ steps it outputs fail.

Claim 4.3 Sim′ runs in expected polynomial time in λ.

Proof. The analysis of the simulator follows similarly to the analysis in [GK96] as recapped in [Lin16]. We
analyze the running time in more detail. Let ε be the probability that the adversary R∗ outputs a valid third
round. Now, we analyze the running time of the simulator step by step.

In the first step (“First thread”) the simulator clearly runs in polynomial time. The estimation of the
probability for the second step (“Estimate the abort probability”) is executed until Sim′ does not collect 12λ
valid third rounds from R∗. Since the probability that R∗ outputs a valid third round is ε, Sim′ stops after
12λ/ε attempts.

From the analysis in [GK96] it follows that the estimation p is within a constant factor from ε, unless of a
negligible probability 2−λ (therefore the case of running 2λ steps adds only a polynomial amount of overhead
to the simulator).

In the third step (“Extracting the input of R∗”) the simulator Sim′ stops after maxrew, which is poly(λ)
p ,

iterations. The fifth step (“Query the ideal functionality”) happens, as the first step, in polynomial time.
Relying on the same arguments as in Step 2 and 3, one can argue that also Step 4 (“Estimate the abort
probability”) and Step 6 (“Forcing the output”) have an expected running time of poly(λ)

ε .
From the above analysis, it follows that if the simulator Sim′ does not perform any rewinds it runs in

strict polynomial time. Taking into account the rewinds, it follows, as described above, that the Steps 2-6 are
executed with an expected running time of poly(λ)

ε . This results in an overall running time of the simulator
that is expected polynomial in λ. ut

Claim 4.4 Sim outputs fail with negligible probability in λ.

Proof. There are three possibilites that the simulator Sim′ outputs fail:

1. The simulator executes more than 2λ steps
2. The simulator executes more than maxrew rewinds in step 3 (“Extracting the input of R∗”)
3. The simulator executes more than maxrew rewinds in step 6 (“Forcing the output”)

The first case is directly bounded by the previous proof, i.e. if the simulator runs in expected polynomial
time in λ then it only executes more than 2λ steps with negligible probability.

To show that the second case is negligible, we need to bound the extraction probability of the simulator
Sim′. The simulator is able to extract successfully if it is able to collect defenses for ot1,j∗ , ot′1,j∗ for at least a
single index j∗ ∈ [m]. Since the simulator executes each rewind with new fresh randomness, i.e. the set I is
always randomly sampled, it follows that the simulator Sim overall (in the worst case) collects maxrew third
rounds from R∗. Since I sampled freshly with every rewind, it follows that the probability that the simulator

23

is not able to extract for at least a single index is
(1

2m
)maxrew, which is the same probability as if the same

index I is always queried. Therefore, Sim successfully extracts except with negligible probability.
To bound the probability of the third case we first prove that the probability that R∗ replies with a valid

third round to a simulated 2nd round (as described in step (4)) is negligible close to the probability that R∗
replies with a valid third round to an honestly computed 2nd round of the protocol.

In order to do so we consider the following hybrids:

Hybrid H1: We start by considering an hybrid were the messages of the sender are computed honestly but
the input bits bj∗ and dj∗ of the receiver’s messages ot1,j∗ , ot′1,j∗ are extracted in exponential time to
compute b = dj∗ ⊕ bj∗ . The rest of the protocol is executed as the honest sender.

Hybrid H1: In this hybrid, we proceed as in H0 but the message ot0
2,j∗ is generated as described in step (4).g

(i.e. using the simulator Sim′2j∗,0 w.r.t. input kj
∗

bj∗
← {0, 1}λ). For the remaining indices i ∈ [m] \ {j∗} both

of the keys remain randomly sampled ki0, ki1 ← {0, 1}
λ. The indistinguishability of the hybrids follows

from the list simulatable sender security of the underlying OT protocol OT′, the proof follows similar to
the one described in Claim 5.5.

Hybrid H2: In this hybrid, we proceed as in the previous hybrid while only sampling one of the keys kj
∗

0 , k
j∗

1
that are used for the generation of the OT messages ot2,j∗ randomly and set the other to the all-zero
string. Formally, kj

∗

bj∗
← {0, 1}λ and kj

∗

1⊕bj∗ := 0λ. For the remaining indices i ∈ [m] \ {j∗} both of the
keys remain randomly sampled ki0, ki1 ← {0, 1}

λ. The indistinguishability of this and the previous hybrid
follows from the sender privacy of the underlying OT protocol OT. The proof works analogously as the
proof of Claim 4.5.

Hybrid H3: In this hybrid, we proceed as in the previous hybrid except that the ciphertexts ctdj∗ ,j
∗

0 , ctdj∗ ,j
∗

1

are generated correctly13 while the ciphertexts for the other slot ctdj∗⊕1,j∗
0 , ctdj∗⊕1,j∗

1 are set to the
all-zero string, i.e. ctdj∗⊕1,j∗

0 := 0λ, ctdj∗⊕1,j∗
1 := 0λ. For the remaining indices i ∈ [m] \ {j∗} all of the

ciphertexts remain correctly generated, i.e. ct0,i
c := kic ⊕ sc,i and ct1,i

c := ki1⊕c ⊕ sc,i for c ∈ {0, 1}. The
indistinguishability this and the previous hybrid follows, similar to the previous two hybrids, i.e. from the
sender privacy of the underlying OT protocol OT. The proof works analogously as the proof of Claim 4.6.

Hybrid H4: In this hybrid, we proceed as in the previous hybrid except that the ciphertext ctdj∗ ,j
∗

1⊕b :=
k′j
∗

1⊕bj∗ ⊕s1⊕b,j∗ is changed to a randomly sampled ciphertext ctdj∗ ,j
∗

1⊕b ← {0, 1}λ. For the remaining indices
i ∈ [m] \ {j∗} all the ciphertexts remain generated as before. Since, due to the previous hybrid, the key
kj
∗

1⊕bj∗/k
′j∗
1⊕bj∗ is not part of the execution anymore, we can rely on the perfect security of the one-time pad

to show that this and the previous hybrid are perfectly indistinguishable. The proof works analogously to
the proof of Claim 4.7.

Hybrid H5: In this hybrid, we proceed as in the previous hybrid except that in step (x).2.d the n-out-of-n
secret sharing of the input s1−b is changed to an n-out-of-n secret sharing of a random value r. The shares
s1−b,1, . . . , s1−b,j∗−1, s1−b,j∗+1, . . . , s1−b,m are then used as in the previous hybrid for the generation of
the ciphertexts ct0,i

c , ct1,i
c for all i ∈ [m] \ {j∗}, c ∈ {0, 1}. The perfect indistinguishability between this

and the previous hybrid follows from the security of the n-out-of-n secret sharing scheme and the proof
works analogously to the proof of Claim 4.8

From the above hybrids, we can conclude that the probability that R∗ replies with a valid third round
to an honestly computed 2nd round, which we denote with ε, is negligible close to the probability that R∗
replies with a valid third round to simulated 2nd round (as described in step (4)). Therefore, the probability
that R∗ replies with a valid third round after receiving a simulated 2nd round is ε− ν(λ), where ν(λ) is a
negligible function. Since we are considering a non-aborting R∗ where ε is non-negligible, we can assume that
ε > 2ν(λ). Following the analysis of [Lin16, Claim 5.8 case 2], we can conclude that the simulator executes
more than λ ·maxrew′ rewinds in step 6 only with negligible probability. ut
13 Here, for the generation of the ciphertext ctdj∗ ,j

∗

1⊕b , we still use a random key k′j
∗

1⊕bj∗
for the encryption and not the

all-zero key kj
∗

1⊕bj∗
.

24

Hybrid Transitions. Now, we prove the indistinguishability of the real and the ideal world by arguing the
different hybrid transitions.

Claim 4.5 Let OT be a private OT protocol, then the hybrids H′1 and Hx2 are computationally indistinguishable,
with x = 4 and x = 6 (to be more precise, x is used to denote the 4th or the 6th stage of the simulation).

Proof. We prove this claim by contradiction. Assume that there exists an adversary A′, that can distinguish
between the two hybrids with non-negligible probability, then we can use A′ to construct an adversary A
that breaks the sender privacy of the OT protocol OT.

Let CH be the challenger of the sender’s privacy game of the underlying OT protocol OT.
The adversary A upon receiving {ot1,i, ot′1,i}i∈[m] from A′ extracts the input of some index j∗ as follows:

A continues the execution and if it obtains a valid third round message she rewinds A′ at the beginning
of the 2nd rounds, generating honestly executed 2nd round messages with freshly sampled randomness (in
particular the string I ′ is taken at random). Therefore it holds that a second valid third round has been
generated with respect to a string I ′ that is different from I (the string that has been used to obtain the first
accepting transcript) with probability 1− 1

2m (the probability that both of the strings are the same is 1
2m ,

therefore the probability that they both are different is 1− 1
2m). In the case that the two strings are different,

they are at least different in a single position j∗, i.e. Ij∗ = 1 and I ′j∗ = 0. If a valid third round is obtained
for both of the strings I and I ′, both of the values bj∗ and dj∗ are known and b = bj∗ ⊕ dj∗ can be computed.
Since the adversary outputs an accepting transcript with non-negligible probability, after two rewinds with
some non-negligible probability, the reduction obtains two valid transcripts from the adversary and finish the
executions as follow. Therefore, the probability that a valid second transcript is received conditioned that a
valid first transcript has been received is p · (1− 1

2m).
If the extraction was not successful A flips a random coins and terminate otherwise A rewinds A′ at the

beginning of the 2nd rounds and compute the message ot2,j∗ as follows:

1. The reduction A samples kic, sc, sc,j ← {0, 1}
λ for all i ∈ [m], j ∈ [m − 1], c ∈ {0, 1} and sets sc,m :=

sc⊕sc,1⊕· · ·⊕sc,m−1 for both c ∈ {0, 1}. Afterwards, it computes ct0,i
c := kic⊕sc,i and ct1,i

c := ki1⊕c⊕sc,i
for all i ∈ [m], c ∈ {0, 1} and generates ot2,i ← OT2(ot1,i, (ki0, ki1)) for all i ∈ [m] \ {j∗} and ot′2,i ←
OT2(ot′1,i, ((ct0,i

0 , ct0,i
1), (ct1,i

0 , ct1,i
1))) for all i ∈ [m].

2. To obtain the OT message ot2,j∗ , the adversary A submits ((kj
∗

0 , k
j∗

1), (k′j
∗

0 , k′j
∗

1), ot1,j∗) with k′j
∗

bj∗
= kj

∗

bj∗

and k′j
∗

1⊕bj∗ = 0λ to CH which then replies with ot2,j∗ . Finally, {ot2,i, ot′2,i}i∈[m] and I with I ← {0, 1}m

is sent to A′.
3. A outputs the view of A′.

If the adversary A′ is now able to distinguish between the two hybrids with non-negligible probability,
then our constructed adversary A breaks the privacy of the underlying OT protocol OT with non-negligible
probability. This results in a contradiction and concludes the proof. ut

Claim 4.6 Let OT be a private OT protocol, then the hybrids Hx2 and Hx3 are computationally indistinguishable,
with x = 4 and x = 6 (to be more precise, x is used to denote the 4th or the 6th stage of the simulation).

Proof. We prove this claim by contradiction. Assume that there exists an adversary A′, that can distinguish
between the two hybrids with non-negligible probability, then we can use A′ to construct an adversary A
that breaks the sender privacy of the OT protocol OT.

The adversary A upon receiving {ot1,i, ot′1,i}i∈[m] from A′ extracts the input of some index j∗ as follows:
A continues the execution and if it obtains a valid third round message she rewinds A′ at the beginning
of the 2nd rounds, generating honestly executed 2nd round messages with freshly sampled randomness (in
particular the string I ′ is taken at random). Therefore it holds that a second valid third round has been
generated with respect to a string I ′ that is different from I (the string that has been used to obtain the first
accepting transcript) with probability 1− 1

2m (the probability that both of the strings are the same is 1
2m ,

therefore the probability that they both are different is 1− 1
2m). In the case that the two strings are different,

25

they are at least different in a single position j∗, i.e. Ij∗ = 1 and I ′j∗ = 0. If a valid third round is obtained
for both of the strings I and I ′, both of the values bj∗ and dj∗ are known and b = bj∗ ⊕ dj∗ can be computed.
Since the adversary outputs an accepting transcript with non-negligible probability, after two rewinds with
some non-negligible probability, the reduction obtains two valid transcripts from the adversary and finish the
executions as follow. Therefore, the probability that a valid second transcript is received conditioned that a
valid first transcript has been received is p · (1− 1

2m).
If the extraction was successful A rewinds A′ at the beginning of the 2nd rounds and compute the message

ot′2,j∗ as follows:

1. Upon receiving {ot1,i, ot′1,i}i∈[m] from A′, the reduction A samples kj
∗

bj∗
, kic, sc, sc,j ← {0, 1}

λ for all
i ∈ [m] \ {j∗}, j ∈ [m − 1], c ∈ {0, 1} and sets sc,m := sc ⊕ sc,1 ⊕ · · · ⊕ sc,m−1 for both c ∈ {0, 1}
as well as kj

∗

1⊕bj∗ := 0λ. It then generates ot2,i ← OT2(ot1,i, (ki0, ki1)) for all i ∈ [m]. Afterwards, it
computes ct0,i

c := kic ⊕ sc,i and ct1,i
c := ki1⊕c ⊕ sc,i for all i ∈ [m] \ {j∗}, c ∈ {0, 1} and generates

ot′2,i ← OT2(ot′1,i, ((ct0,i
0 , ct0,i

1), (ct1,i
0 , ct1,i

1))) for all i ∈ [m]\{j∗}. Furthermore, the adversary A computes
ctdj∗ ,j

∗

b := kj
∗

bj∗
⊕sb,j∗ and ctdj∗ ,j

∗

1⊕b := k′j
∗

1⊕bj∗ ⊕s1⊕b,j∗ , ct1⊕dj∗ ,j∗
0 := k′j

∗

1⊕bj∗ ⊕s0,j∗ , ct1⊕dj∗ ,j∗
1 := kj

∗

bj∗
⊕s1,j∗ ,

where k′j
∗

1⊕bj∗ ← {0, 1}
λ. Afterwards, A sets ct′dj∗ ,j

∗

c := ctdj∗ ,j
∗

c and ct′1⊕dj∗ ,j
∗

c := 0λ for c ∈ {0, 1}.
2. To obtain the OT message ot′2,j∗ , the adversary A submits (((ct0,j∗

0 , ct0,j∗
1), (ct1,j∗

0 , ct1,j∗
1)), ((ct′0,j

∗

0 ,

ct′0,j
∗

1), (ct′1,j
∗

0 , ct′1,j
∗

1)), ot′1,j∗) to CH which then replies with ot′2,j∗ . Finally, {ot2,i, ot′2,i}i∈[m] and I with
I ← {0, 1}m are being sent to A′.

3. A outputs the view of A′.

If the adversary A′ is now able to distinguish between the two hybrids with non-negligible probability, then
our constructed adversary A breaks the sender privacy of the underlying OT protocol OT with non-negligible
probability. This results in a contradiction and concludes the proof. ut

Claim 4.7 The hybrids Hx3 and Hx4 are perfectly indistinguishable due to the security of one-time pad, for
x = 4 and x = 6 (to be more precise, x is used to denote the 4th or the 6th stage of the simulation).

Proof. We prove this claim by contradiction. Assume that there exists an adversary A′, that can distinguish
between the two hybrids with non-negligible probability, then we can use A′ to construct an adversary A
that breaks the one-time pad. Let CH be the challenger of the one-time pad.

1. Upon receiving {ot1,i, ot′1,i}i∈[m] from A′, A apply Ext (which exists due to the security of OT) and
extracts the input of the receiver some random position j∗. Let bj∗ the input extracted from ot1,j∗ and
dj∗ the input extracted from ot′1,j∗ .
Then the reduction A samples kj

∗

bj∗
, kic, sc, sc,j ← {0, 1}

λ for all i ∈ [m] \ {j∗}, j ∈ [m − 1], c ∈ {0, 1}
and sets sc,m := sc ⊕ sc,1 ⊕ · · · ⊕ sc,m−1 for both c ∈ {0, 1} as well as kj

∗

1⊕bj∗ := 0λ. It then generates
ot2,i ← OT2(ot1,i, (ki0, ki1)) for all i ∈ [m]. Afterwards, it computes ct0,i

c := kic⊕ sc,i and ct1,i
c := ki1⊕c⊕ sc,i

for all i ∈ [m] \ {j∗}, c ∈ {0, 1} and generates ot′2,i ← OT2(ot′1,i, ((ct0,i
0 , ct0,i

1), (ct1,i
0 , ct1,i

1))) for all
i ∈ [m] \ {j∗}. Furthermore, the adversary A computes ct′dj∗ ,j

∗

b := kj
∗

bj∗
⊕ sb,j∗ and sets ct′1⊕dj∗ ,j

∗

c := 0λ

for c ∈ {0, 1}.
2. To obtain the ciphertext ct′dj∗ ,j

∗

1⊕b , the adversary A submits (s1−b,j∗ , r) with r ← {0, 1}λ to the underlying
challenger CH of the one-time pad. Afterwards, the adversaryA computes ot′2,j∗ ← OT2(ot′1,j∗ , ((ct′0,j

∗

0 , ct′0,j
∗

1),
(ct′1,j

∗

0 , ct′1,j
∗

1))) and sends {ot2,i, ot′2,i}i∈[m] and I with I ← {0, 1}m to A′.
3. A outputs the view of A′.

If the adversary A′ is now able to distinguish between the two hybrids with non-negligible probability,
then our constructed adversary A breaks the privacy of the underlying one-time pad with non-negligible
probability. This results in a contradiction and concludes the proof. ut

26

Claim 4.8 The hybrids Hx4 and Hx5 are perfectly indistinguishable due to the security of n-out-of-n secret
sharing scheme, for x = 4 and x = 6 (to be more precise, x is used to denote the 4th or the 6th stage of the
simulation).

Proof. We prove this claim by contradiction. Assume that there exists an adversary A′, that can distinguish
between the two hybrids H4 and H5 with non-negligible probability, then we can use A′ to construct an
adversary A that breaks the n-out-of-n secret sharing scheme. Let CH be the challenger of the n-out-of-n
secret sharing scheme.

The adversary A behaves as follows:

1. To obtain the shares {s1−b,i}i∈[m]\{j∗} for the input s1−b, the adversary A submits (s1−b, r) with
r ← {0, 1}λ to the underlying challenger CH of the n-out-of-n secret sharing scheme.

2. Upon receiving {ot1,i, ot′1,i}i∈[m] from A′, A apply Ext (which exists due to the security of OT) and
extracts the input of the receiver in some random position j∗. Let bj∗ the input extracted from ot1,j∗ and
dj∗ the input extracted from ot′1,j∗ .
Then the reduction A samples kj

∗

bj∗
, kic, sb, sb,j ← {0, 1}

λ for all i ∈ [m] \ {j∗}, j ∈ [m− 1], c ∈ {0, 1} and
sets sb,m := sb ⊕ sb,1 ⊕ · · · ⊕ sb,m−1 as well as kj

∗

1⊕bj∗ := 0λ. It then generates ot2,i ← OT2(ot1,i, (ki0, ki1))
for all i ∈ [m]. Afterwards, the adversary A computes ct0,i

c := kic ⊕ sc,i and ct1,i
c := ki1⊕c ⊕ sc,i for all

i ∈ [m]\{j∗}, c ∈ {0, 1} as well as ct′dj∗ ,j
∗

b := kj
∗

bj∗
⊕ sb,j∗ and ct′dj∗ ,j

∗

1⊕b ← {0, 1}λ and sets ct′1⊕dj∗ ,j
∗

c := 0λ

for c ∈ {0, 1}. I then generates ot′2,i ← OT2(ot′1,i, ((ct0,i
0 , ct0,i

1), (ct1,i
0 , ct1,i

1))) for all i ∈ [m]. In the last
step, A sends {ot2,i, ot′2,i}i∈[m] and I with I ← {0, 1}m to A′.

3. A outputs the same values that have been output by A′.

If the adversary A′ is now able to distinguish between the two hybrids with non-negligible probability, then
our constructed adversary A breaks the n-out-of-n secret sharing scheme with non-negligible probability.
This results in a contradiction and concludes the proof. ut

4.2 Indistinguishability Security against Sometimes aborting R∗.

In this section, we state and prove Lemma 4.9, the indistinguishability against an aborting R∗.

Lemma 4.9. Let OT be a two-round maliciously private OT protocol, then the OT protocol OT′ described in
Figure 4.1 is a three-round sender private OT protocol against an aborting R∗ (accordingly to Definition 2.6).

Proof. We prove the sender indistinguishability by relying on a sequence of hybrids:

H0: This hybrid corresponds to the execution of OT′ using the strings (s0, s1) as the input of the sender.
H′0: This hybrid corresponds to the previous one but for a random slot j∗ the input bits of the receiver for

that slot are extracted using Ext of OT. In particular upon receiving {ot1,i, ot′1,i}i∈[m] from R∗ the hybrid
executes Ext on ot1,j∗ to extract bj∗ and then executed on ot1,j∗ to extract dj∗ . This hybrid is distributed
as the previous one due to the security of OT.

H1: This hybrid corresponds to the previous one but in slot j∗ the input (kj
∗

bi
, kj
∗

bi
) instead of (kj

∗

0 , k
j∗

0) is
used by the sender for the generation of ot2,j∗ . The indistinguishability between this and the previous
hybrid follows from the sender privacy of OT and is formally shown in Claim 4.10.

H2: This hybrid behaves as the previous hybrid, with the difference that besides using (kj
∗

bi
, kj
∗

bi
) for the

generation of ot2,j∗ , also the input for the generation of ot′2,j∗ is changed from ((ct0,j∗
0 , ct0,j∗

1), (ct1,j∗
0 , ct1,j∗

1))
to
((ctdj∗ ,j

∗

0 , ctdj∗ ,j
∗

1), (ctdj∗ ,j
∗

0 , ctdj∗ ,j
∗

1)). The indistinguishability between this and the previous hybrid
follows from the sender privacy of OT and is formally shown in Claim 4.11.

27

H3: This hybrid behaves as the previous hybrid, with the difference that the ciphertext ctdj∗ ,j
∗

1⊕b is generated
using s′b,j∗ instead of s1⊕b,j∗ , where s′b,j∗ is part of a secret sharing for sb instead of s1⊕b. The indistin-
guishability between this hybrid and the previous hybrid follows from the security of the one-time pad
and is formally shown in Claim 4.12.

H4: This hybrid corresponds to the execution of OT′ using the strings (sb, sb) as the input of the sender.
It behaves as the previous hybrids, with the difference that the n-out-of-n secret sharing of the input s1−b is
changed to an n-out-of-n secret sharing of the input sb. The shares s1−b,1, . . . , s1−b,j∗−1, s1−b,j∗+1, . . . , s1−b,m
are then used as in the previous hybrid for the generation of the ciphertexts ct0,i

c , ct1,i
c for all i ∈

[m] \ {j∗}, c ∈ {0, 1}. The perfect indistinguishability between this and the previous hybrid follows from
the security of the n-out-of-n secret sharing scheme and is formally proven in Claim 4.12.

The extractor of OT′ is defined as the extractor Ext of OT executed on ot1,j∗ to extract bj∗ and then
executed on ot1,j∗ to extract dj∗ . The final output b is then computed by calculating b := bi∗ ⊕ di∗ .

From the above arguments we can conclude that H0 ≈≈ H′0 ≈c H1 ≈c H2 ≈ H3. ut

Claim 4.10 Let OT be a sender indistinguishable OT protocol, then the hybrids H1 and H′0 are indistinguish-
able.

Proof. This proof is very similar to the proof of Claim 4.6.
We prove this claim by contradiction. Assume that there exists an adversary A′, that can distinguish

between the two hybrids with non-negligible probability. Let {ot1,i, ot′1,i}i∈[m] the first round that maximizes
the probability of distinguish of A′. Due to the security of OT is possible to apply extractor Ext to extract
the input of the receiver from {ot1,i, ot′1,i}i∈[m]. Let bj∗ the input extracted from ot1,j∗ and dj∗ the input
extracted from ot′1,j∗ .

We can use A′ to construct an adversary A that breaks the sender privacy of the OT protocol OT, the
polynomial time A runs using auxiliary input ({ot1,i, ot′1,i}i∈[m], bj∗ , dj∗).

Let CH be the challenger of the sender’s privacy game of the underlying OT protocol OT.
For the generation of the message ot2,j∗ , the adversary A behaves as follows:

1. The reduction A activates A′ from round 2 and samples kic, sc, sc,j ← {0, 1}λ for all i ∈ [m], j ∈
[m− 1], c ∈ {0, 1} and sets sc,m := sc ⊕ sc,1 ⊕ · · · ⊕ sc,m−1 for both c ∈ {0, 1}. Afterwards, it computes
ct0,i
c := kic ⊕ sc,i and ct1,i

c := ki1⊕c ⊕ sc,i for all i ∈ [m], c ∈ {0, 1} and generates ot2,i ← OT2(ot1,i, (ki0, ki1))
for all i ∈ [m] \ {j∗} and ot′2,i ← OT2(ot′1,i, ((ct0,i

0 , ct0,i
1), (ct1,i

0 , ct1,i
1))) for all i ∈ [m].

2. To obtain the OT message ot2,j∗ , the adversary A submits ((kj
∗

0 , k
j∗

1), ot1,j∗) to CH which then replies
with ot2,j∗ . Finally, {ot2,i, ot′2,i}i∈[m] and I with I ← {0, 1}m is sent to A′.

If the adversary A′ is now able to distinguish between the two hybrids with non-negligible probability,
then our constructed adversary A breaks the privacy of the underlying OT protocol OT with non-negligible
probability. This results in a contradiction and concludes the proof. ut

Claim 4.11 Let OT be a sender indistinguishable OT protocol, then the hybrids H2 and H3 are indistinguish-
able.

Proof. This proof is very similar to the proof of Claim 4.6.
We prove this claim by contradiction. Assume that there exists an adversary A′, that can distinguish

between the two hybrids H1 and H2 with non-negligible probability. Let {ot1,i, ot′1,i}i∈[m] the first round that
maximizes the probability of distinguish of A′. Due to the security of OT is possible to apply extractor Ext to
extract the input of the receiver from {ot1,i, ot′1,i}i∈[m]. Let bj∗ the input extracted from ot1,j∗ and dj∗ the
input extracted from ot′1,j∗ .

We can use A′ to construct an adversary A that breaks the sender privacy of the OT protocol OT, the
polynomial time A runs using auxiliary input ({ot1,i, ot′1,i}i∈[m], bj∗ , dj∗). Let CH be the challenger of the
sender’s privacy game of the underlying OT protocol OT.

For the generation of the message ot′2,j∗ , the adversary A behaves as follows:

28

1. The reduction A activates A′ from round 2 and samples kj
∗

bj∗
, kic, sc, sc,j ← {0, 1}

λ for all i ∈ [m]\{j∗}, j ∈
[m−1], c ∈ {0, 1} and sets sc,m := sc⊕sc,1⊕· · ·⊕sc,m−1 for both c ∈ {0, 1} as well as kj

∗

1⊕bj∗ := kj
∗

bj∗
. It then

generates ot2,i ← OT2(ot1,i, (ki0, ki1)) for all i ∈ [m]. Afterwards, it computes ct0,i
c := kic ⊕ sc,i and ct1,i

c :=
ki1⊕c ⊕ sc,i for all i ∈ [m] \ {j∗}, c ∈ {0, 1} and generates ot′2,i ← OT2(ot′1,i, ((ct0,i

0 , ct0,i
1), (ct1,i

0 , ct1,i
1)))

for all i ∈ [m] \ {j∗}. Furthermore, the adversary A computes ctdj∗ ,j
∗

b := kj
∗

bj∗
⊕ sb,j∗ and ctdj∗ ,j

∗

1⊕b :=

k′j
∗

1⊕bj∗ ⊕ s1⊕b,j∗ , ct1⊕dj∗ ,j∗
0 := k′j

∗

1⊕bj∗ ⊕ s0,j∗ , ct1⊕dj∗ ,j∗
1 := kj

∗

bj∗
⊕ s1,j∗ , where k′j

∗

1⊕bj∗ ← {0, 1}
λ.

2. To obtain the OT message ot′2,j∗ , the adversary A submits (((ct0,j∗
0 , ct0,j∗

1), (ct1,j∗
0 , ct1,j∗

1)), ot′1,j∗) to CH
which then replies with ot′2,j∗ . Finally, {ot2,i, ot′2,i}i∈[m] and I with I ← {0, 1}m are being sent to A′.

If the adversary A′ is now able to distinguish between the two hybrids with non-negligible probability, then
our constructed adversary A breaks the sender privacy of the underlying OT protocol OT with non-negligible
probability. This results in a contradiction and concludes the proof. ut

Claim 4.12 The hybrids H2 and H3 are indistinguishable due to the security of one-time pad.

Proof. This proof is very similar to the proof of Claim 4.7.
We prove this claim by contradiction. Assume that there exists an adversary A′, that can distinguish

between the two hybrids H2 and H3 with non-negligible probability, then we can use A′ to construct an
(unbounded) adversary A that breaks the one-time pad. Let CH be the challenger of the one-time pad.

The adversary A behaves as follows:

1. Upon receiving {ot1,i, ot′1,i}i∈[m] from A′, extracts the input bj∗ of ot1,j∗ and the input dj∗ of ot′1,j∗
using Ext and sets b = bj∗ ⊕ dj∗ . Then the reduction A samples kj

∗

bj∗
, kic, sc, sc,j ← {0, 1}λ for all

i ∈ [m] \ {j∗}, j ∈ [m− 1], c ∈ {0, 1} and sets sc,m := sc⊕ sc,1⊕ · · · ⊕ sc,m−1 for both c ∈ {0, 1} as well as
kj
∗

1⊕bj∗ := kj
∗

bj∗
. Furthermore, it samples s′b,j∗ such that s′b,j∗ := s1⊕b

⊕
i∈[m]\{j∗} s1⊕b,i. It then generates

ot2,i ← OT2(ot1,i, (ki0, ki1)) for all i ∈ [m]. Afterwards, it computes ct0,i
c := kic⊕ sc,i and ct1,i

c := ki1⊕c⊕ sc,i
for all i ∈ [m] \ {j∗}, c ∈ {0, 1} and generates ot′2,i ← OT2(ot′1,i, ((ct0,i

0 , ct0,i
1), (ct1,i

0 , ct1,i
1))) for all

i ∈ [m] \ {j∗}. Furthermore, the adversary A computes ct′dj∗ ,j
∗

b := kj
∗

bj∗
⊕ s′b,j∗ .

2. To obtain the ciphertext ctdj∗ ,j
∗

1⊕b , the adversary A submits (s1−b,j∗ , r) to the underlying challenger CH
of the one-time pad. Afterwards, the adversary A computes ot′2,j∗ ← OT2(ot′1,j∗ , ((ctdj∗ ,j

∗

0 , ctdj∗ ,j
∗

1),
(ctdj∗ ,j

∗

0 , ctdj∗ ,j
∗

1))) and sends {ot2,i, ot′2,i}i∈[m] and I with I ← {0, 1}m to A′.

If the adversary A′ is now able to distinguish between the two hybrids with non-negligible probability,
then our constructed adversary A breaks the privacy of the underlying one-time pad with non-negligible
probability. This results in a contradiction and concludes the proof. ut

Claim 4.13 The hybrids H3 and H4 are indistinguishable due to the security of the n-out-of-n secret sharing
scheme.

Proof. This proof is very similar to the proof of Claim 4.8.
We prove this claim by contradiction. Assume that there exists an adversary A′, that can distinguish

between the two hybrids H2 and H3 with non-negligible probability, then we can use A′ to construct an
(unbounded) adversary A that breaks the security of the n-out-of-n secret sharing scheme. Let CH be the
challenger of the one-time pad.

The adversary A behaves as follows:

1. Upon receiving {ot1,i, ot′1,i}i∈[m] from A′, extracts the input bj∗ of ot1,j∗ and the input dj∗ of ot′1,j∗
using Ext and sets b = bj∗ ⊕ dj∗ . Then the reduction A samples kj

∗

bj∗
, kic, sc, sb,j ← {0, 1}λ for all

i ∈ [m] \ {j∗}, j ∈ [m− 1], c ∈ {0, 1} and sets sb,m := sb ⊕ sb,1 ⊕ · · · ⊕ sb,m−1 as well as kj
∗

1⊕bj∗ := kj
∗

bj∗
and

ctdj∗ ,j
∗

1⊕b ← {0, 1}λ.

29

2. To obtain the shares s1−b,1, . . . , s1−b,j∗−1, s1−b,j∗+1, . . . , s1−b,m, the adversary A submits (s1−b, sb) to
the underlying challenger CH of the one-time pad.

3. Then the adversary A generates ot2,i ← OT2(ot1,i, (ki0, ki1)) for all i ∈ [m]. Afterwards, it computes
ct0,i
c := kic ⊕ sc,i and ct1,i

c := ki1⊕c ⊕ sc,i for all i ∈ [m] \ {j∗}, c ∈ {0, 1} and generates ot′2,i ←
OT2(ot′1,i, ((ct0,i

0 , ct0,i
1), (ct1,i

0 , ct1,i
1))) for all i ∈ [m] \ {j∗}. Finally, the adversary A computes ct′dj∗ ,j

∗

b :=
kj
∗

bj∗
⊕ s′b,j∗ and ot′2,j∗ ← OT2(ot′1,j∗ , ((ctdj∗ ,j

∗

0 , ctdj∗ ,j
∗

1), (ctdj∗ ,j
∗

0 , ctdj∗ ,j
∗

1))) and sends {ot2,i, ot′2,i}i∈[m]

and I with I ← {0, 1}m to A′.

If the adversary A′ is now able to distinguish between the two hybrids with non-negligible probability, then
our constructed adversary A breaks the security of the underlying n-out-of-n with non-negligible probability.
This results in a contradiction and concludes the proof. ut

4.3 Receiver Privacy Against a Malicious Sender

In this section, we prove Lemma 4.14, i.e. the receiver privacy against a malicious sender.

Lemma 4.14. Let OT be a two-round maliciously private OT protocol, then the OT protocol OT′ described
in Figure 4.1 is a three-round receiver private OT protocol (accordingly to Definition 2.6).

Proof. We prove the receiver indistinguishability by relying on a sequence of hybrids:

H0: This hybrid corresponds to the execution of OT′ using the bit 0 as the input of the receiver.
Hk: This hybrid corresponds to the execution of OT′ where in the first k executions of OT the bits di = 1⊕ bi

instead of di = bi are used.
Hm: This hybrid corresponds to the execution of OT′ using the bit 1 as the input of the receiver.

In Claim 5.9, we show that Hk−1 ≈ Hk for all k ∈ [m], which concludes the proof of the lemma. ut

Claim 4.15 Let OT be a receiver private OT protocol, then the hybrids Hk−1 and Hk are computationally
indistinguishable for any k ∈ [m].

Proof. For simplicity, we show that H0 and H1 are computationally indistinguishable. Our argument carries
over straightforwardly to the general case.

We prove this claim by contradiction. We assume that there exists an adversary A′, that can distinguish
between the two hybrids H0 and H1 with non-negligible probability, then we can use A′ to construct an
adversary A that breaks the receiver privacy of the OT protocol OT.

To construct A, we first guess the index I1 that A′ outputs in the second round of the protocol execution
by randomly flipping a coin. This guess will be correct with probability 1/2, since there exist 2m−1 strings of
length m where the first bit is 0 and 2m−1 strings of length m where the first bit is 0. In the case that A
does not guess I1 correct, it aborts sampling random coins. Otherwise it proceeds as follows. It samples a
random b1 ← {0, 1} and sets d1 = b1. In the case that I1 = 0, it sends (b1, 1⊕ b1) to its challenger to obtain
ot1,1. In the case that I1 = 1, it sends (d1, 1⊕ d1) to its challenger to obtain ot′1,1. For the generation of the
remaining messages, A behaves as in the protocol description.

We conclude the reduction with the observation that if the challenger of the OT protocol OT generates
the OT message ot1,1 using b1, in the case that I1 = 0, or the OT message ot′1,1 using d1, in the case that
I1 = 1, then hybrid H0 is simulated and if the challenger generates ot1,1 using 1⊕ b1, in the case that I1 = 0,
or the OT message ot′1,1 using 1⊕d1, in the case that I1 = 1, then hybrid H1 is simulated. If the adversary A′
is now able to distinguish between H0 and H1 with non-negligible probability, then our constructed adversary
A breaks the receiver privacy of the underlying OT protocol OT with non-negligible probability.

This results in a contradiction and concludes the proof. ut

30

5 Sender List Simulatable and Rewind-Secure Receiver Private OT

In this section, we present a transformation that turns a three-round oblivious transfer (OT) protocol that
is receiver private and sender list simulatable (against sometimes aborting adversaries) in the alternating
message model into a three-round OT protocol that is still sender side list simulatable in the same model but
moreover is B-rewind receiver-private.

The transformation makes use of the oblivious transfer protocol OT′ = (OT′1,OT′2,OT′3, (OT′S4 ,OT′R4))
described in Figure 4.1 (where we consider a single execution of the scheme without repetition).

Figure 5.1: 3-round sender list-simulatable OT and B-rewind receiver private OTListRew

Initialization: The sender’s input is s0, s1. The receiver uses as its input a bit b. The parties also
receive a common parameter m := poly(λ).

Round 1 (Receiver).
1. Sample bi ← {0, 1} and compute di = bi ⊕ b for all i ∈ [m].
2. For all i ∈ [m] generate ot0

1,i := OT′1(1λ, bi) and ot1
1,i. := OT′1(1λ, di);

3. Send {ot0
1,i, ot1

1,i}i∈[m] to S.
Round 2 (Sender).

1. Sample kic, sc, sc,j ← {0, 1}
λ for all i ∈ [m], j ∈ [m− 1], c ∈ {0, 1}. Set sc,m := sc ⊕ sc,1 ⊕ · · · ⊕

sc,m−1 for both c ∈ {0, 1}.
2. Compute ct0,i

c := kic ⊕ sc,i and ct1,i
c := ki1⊕c ⊕ sc,i for all i ∈ [m], c ∈ {0, 1}.

3. Generate ot0
2,i ← OT′2(ot′1,i, (ki0, ki1)) and ot1

2,i ← OT′2(ot1,i, ((ct0,i
0 , ct0,i

1), (ct1,i
0 , ct1,i

1))) for all
i ∈ [m].

4. Sample I ← {0, 1}m.
5. Send {ot0

2,i, ot1
2,i}i∈[m], I to R.

Round 3 (Receiver).
1. For all i ∈ [m] if Ii = 0 compute ot0

3,i ← OT′3(ot0
1,i, ot0

2,i); otherwise compute ot1
3,i ←

OT′3(ot1
1,i, ot1

2,i).
2. Send {otIi3,i}i∈[m] to S.

Offline computation.
Sender:

1. For all i ∈ [m] if Ii = 0 check that ⊥ 6= OT′S4 (ot0
1,i, ot0

2,i, ot0
3,i) otherwise check that

⊥ 6= OT′S4 (ot1
1,i, ot1

2,i, ot1
3,i).

2. If the previous checks do not succeed output ⊥; otherwise output s0, s1.
Receiver:

1. Obtain kibi := OT′R4 (ot0
1,i, ot0

2,i) and (ctdi,i0 , ctdi,i1) := OT′R4 (ot1
1,i, ot1

2,i) for all i ∈ [m].
2. Compute s′b,i := kibi ⊕ ctdi,ib for all i ∈ [m] and output s′b :=

⊕
i∈[m] s

′
b,i.

The correctness of the described protocol follows directly from the correctness of the underlying building
blocks using the same arguments as given in OT′.

Now, we sate the security theorem for our OT protocol OTListRew.

Theorem 5.1. Let X be a high min-entropy random variable defined by a probability distribution D and let
OT′ be the three-round OT protocol described in Figure 4.1 for the functionality FUOT (where U is the uniform
distribution), then the OT protocol OTListRew described in Figure 5.1 is a three-round sender list simulatable
OT against a sometimes aborting receivers for the functionality FDOT (according to Definition 3.2) otherwise,
OTListRew is sender private (according to Definition 2.6). Moreover OTListRew is a B-rewind receiver private
OT (according to Definition 3.5), with B = 2. OTListRew makes black-box use of OT′.

We split the theorem into three lemmas, the first two focusing on the simulatability (Lemma 5.2) and
privacy (Lemma 5.7) against a malicious receiver and the third focusing on the privacy of the receiver against

31

a malicious sender (Lemma 5.8). The first two lemmas are stated and proven in Section 5.1, whereas the
third is proven in Section 5.2.

5.1 List Simulatability Against Malicious Receivers
We prove this theorem by splitting it into two lemmas:

Lemma 5.2. Let X be a high min-entropy random variable defined by a probability distribution D and let
OT′ be the three-round OT protocol described in Figure 4.1 for the functionality FUOT (where U is the uniform
distribution), then the OT protocol OTListRew described in Figure 5.1 is a three-round sender list simulatable
OT against a non-aborting receiver for the functionality FDOT (accordingly to Definition 3.2).

We prove that the OT protocol OT′ described in Figure 5.1 is sender list simulatable by showing that
a malicious non-aborting receiver R∗ is not able to distinguish between a real execution of the protocol
and an ideal execution using the simulator Sim = (Sim1,Sim2) described in Figure 5.2. Sim parametrized
by the distribution D will make use of the simulator Sim′ of OT′ defined in Figure 4.2 parametrized by the
distribution D . We prove this indistinguishability using a sequence of hybrids that we describe below:
Hybrid H0: This hybrid corresponds to the real world.
Hybrid H1: This hybrid is almost identical to the previous hybrid with the only difference that the input

bit b of the receiver is extracted. In order to do so the hybrid follows the steps (1), (2) and (3) of Sim
described in Figure 5.2, the hybrid outputs the view of R∗ in the first thread. The indistinguishability of
the hybrids follows with similar arguments to the one described in the Claims 5.3 & 5.4.

Hybrid H′1: In this hybrid, we proceed as in the previous hybrid except that, after the extraction of the
input, the hybrid proceeds as explained in steps (4) and (6) of Sim described in Figure 5.2, with the
difference that the second round is computed honestly (as in steps (2) and (3)). The hybrid outputs the
same output as Sim. The indistinguishability of the hybrids follows with similar arguments to the one
described in the Claims 5.3 & 5.4.

Hybrid Hx2,0: In this hybrid, we proceed as in the previous hybrid but in step (x) the message ot0
2,j∗

is generated as described in step (4).g of Figure 5.2 (i.e. using the simulator Sim2
j∗,0 w.r.t. input

kj
∗

bj∗
← {0, 1}λ). For the remaining indices i ∈ [m] \ {j∗} both of the keys remain randomly sampled

ki0, ki1 ← {0, 1}
λ. The indistinguishability of the hybrids H1 and H2 follows from the sender privacy of the

underlying OT protocol OT′, which we formally prove in Claim 5.5.
Hybrid Hx3 : In this hybrid, in step (x) we switch from an encryption ctdj∗ ,j

∗

1⊕b := kj
∗

1⊕bj∗⊕s1⊕b,j∗ to a randomly

sampled ciphertext ctdj∗ ,j
∗

1⊕b ← {0, 1}λ (to be more precise, x is used to denote the 4th or the 6th stage
of the simulation, namely x = 4 or x = 6). For the remaining indices i ∈ [m] \ {j∗} all the ciphertexts
remain generated as described in the protocol. Since, due to the previous hybrid, the key kj

∗

1⊕bj∗ is not
part of the execution anymore, we can rely on the perfect security of the one-time pad to show that
hybrids are perfectly indistinguishable, the proof follows similarly to the one described in Claim 4.7.

Hybrid Hx2,1: In this hybrid, in step (x) we proceed as in the previous hybrid but the message ot1
2,j∗ is

generated as described in step (4).h (to be more precise, x is used to denote the 4th or the 6th stage of
the simulation, namely x = 4 or x = 6). In other words, ot1

2,j∗ is generated using the simulator Sim2
j∗,1

w.r.t. messages ctdj∗ ,j
∗

b := kj
∗

dj∗⊕bj∗ ⊕ sb,j∗ , ctdj∗ ,j
∗

1⊕b ← {0, 1}λ. For the remaining indices i ∈ [m] \ {j∗} all
of the ciphertexts remain correctly generated, i.e. ct0,i

c := kic ⊕ sc,i and ct1,i
c := ki1⊕c ⊕ sc,i for c ∈ {0, 1}.

The indistinguishability of the hybrids follows from the list simulatable sender security of the underlying
OT protocol OT′, which we formally prove in Claim 5.6.

Hybrid Hx4 : In this hybrid, in step (x) we switch from an n-out-of-n secret sharing of the input s1−b to an n-
out-of-n secret sharing of a random value r (to be more precise, x is used to denote the 4th or the 6th stage
of the simulation, namely x = 4 or x = 6). The secret shares s1−b,1, . . . , s1−b,j∗−1, s1−b,j∗+1, . . . , s1−b,m are
then used as in the previous hybrid for the generation of the ciphertexts ct0,i

c , ct1,i
c for all i ∈ [m]\{j∗}, c ∈

{0, 1}. The perfect indistinguishability between the hybrids follows from the security of the n-out-of-n
secret sharing scheme, the proof follows similar to the proof of Claim 4.8

32

Hybrid H5: This hybrid corresponds to the simulator described in Figure 5.2.

From the above arguments we can conclude that H0 ≈ H1 ≈ H′1 ≈c H4
2,0 ≈c H4

3 ≈c H4
2,1 ≈ H4

4 ≈c H6
2,0 ≈c

H6
3 ≈c H6

2,1 ≈ H6
4 ≈ H5.

Figure 5.2: The simulator Sim = (Sim1,Sim2) for OTListRew.

Let (Sim′1i,b, Sim′2i,b) be the simulator defined in Figure 4.2 parametrized by the uniform distribution U for one of the two OT′

executions in position i, specifically if b = 0 we indicate the left execution, i.e. the messages ot generated in OT′, and the right
execution, i.e. the messages ot′ generated in OT′, otherwise.
Input. The simulator Sim1 takes as input the distribution D and 1λ.

1) First thread: Sim1 computes the following steps:
1. For all i ∈ [m] and b ∈ {0, 1} upon receiving {ot0

1,i, ot1
1,i}i∈[m] from R∗ generates otb2,i as the honest sender would do.

Moreover, sample I ∈ {0, 1}m at random and send {ot0
2,i, ot1

2,i}i∈[m] to R∗.
2. If R∗ does not send a 3rd round, abort and output the view of R∗.
3. Upon receiving {otIi3,i}i∈[m] from R∗, initialize Defense with the set of defenses of {otIi1,i}i∈[m] obtained from {otIi3,i}i∈[m]

(the obtained defenses are defenses for the underlying oblivious transfer OT ′).
2) Estimate the abort probability: Sim1 initializes ctr := 0, T := 0 and computes the following steps:

1. Increment T , i.e. T := T + 1.
2. Compute and send a new 2nd round with fresh randomness to R∗ as described in step (1).1 (i.e. as an honest sender

would do). If a valid 3rd round is received from R∗ increment ctr, i.e. ctr := ctr + 1.
3. If ctr = 12λ then output p = 12λ

T , otherwise, perform a new rewind, i.e. go back to step (2).1.
4. Set maxrew = dλp e.

3) Extracting the input of R∗: Sim1 initializes ctr := 0 and computes the following steps:
1. Perform the rewinds as follows:

Rewinding Threads: Sim computes the following steps:
(a) Increment ctr, i.e. ctr := ctr + 1.
(b) Compute and send a new 2nd round with fresh randomness to R∗ as described in step (1).1 (i.e. as

an honest sender would do) and upon receiving {õtIi3,i}i∈[m] from R∗ check that the defenses D̃efense
contained in {õtIi3,i}i∈[m] are valid w.r.t. {otIi1,i}i∈[m]. Finally, set Defense := Defense ∩ D̃efense.

(c) If ctr > maxrew output fail.
(d) Check that for at least one slot j∗ all the defenses of ot0

1,j∗ , ot1
1,j∗ are in Defense. If this is the case,

proceed to next step; else continue the rewinding, i.e. return to step (3).1.

2. Follow step (3).1 of (Sim′1j∗,0, Sim′1j∗,1) and use the defenses contained in Defense to extract the bits bj∗ and dj∗ used
by R∗ in ot0

1,j∗ , ot1
1,j∗ , let b = bj∗ ⊕ dj∗ .

4) Estimate the abort probability: Sim1 initializes ctr := 0, T := 0 and computes the following steps:

1. Increment T , i.e. T := T + 1.
2. Compute a new 2nd round with fresh randomness and compute {ot0

2,i, ot1
2,i}i∈[m] as follows:

(a) Sample sb, r at random from the distribution D.
(b) Sample kj

∗
bj∗
← {0, 1}λ and sample ki0, k

i
1 ← {0, 1}

λ for all i ∈ [m] \ {j∗}.

(c) Sample sb,l ← {0, 1}λ for all l ∈ [m] \ {j∗} and set sb,j∗ := sb ⊕ sb,1 ⊕ · · · ⊕ sb,m.
(d) Sample s1−b,l ← {0, 1}λ for all l ∈ [m] \ {j∗} and set s1−b,j∗ := r ⊕ s1−b,1 ⊕ · · · ⊕ s1−b,m.

(e) Set ct
dj∗ ,j

∗

b
:= kj

∗
dj∗⊕bj∗

⊕ sb,j∗ , ct
dj∗ ,j

∗

1⊕b ← {0, 1}λ.

(f) For all i ∈ [m] \ {j∗}, set ct0,i
c := kic ⊕ sc,i and ct1,i

c := ki1⊕c ⊕ sc,i for all i ∈ [m] \ {j∗}, c ∈ {0, 1}.
(g) For all i ∈ [m] \ {j∗} generate ot0

2,i ← OT′2(ot′1,i, (ki0, k
i
1)) and ot1

2,i ← OT′2(ot1,i, ((ct0,i
0 , ct0,i

1), (ct1,i
0 , ct1,i

1))).
(h) Generate ot0

2,j∗ as defined in steps (6.2) of Sim′2j∗,0 w.r.t. input kj
∗
bj∗

.

(i) Generate ot1
2,j∗ as defined in steps (6.2) of Sim′2j∗,1 w.r.t. input ct

dj∗ ,j
∗

b
.

If a valid 3rd round is received from R∗ increment ctr, i.e. ctr := ctr + 1.
3. If ctr = 12λ then output q = 12λ

T , otherwise, perform a new rewind, i.e. return to step (4).1.
4. Set maxrew′ = dλq e.

5) Query the ideal functionality: Sim1 sends to ideal functionality (bj∗ , 1d) receiving (s1
bj∗

, . . . , sdbj∗
), with d := λ ·maxrew′.

33

6) Forcing the output Sim2 on input (s1
bj∗

, . . . , sdbj∗
) initializes ctr = 0 and computes the following steps:

Threads to force the output:
1. Increment ctr, i.e. ctr := ctr + 1
2. Compute {ot0

2,i, ot1
2,i}i∈[m] as described in step 4 “Estimate the abort probability” but using sctr

bj∗
as

input.
3. If ctr > λ · maxrew′ output fail.
4. If R∗ outputs an accepting third round, then output the view of R∗ in this thread; else continue the

rewinding, i.e. return to step (6).1.

Sim also keeps a count of its overall running time and if it reaches 2λ steps it outputs fail.

Claim 5.3 Sim runs in expected polynomial time in λ.

Proof. The analysis of the simulator follows similarly to the analysis in [GK96] as recapped in [Lin16]. We
analyze the running time in more detail. Let ε be the probability that the adversary R∗ outputs a valid third
round. The following analysis takes into account that each time Sim follows the steps of {Sim

′

i,b}i∈[m],b∈{0,1}
it runs in polynomial time.

In the first step (“First thread”) the simulator clearly runs in polynomial time. The estimation of the
probability for the second step (“Estimate the abort probability”) is executed until Sim does not collect 12λ
valid third rounds from R∗. Since the probability that R∗ outputs, a valid third round is ε, Sim stops after
12λ/ε attempts.

From the analysis in [GK96] it follows that the estimation p is within a constant factor from ε, unless of a
negligible probability 2−λ (therefore the case of running 2λ steps adds only a polynomial amount of overhead
to the simulator).

In the third step (“Extracting the input of R∗”) the simulator Sim stops after λ ·maxrew, which is poly(λ)
p ,

iterations. The fifth step (“Query the ideal functionality”) happens, as the first step, in polynomial time.
Relying on the same arguments as in the previous steps, one can also argue that the fourth and six steps are
expected polynomial time.

This results in an overall running time of the simulator that is expected polynomial in λ. ut

Claim 5.4 Sim outputs fail with negligible probability in λ.

Proof. There are three possibilities that the simulator Sim outputs fail:

1. The simulator executes more than 2λ steps
2. The simulator executes more than maxrew rewinds in step 3 (“Extracting the input of R∗”)
3. The simulator executes more than λ ·maxrew′ rewinds in step 6 (“Forcing the output”)

The first case is directly bounded by the previous proof, i.e. if the simulator runs in expected polynomial
time in λ then it only executes more than 2λ steps with negligible probability.

To show that the second case is negligible, we need to bound the probability with which Sim extracts the
input of R∗.

From the (simulation) security of the underlying OT′ follows that Sim is able to extract if for the two
executions in a position j∗ of OT′ the simulator Sim collects all the defenses necessary for otb1,j∗ (which are
two) with b ∈ {0, 1}. Indeed, Sim once she collects all the defense for otb1,j∗ she can invoke the underlying
simulator Sim

′,2
j∗,b of OT′, which on inputs defense for otb1,j∗ extracts the input bit contained in otb1,j∗ , with

b ∈ {0, 1}.
Due to the above arguments we can conclude that Sim is able to extract successfully if 4 different valid

defenses for ot0
1,j∗ , ot1

1,j∗ for a single index j∗ ∈ [m] are obtained. The simulator executes each rewind with
new fresh randomness, i.e. the set I is always randomly sampled, it follows that the simulator Sim overall (in
the worst case) collects maxrew third rounds from R∗. Since I is sampled freshly with every rewind, it follows
that the probability that the simulator is not able to extract for at least a single index is 1 −

(1
4m
)maxrew,

34

which is the same probability that, for a single index, the simulator does not succeed if one of the four cases,
00, 01, 10, 11, never occurs, i.e. I never contains these indices taken this over all the m indexes. Therefore,
the success probability of the simulator is equal to 1−

(1
4m
)maxrew Therefore, Sim successfully extracts except

with negligible probability.
To bound the probability of the third case we first prove that the probability that R∗ replies with a valid

third round to a simulated 2nd round (as described in step (4)) is negligible close to the probability that R∗
replies with a valid third round to an honestly computed 2nd round of the protocol.

In order to do so we consider the following hybrids:

Hybrid H0: We start by considering an hybrid were the messages of the sender are computed honestly but
the input bits bj∗ and dj∗ of the receiver’s messages ot0

1,j∗ , ot1
1,j∗ are extracted in exponential time to

compute b = dj∗ ⊕ bj∗ . The rest of the protocol is executed as the honest sender.
Hybrid H1: In this hybrid, we proceed as in H0 but the message ot0

2,j∗ is generated as described in step (4).g
(i.e. using the simulator Sim′2j∗,0 w.r.t. input kj

∗

bj∗
← {0, 1}λ). For the remaining indices i ∈ [m] \ {j∗} both

of the keys remain randomly sampled ki0, ki1 ← {0, 1}
λ. The indistinguishability of the hybrids follows

from the list simulatable sender security of the underlying OT protocol OT′, the proof follows similar to
the one described in Claim 5.5.

Hybrid H2: In this hybrid, we switch from an encryption ctdj∗ ,j
∗

1⊕b := kj
∗

1⊕bj∗ ⊕ s1⊕b,j∗ to a randomly sampled

ciphertext ctdj∗ ,j
∗

1⊕b ← {0, 1}λ. For the remaining indices i ∈ [m]\{j∗} all the ciphertexts remain generated
as described in the protocol. Since, due to the previous hybrid, the key kj

∗

1⊕bj∗ is not part of the execution
anymore, we can rely on the perfect security of the one-time pad to show that hybrids are perfectly
indistinguishable. The proof follows similar to the one described in Claim 4.7.

Hybrid H3: In this hybrid, we proceed as in H2 but the message ot1
2,j∗ is generated as described in step

(4).h (i.e. using the simulator Sim′2j∗,1 w.r.t. input ctdj∗ ,j
∗

b := kj
∗

dj∗⊕bj∗ ⊕ sb,j∗ , ctdj∗ ,j
∗

1⊕b ← {0, 1}λ). For the
remaining indices i ∈ [m] \ {j∗} all of the ciphertexts remain correctly generated, i.e. ct0,i

c := kic ⊕ sc,i and
ct1,i
c := ki1⊕c ⊕ sc,i for c ∈ {0, 1}. The indistinguishability of the hybrids follows from the list simulatable

sender security of the underlying OT protocol OT′. The proof follows similar to the one described
in Claim 5.6.

Hybrid H4: In this hybrid, we switch from an n-out-of-n secret sharing of the input s1−b to an n-out-of-n
secret sharing sharing of a random value r. The secret shares s1−b,1, . . . , s1−b,j∗−1, s1−b,j∗+1, . . . , s1−b,m
are then used as in the previous hybrid for the generation of the ciphertexts ct0,i

c , ct1,i
c for all i ∈

[m] \ {j∗}, c ∈ {0, 1}. The perfect indistinguishability between this and the previous hybrid follows from
the security of the n-out-of-n secret sharing scheme. The proof follows similar to the one described
in Claim 4.8.

From the above hybrids, we can conclude that the probability that R∗ replies with a valid third round
to an honestly computed 2nd round, which we denote with ε, is negligible close to the probability that R∗
replies with a valid third round to simulated 2nd round (as described in step (4)). Therefore, the probability
that R∗ replies with a valid third round after receiving a simulated 2nd round is ε− ν(λ), where ν(λ) is a
negligible function. Since we are considering a non-aborting R∗ where ε is non-negligible, we can assume that
ε > 2ν(λ). Following the analysis of [Lin16, Claim 5.8 case 2], we can conclude that the simulator executes
more than λ ·maxrew′ rewinds in step 6 only with negligible probability. ut

Claim 5.5 Let OT′ be the three-round sender list-simulatable OT protocol, then H1 and H2 are computationally
indistinguishable.

Proof. Suppose by contradiction that this is not the case, then there exists an index j∗ ∈ [m] s.t. the
mentioned hybrids are distinguishable. Let CH be the challenger of the sender private OT′.

We fix the first round message {ot0
1,i, ot1

1,i}i∈[m] that maximizes the distinguishing advantage of the
adversary R∗ in the two above experiments. Note that in OT′ the inputs of the receiver are fixed in the first

35

round, therefore they are fixed once {ot0
1,i, ot1

1,i}i∈[m] have been generated. Let dj∗ , bj∗ be the inputs of the
receiver used in ot0

1,j∗ , ot1
1,j∗ , respectively. We define the adversary A of OT′ which internally runs R∗ and

acts as a proxy between R∗ and the challenger of OT′.
In more detail, A receives as an auxiliary input ({ot0

1,i, ot1
1,i}i∈[m], dj∗ , bj∗) and behaves as follows: it

sets b = dj∗ ⊕ bj∗ and sends ot0
1,j∗ as well as kj

∗

bj∗
, k′j

∗

1−bj∗ to the challenger (where kj
∗

bj∗
, k′j

∗

1−bj∗ are randomly
sampled). Upon receiving ot0

2,j∗ from the challenger, A does the following:

1. Compute the second-round messages {ot0
2,j , ot1

2,j}j∈[m],j 6=j∗ as the honest sender would do.
2. Compute {ctdj∗ ,j

∗

c , ct1−dj∗ ,j∗
c }c∈{0,1} as the as the honest sender would do, but using the keys kj

∗

bj∗
and

k′j
∗

1−bj∗ .

3. Compute ot1
2,j∗ w.r.t. messages {ctdj∗ ,j

∗

c , ct1−dj∗ ,j∗
c }c∈{0,1} as the honest sender would do.

4. Send {ot0
2,i, ot1

2,i}i∈[m] to R∗ and output the view of R∗.

The reduction runs the distinguisher (which exists by contradiction) on the output of A. The reduction
outputs whatever the distinguisher outputs. ut

Claim 5.6 Let OT′ be the three-round list-simulatable OT protocol, then H2 and H3 are computationally
indistinguishable.

Proof. Suppose by contradiction that this is not the case, then there exists an index j∗ ∈ [m] s.t. the above
described hybrids are distinguishable. Let CH be the challenger of the sender private OT′.

We fix the first round message {ot0
1,i, ot1

1,i}i∈[m] that maximizes the distinguishing advantage of the
adversary R∗ in the two above experiments. Note that in OT′ the inputs of the receiver are fixed in the first
round, therefore they are fixed once {ot0

1,i, ot1
1,i}i∈[m] are generated. Let dj∗ , bj∗ be the inputs of the receiver

used in ot0
1,j∗ , ot1

1,j∗ , respectively. We define the adversary A of OT′ which internally runs R∗ and acts as a
proxy between R∗ and the challenger of OT′.

In more detail,A receives as an auxiliary input ({ot0
1,i, ot1

1,i}i∈[m], dj∗ , bj∗) and behaves as follows: it sets b =
dj∗ ⊕ bj∗ and sends ot0

1,j∗ and {ctdj∗ ,j
∗

c , ct1−dj∗ ,j∗
c }c∈{0,1} to the challenger (where {ctdj∗ ,j

∗

c , ct1−dj∗ ,j∗
c }c∈{0,1}

are randomly sampled). Upon receiving ot1
2,j∗ from the challenger, A does the following.

1. Compute the second-round messages {ot0
2,j , ot1

2,j}j∈[m],j 6=j∗ as the honest sender would do.
2. Compute sb,j∗ as described by the simulator (see Figure 5.2).
3. Compute ot0

2,j∗ as described by the simulator (see Figure 5.2) w.r.t. the key kj
∗

bj∗
= ct

dj∗ ,j
∗

b ⊕ sb,j∗ .
4. Send {ot0

2,i, ot1
2,i}i∈[m] to R∗ and output the view of R∗.

The reduction runs the distinguisher (which exists by contradiction) on the output of A. The reduction
outputs whatever the distinguisher outputs. ut

Lemma 5.7. Let OT′ be the three-round OT protocol described in Figure 4.1, then the OT protocol OTListRew

described in Figure 5.1 is is sender private (accordingly to Definition 2.6).

The proof for sender privacy against an aborting R∗ for OTListRew proceeds in the same way as the proof
for sender privacy against an aborting R∗ for OT′ (Lemma 4.9), with the difference that it is now necessary
to rely on OT′ instead of OT.

5.2 B-Rewind Security

In this section, we state and prove the second part of Theorem 5.1, Namely, the B-rewind security for the
receiver.

36

Lemma 5.8. OT′ be the three-round OT protocol described in Figure 4.1 then OTListRew is a B-rewind
receiver private OT (accordingly to Definition 3.5), with B = 3.

Proof. We prove the receiver indistinguishability by relying on a sequence of hybrids:

H0: This hybrid corresponds to the experiment E0 (i.e. where the adversary may send B-second rounds and
expect B-third rounds from the receiver) where the bit 0 is used as the input of the receiver.

Hk: This hybrid corresponds to the previous hybrid where in the first k executions of OT the bits di = 1⊕ bi
instead of di = bi are used.

Hm: This hybrid corresponds to the experiment E1, where 1 is used as the input of the receiver.

In Claim 5.9, we show that Hk−1 ≈ Hk for all k ∈ [m], which concludes the proof of the lemma. ut

Claim 5.9 The hybrids Hk−1 and Hk are computationally indistinguishable for any k ∈ [m].

Proof. For simplicity, we show that H0 is computationally indistinguishable from H1. The argument we use
carries over straightforwardly to the general case.

We prove this claim by contradiction. We assume that there exists an adversary A′, that can distinguish
between the two hybrids H0 and H1 with non-negligible probability, then we can use A′ to construct an
adversary A that breaks the receiver privacy of the OT protocol OT (used to build OT′ which is used to
build OTListRew). Let CH be the challenger for the receiver private OT. A will be interacting as the malicious
sender w.r.t. CH in the execution of OT, and as a receiver with A.
A first makes a random guess of which executions are not queried by A′ in the execution of OTListRew.

We recall that OTListRew is composed of 2m executions of OT′, therefore, for the first position, it holds that
there are two executions of OT′, which we denote as ot0

1,1 or ot1
1,1, of which one will be completed based

on the bit of the sender, which is represented by A′. Note that in the construction of OT′ in each position
two oblivious transfer protocols OT are executed of which the receiver will finish one of them. The finished
execution depends on the bit chosen by the sender the sender, i.e. A′. We denote the messages that are
part of otI1

1,1 (i.e. the message of the underlying OT) as otI1,0
1,1 , otI1,1

1,1 . This results in the fact that there are
actually two indices that need to be guessed here. The first index, I1, is the index of the outer protocol that
decides if ot0

1,1 is being continued, which happens in case that I1 = 0, or if ot1
1,1 is being continued, which

happens in the case that I1 = 1. Furthermore, in the underlying protocol OT′, another index I ′1 is guessed
which decides if either the left execution of OT, in the case that I ′1 = 0, or the right execution of OT, in the
case that I ′1 = 1, is continued. Therefore, the adversary A needs to samples two random bits where the first
is the guess of I1 and the second is the guess of I ′1.
A then proceeds as follows:

1. A sets ¬I1 = 1⊕ I1 and samples two indices I1, I ′1 and a random bit b1 ← {0, 1}. Compute ot¬I1
1,1 as the

honest receiver would do w.r.t. b1 and compute otI1
1,1 in the following way:

(a) Sample a random bit d¬I
′
1

1 ← {0, 1} and generate 1st round of OT (namely otI1,¬I′1
1,1) w.r.t. d¬I

′
1

1 . Set
d
¬I′1
1 = d

I′1
1 and send to the challenger (dI

′
1

1 , 1⊕ dI
′
1

1) in order to obtain otI1,I′1
1,1 .

2. Compute the remaining first rounds {ot0
1,i, ot1

1,i}i∈[m]/{1} as the sender would do and send {ot0
1,i, ot1

1,i}i∈[m]
to A′.

3. Upon receiving {IA′1,j}j∈[B] and {ot0,j
2,i , ot1,j

2,i}i∈[m],j∈[B], let IA
′,b

i,j denote the index contained in otb,j2,i . If
there exists a j ∈ [B] s.t. (IA′1,j = I1 and IA

′,I1
1 = I ′1) abort and output a random bit, otherwise continue

with the next step.
4. Compute {otI

A′
i,j ,j

3,i }i∈[m],j∈[B] as the honest sender would do and output the view of A′.

At this point, the reduction runs the distinguisher (which exists by contradiction) on the view of A′ and
outputs the output of the distinguisher.

We observe that if the challenger of the OT protocol OT generates the OT message otI1,I′1
1,1 , using dI

′
1

1 , then
this corresponds to hybrid H0, otherwise, the reduction simulates hybrid H1. Therefore if the reduction does

37

not abort in step 4, the reduction distinguishes with probability 1
2 + q where q is non-negligible. While if the

reduction aborts in step 4 it samples a random bit. Since indices I1, I ′1 are taken at random, the probability
that the reduction does not abort is 1

4 . Therefore the winning probability is ((1
2 +q) 1

4 +(1− 1
4) 1

2) ·p = (1
2 + q

4) ·p,
where p is the probability that A′ sends a valid second round to A. ut

5.3 Parallel Repetition of OTListRew

Besides presenting the protocol on its own, we also need to show that a parallel repeated version of
the protocol allows for the same type of a simulation-based notion. We denote the previous protocol as
OTListRew = (OT1,OT2,OT3,OT4 = (OTS4 ,OTR4)), where OTS4 is the output computation computed by the
sender and outputs either (s0, s1) or ⊥ and OTR4 is the output computation computed by the receiver and
outputs either sb or ⊥. The parallel repeated version of the protocol can be found in Figure 5.3.

Figure 5.3: The parallel repetitions of OTListRew.

Initialization: S has in input the distribution (si0, si1)i∈[n]. The receiver uses as its input n bits
b1, . . . , bn. To not overburden the notation we set n = λ.

Round 1 (Receiver).
1. Generate ot1,i := OT1(1λ, bi) for all i ∈ [n].
2. Send {ot1,i}i∈[n] to S.

Round 2 (Sender).
1. Generate ot2,i ← OT2(ot1,i, (si0, si1)) for all i ∈ [n].
2. Send {ot2,i}i∈[n] to R.

Round 3 (Receiver).
1. Compute ot3,i := OT3(ot1,i, ot2,i) for all i ∈ [n].
2. Send {ot3,i}i∈[n] to S.

Offline computation.
Sender:

1. If ⊥ = OTS4 (ot1,i, ot2,i, ot3,i) for any i ∈ [n] output ⊥, else output (si0, si1)i∈[n].
Receiver:

1. If ⊥ = OTR4 (ot1,i, ot2,i) for any i ∈ [n] output ⊥, else output (s′ib)i∈[n] where s′ib :=
OTR4 (ot2,i).

Theorem 5.10. Let X be a high min-entropy random variable defined by a probability distribution D and
let OTListRew the 1-out-of-two OT described in Figure 5.1 for the functionality FUOT (where U is the uniform
distribution) which is B-rewind receiver private, then the OT protocol OTListRew

rep described in Figure 5.1 is a
three-round sender list simulatable OT against a non-aborting receiver for the functionality FDOT (accordingly
to Definition 3.2) otherwise, OTListRew is sender private (accordingly to Definition 2.6). Moreover is OTListRew

rep
a B-rewind receiver private OT protocol (accordingly to Definition 3.5). OTListRew

rep makes black-box use of
OTListRew .

Proof (sketch). The proof of this construction works almost analogous to the proof of OTListRew. In the
reductions between the different hybrids, the challengers are simply replaced with the challengers corresponding
to the parallel repeated version of the primitive. Since all the primitives used in this construction are parallel
composable these challengers can easily be realized. We present the parallel adapted simulator in Figure 5.4.

The only parts in which the proof differs are the extraction probability in hybrid H1 as well as the analysis
of the simulator regarding the probability that the simulator executes more than maxrew rewinds in step 3
(“Extracting the input of R∗”).

Sim1 adopts for extractions the procedure of the underlying simulator Sim′1i for each i-th executions of
OTListRew. Therefore, we are guaranteed that Sim1 extracts the input of the receiver for the i-th executions

38

of OTListRew as soon as enough defenses are collected w.r.t. the first round oti,1 (which are 4). We need
now to bound the probability that after maxrew rewinds Sim1 obtained enough defenses to apply Sim′1i for
each i-th executions of OTListRew. Indeed, for these cases, we observe that instead of taking the probability
of the simulator not being able to extract over all the m indexes and obtaining 1 −

(1
4m
)maxrew as the

resulting probability, we need to further take the probability over all n executions and therefore we obtain
1−

(1
4m
)maxrew·n as the final success probability which is still overwhelming and therefore concludes the proof

of the theorem. ut

Figure 5.4: The simulator Sim = (Sim1,Sim2) for OTListRew
rep .

Let (Sim′1k , Sim′2k) be the simulator defined in Figure 5.2 for the k’th execution of OTListRew, which is parametrized by the
distribution D.
Input. The simulator Sim1 takes as input the distribution D and 1λ.

1) First thread: Sim1 computes the following steps:
1. For all i ∈ [m], k ∈ [n] and b ∈ {0, 1} upon receiving {ot1,i}i∈[n] from R∗ generates ot2,i as the honest sender would

do. Send {ot2,i}i∈[n] to R∗.
2. If R∗ does not send a 3rd round, abort and output the view of R∗.
3. Upon receiving {ot3,i}i∈[n] from R∗, initialize Defensei with the set fo defenses of {ot1,i}i∈[n] obtained from {ot3,i}i∈[n]

(the obtained defenses are defenses for the underlying oblivious transfer OT ListRew).
2) Estimate the abort probability: Sim1 initializes ctr := 0, T := 0 and computes the following steps:

1. Increment T , i.e. T := T + 1.
2. Compute and send a new 2nd round with fresh randomness to R∗ as described in step (1).1 (i.e. as an honest sender

would do).
3. If a valid 3rd round is received from R∗ increment ctr, i.e. ctr := ctr + 1.
4. If ctr = 12λ then output p = 12λ

T , otherwise, perform a new rewind, i.e. go back to step (2).1.
5. Set maxrew = dλp e.

3) Extracting the input of R∗: Sim1 initializes ctr := 0 and computes the following steps:
1. Perform the rewinds as follows:

Rewinding Threads: Sim computes the following steps:
(a) Increment ctr, i.e. ctr := ctr + 1.
(b) Compute and send a new 2nd round with fresh randomness to R∗ as described in step (1).1

(i.e. as an honest sender would do) and upon receiving {õt3,i}i∈[n] from R∗ check that the
defenses D̃efensek contained in {õt3,i}i∈[n] are valid w.r.t. {ot1,i}i∈[n] for all i ∈ [n]. Finally, set
Defensei := Defensei ∩ D̃efensei.

(c) If ctr > maxrew output fail.
(d) Check that Sim′1i is able to extract from ot1,i using Defensei for all i ∈ [n]. If this is the case,

proceed to next step; else continue the rewinding, i.e. return to step (3).1.

2. Follow step (3).2 of Sim′1i and use the defenses contained in Defensei to extract bi.
4) Estimate the abort probability: Sim1 initializes ctr := 0, T := 0 and computes the following steps:

1. Increment T , i.e. T := T + 1.
2. Compute a new 2nd round with fresh randomness for all i ∈ [n], i.e. compute ot2,i by executing the following steps:

(a) Sample sbi at random from the distribution D.
(b) Generate ot2,i as defined in steps (6.2) of Sim′2i w.r.t. input sbi .

If a valid 3rd round is received from R∗ increment ctr, i.e. ctr := ctr + 1.
3. If ctr = 12λ then output q = 12λ

T , otherwise, perform a new rewind, i.e. return to step (4).1.
4. Set maxrew′ = dλq e.

5) Query the ideal functionality: Sim1 sends to ideal functionality ({bi}i∈[n], 1d) receiving (~s1, . . . , ~sd), where ~sj =
{sb

i
}i∈[n] for j ∈ [d], with d := λ · maxrew′.

6) Forcing the output Sim2 on input (~s1, . . . , ~sd) initializes ctr = 0 and computes the following steps:

Threads to force the output:
1. Increment ctr, i.e. ctr := ctr + 1
2. Compute {ot2,i}i∈[n] as described in step 4 “Estimate the abort probability” but using ~sctr as input.
3. If ctr > λ · maxrew′ output fail.
4. If R∗ outputs an accepting third round, then output the view of R∗ in this thread; else continue the

rewinding, i.e. return to step (6).1.

Sim also keeps a count of its overall running time and if it reaches 2λ steps it outputs fail.

39

5.4 Enhancing B-rewind Security of OTListRew

In Section 5 we described a 1-out-of-two OT OTListRew which is sender list simulatable and B-rewind receiver
private, where B = 2. The construction is described in Figure 5.1, and it uses as a building block a 1-out-of-2
OT OT′ which is a sender list simulatable and only the receiver is private.

We note that it is possible to construct a 1-out-of-2 OT OTListRew
B′ which is sender list simulatable and

B′-rewind receiver private, for a constant B′ = 6 using the construction described in Figure 5.1, where the
underlying OT used as a building block is already B-rewind receiver private. In more detail, the sender and
receiver of OTListRew

B′ acts exactly as described in Figure 5.1 but using the algorithms of OTListRew instead of
OT′.

This observation leads to the following theorem.

Theorem 5.11. Let X be a high min-entropy random variable defined by a probability distribution D and let
OTListRew the 1-out-of-two OT described in Figure 5.1 for the functionality FUOT (which is 3-rewind receiver
private), then the OT protocol OTListRew

B′ described above is a three-round sender list simulatable OT against a
sometimes aborting receivers for the functionality FDOT (according to Definition 3.2) otherwise, OTListRew is
sender private (according to Definition 2.6). Moreover OTListRew

B′ is a B′-rewind receiver private OT protocol
(according to Definition 3.5), with B′ = 6 and OTListRew

B′ makes black-box use of OTListRew.

The proof follows similar to the one proven for Theorem 5.1.

5.5 Parallel Repetition

Besides being B-rewind secure, the presented OT protocol is also parallel composable. The parallel compos-
ability is important to construct the k-out-of-n OT protocol. The analysis of the parallel repetition is given
in detail in Section 5.3 and the k-out-of-n OT protocol is presented in Section 6.

6 List Sender Simulatable and B-rewind Receiver Private k-out-of-n OT

In this section, we present a black-box compiler that turns a 1-out-of-2 oblivious transfer OTListRew protocol into
a k-out-of-n oblivious transfer OTListRew

k,n protocol using a symmetric encryption scheme SE, while preserving
the round complexity of the underlying OT protocol and maintaining the same security guarantees. Similar
techniques are used in [SSR08], however, our setting is slightly different since we want a round-preserving
transformation and stronger security guarantees. Namely, having as input OTListRew that is sender list
simulatable and receiver private we realize OTListRew

k,n that has the same security guarantees, moreover, it is
B-rewind secure against malicious senders. Our construction works in the simultaneous message model and
is delayed input. That is, the receiver needs the input only to compute the second round and the sender
requires the input to compute the last round. We also argue that if the delayed-input property is not needed,
then we can obtain a k-out-of-n OT with the same security guarantees in the alternate message model.

Formally, we require the following tools:

– The three round 1-out-of-2 OT protocol OTListRew = (OT1,OT2,OT3,OT4 = (OTS4 ,OTR4)) described in
Figure 6.1.

– A k-out-of-n secret sharing scheme TSS = (Share,Rec).
– A symmetric encryption scheme SE = (Enc,Dec).

We describe the k-out-of-n oblivious transfer OTListRew
k,n protocol in Figure 6.1.

Figure 6.1: Three round sender list simulatable and B-rewind receiver private k-out-of-n OT.

Initialization: The sender has input (s1, . . . , sn) and the receiver has in input a set K of k indices in
[n].

40

Round 1 (Receiver).
1. Generate ot1,i := OT1(1λ, b′i) for all i ∈ [n] with b′i ← {0, 1}.
2. Send {ot1,i}i∈[n] to S.

Round 2.
Sender:

1. Sample random keys k′i,0, k′i,1 ← {0, 1}
λ for all i ∈ [n].

2. Generate ot2,i ← OT2(ot1,i, (k′i,0, k′i,1)) for all i ∈ [n].
3. Send {ot2,i}i∈[n] to R.

Receiver:
1. Compute a n-bit string b1, . . . , bn where bi = 1 if i ∈ K
2. Compute di = bi ⊕ b′i.
3. Send {di}i∈[n] to S.

Round 3.
Sender:

1. Sample a random key k← {0, 1}λ.
2. Encrypt all the inputs using the key k, i.e. cti ← Enc(k, si) for all i ∈ [n] and generate a
k-out-of-n secret sharing of the key, i.e. k1, . . . , kn ← Share(k, n− k, n).

3. For all i ∈ [n], compute ct′i,0 and ct′i,1, where ct′i,0 := k′i,0⊕ ki and ct′i,1 := k′i,1⊕ cti if di = 0
and ct′i,0 := k′i,1 ⊕ ki and ct′i,1 := k′i,0 ⊕ cti if di = 1.

4. Send {ct′i,0, ct′i,1}i∈[n] to R.
Receiver:

1. Compute ot3,i := OT3(ot1,i, ot2,i) for all i ∈ [n].
2. Send {ot3,i}i∈[n] to S.

Offline computation.
Sender:

1. If ⊥ = OTS4 (ot1,i, ot2,i, ot3,i) for any i ∈ [n] output ⊥, else output (s1, . . . , sn).
Receiver:

1. If ⊥ = OTR4 (ot1,i, ot2,i) for any i ∈ [n] output ⊥.
2. Else generate k′′i := OT3(ot1,i, ot2,1) for all i ∈ [n] and compute k′i := k′′i ⊕ ct′i,0 for all
i ∈ [n] where bi ⊕ di = 0 and ct′i := k′′i ⊕ ct′i,1 for all i ∈ [n] where bi ⊕ di = 1.

3. Compute k′ := Rec({k′i}i∈[n]:bi⊕di=0) and s′i := Dec(k′, ct′i) for all i ∈ [n] where bi ⊕ di = 1.
4. Output (s′i)i∈[n]:bi⊕di=1.

Correctness. The correctness of the special k-out-of-n OT follows from the correctness of the underlying OT
protocol, the correctness of the symmetric encryption scheme as well as the correctness of the k-out-of-n secret
sharing scheme. From the correctness of the OT protocol it follows that k′i := k′i,bi for all i ∈ [n]. From the three
round computation of the sender it follows that ct′i,0 := k′i,di ⊕ ki and ct′i,1 := k1⊕di ⊕ cti for all i ∈ [n]. For all
(n− k), i ∈ [n], where bi ⊕ di = 0⇔ bi = di, it holds that k′i ⊕ ct′i,0 = k′i,bi ⊕ k′i,di ⊕ ki = k′i,bi ⊕ k′i,bi ⊕ ki = ki
and with the correctness of the k-out-of-n secret sharing scheme, it holds that k := Rec({k′i}i:bi⊕di=0). For
the remaining k, i ∈ [n], where bi ⊕ di = 1 ⇔ bi = 1 ⊕ di, it holds that k′i ⊕ ct′i,1 = k′bi ⊕ k1⊕di ⊕ cti =
k′1⊕di ⊕ k1⊕di ⊕ cti = cti. Taking into account the correctness of the symmetric encryption scheme it follows
that si := Dec(k, cti) for all i ∈ [n] such that bi ⊕ di = 1, which concludes the analysis of the correctness.

Theorem 6.1. Let X be a high min-entropy random variable defined by a probability distribution D and
let OTListRew the 1-out-of-two OT described in Figure 5.1 for the functionality FUOT (where U is the uniform
distribution) which is B-rewind receiver private, then the OT protocol OTListRew

k,n described in Figure 6.1 is a
three-round sender list simulatable OT against a non-aborting receiver for the functionality FDOT (accordingly
to Definition 3.2) otherwise, OTListRew is sender private (accordingly to Definition 2.6). Moreover is OTListRew

k,n

a B-rewind receiver private OT protocol (accordingly to Definition 3.5). OTListRew
k,n makes black-box use of

OTListRew.

41

We split this theorem into three lemmas, the first two focusing on the simulatability and privacy against
a malicious receiver and the third focusing on the privacy of the receiver against a malicious sender. These
lemmas are proven in the corresponding sections Sections 6.1 to 6.3

6.1 List Simulatability Against Malicious Receivers

Lemma 6.2. Let X be a high min-entropy random variable defined by a probability distribution D and let
OTListRew the 1-out-of-two OT described in Figure 5.1 for the functionality FUOT (where U is the uniform
distribution) which is B-rewind receiver private, then the OT protocol OTListRew

k,n described in Figure 6.1 is a
three-round sender list simulatable OT against a non-aborting receiver for the functionality FDOT (accordingly
to Definition 3.2).

Proof. We prove that the OT OTListRew
k,n described in Figure 6.2 is sender list simulatable by showing that

a malicious (non-aborting) receiver is not able to distinguish between a real execution of the protocol and
an ideal execution. The proof that this simulator runs in expected polynomial time and succeeds with
overwhelming probability can be found in Claim 6.3 & Claim 6.4.

We prove the indistinguishability between the real world and the ideal world using a sequence of hybrids
that we describe below:

Hybrid H0: This hybrid corresponds to the real world.
Hybrid H1: This hybrid is almost identical to the previous hybrid with the only difference that the input

bit b of the receiver is extracted. In order to do so the hybrid follows the steps (1), (2) and (3) of Sim
described in Figure 6.2, the hybrid outputs the view of R∗ in the first thread. The indistinguishability of
the hybrids follows with similar arguments to the one described in the claims 6.4, 6.3.

Hybrid H′1: This hybrid proceeds as in the previous hybrid except that after the extraction of the input the
hybrid proceeds as explained in steps (4), and (6) of Sim described in Figure 6.2, but also in steps (4) and
(6) the second round is computed honestly (as in steps (2) and (3)). The hybrid outputs the same output
of Sim. The indistinguishability of the hybrids follows with similar arguments to the one described in the
claims 6.4, 6.3.

Hybrid Hx2 : this hybrid, is described as in the previous hybrid but in step (x) the messages {ot2,i}i∈ is
generated as described in step (4).2 of Figure 6.2 (to be more precise, x is used to denote the 4th or
the 6th stage of the simulation, namely x = 4 or x = 6). In other word {ot2,i}i∈ is generated using
the simulator Sim2 w.r.t. input k′i,b′

i
). The indistinguishability of the hybrids follows from the sender’s

privacy the underlying OT protocol OTListRew, which follows with similar arguments to the one proven
in Claim 6.5.

Hybrid Hx3 : this hybrid, is described as in the previous hybrid with the following differences.
The hybrid sets K as specified in step (3).2 of Figure 6.2, then for i ∈ [n], the hybrid generates in step (x)
the ciphertexts ct′i,0, ct′i,1 as follows (to be more precise, x is used to denote the 4th or the 6th stage of
the simulation, namely x = 4 or x = 6):
1. If i ∈ K set ct′i,0 ← {0, 1}

λ, while ct′i,1 is generated as in the previous hybrid.
2. If i /∈ K set ct′i,1 ← {0, 1}

λ, while ct′i,0 is generated as in the previous hybrid.
If |K| ≤ k then hybrid already corresponds to the ideal world, since all the information about the inputs
si where i ∈ [n] such that i /∈ K is removed from the protocol execution. Otherwise, we proceed with the
following hybrids.
The indistinguishability between this and the previous hybrid follows from the perfect security of (multiple
instances of) the one-time pad, a similar reduction is shown in Claim 6.6.

In both of the following hybrids, it is assumed that |K| > k.

Hyrid Hx4 : this hybrid, is described as in the previous hybrid but the hybrid in step (x) switches from the
generation of a (n− k)-out-of-n secret sharing of the symmetric encryption key k to the generation of

42

a (n− k)-out-of-n secret sharing of a random value (to be more precise, x is used to denote the 4th or
the 6th stage of the simulation, namely x = 4 or x = 6). The indistinguishability between this and the
previous hybrid follows from the security of the k-out-of-n secret sharing scheme. A similar reduction is
shown in Claim 6.7.

Hybrid Hx5 : this hybrid, is described as in the previous hybrid but the hybrid in step (x) switches from
symmetric encryptions of the actual inputs si’s, i.e. cti ← Enc(k, si) to encryptions of random values,
i.e. cti ← Enc(k, ri), ri ← {0, 1}λ (to be more precise, x is used to denote the 4th or the 6th stage of the
simulation, namely x = 4 or x = 6). The indistinguishability between this and the previous hybrid follows
from the IND-CPA security of the underlying symmetric encryption scheme. For this subcase, this hybrid
corresponds to the ideal world. A similar reduction is shown in Claim 6.8.
From the above arguments we can conclude that H0 ≈ H1 ≈ H′1 ≈c H4

2 ≈ H4
3 ≈ H4

4 ≈c H4
5 ≈c H6

2 ≈ H6
3 ≈

H6
4 ≈c H6

5.
ut

Figure 6.2: Simulator Sim = (Sim1,Sim2) for OTListRew
k,n

Let Sim = (Sim1
, Sim2) be the simulator defined in Figure 5.4 parametrized by the uniform distribution.

Input. The simulator Sim1 takes as input the distribution D and 1λ.

1) First thread Sim1 computes the following steps:
1. Upon receiving {ot1,i}i∈[n] from R∗ compute {ot2,i}i∈[n] as the honest sender would do and send them to R∗.
2. Upon receiving {di}i∈[n] from R∗ compute {ct′i,0, ct′i,1}i∈[n] as the honest sender would do and send them to R∗.
3. If R∗ does not send any 3rd round then abort giving in output the view of R∗.
4. Upon receiving {ot3,i}i∈[n] from R∗ initialize Defense with the set of defenses of {ot1,i}i∈[n] obtained from {ot3,i}i∈[n].

2) Estimate abort probability Sim initializes ctr = 0, T = 0 and computes the following steps:
1. Increment T = T + 1.
2. Compute and send to R∗ a new 2nd round with fresh randomness as an honest sender would do. Upon receiving a 2nd

round from R∗, compute and send to R∗ a new 2nd round with fresh randomness as an honest sender would do. If a
valid 3rd round is received from R∗ increment ctr = ctr + 1.

3. If ctr = 12λ then output p = 12λ
T , otherwise, perform a new rewind, i.e. go back to step (3).1.

4. Set maxrew = dλp e.
3) Extracting input of R∗ Sim initializes ctr = 0 and computes the following steps:

1. Perform the rewinds as follows:

Rewinding Threads Sim computes the following steps:
(a) Increment ctr = ctr + 1
(b) Repeat steps of Rounds 2 and Round 3 with fresh randomness and upon receiving {õt3,i}i∈[m]

from R∗ check that the defenses contained in {õt3,i}i∈[m] are valid w.r.t. {ot1,i}i∈[n]. Let D̃efense
be the set of valid defenses in {õt3,i}i∈[m]. Finally, set Defense := Defense ∩ D̃efense.

(c) If ctr > maxrew output fail.
(d) Check if it is possible to extract b′1, . . . , b

′
n played by R∗ in {ot1,i}i∈[n] following the same steps of

the simulator Sim1 described in Figure 5.4.; else continue the rewinding, i.e. go to step (2).1.

2. Follow the same steps of the simulator Sim1 described in Figure 5.4.on input the defenses Defense to extract the bit
string b′1, . . . , b

′
n played by R∗ in {ot1,i}i∈[n]. Then use d1, . . . , dn (sent by R∗ in the 2nd round of “First Thread”)

to compute the input b1, . . . , bn of R∗. Finally, compute the set K as the indices i where b′i ⊕ di = 1, for i ∈ [n].
4) Estimate abort probability Sim initializes ctr = 0, T = 0 and computes the following steps:

1. Increment T = T + 1.
2. For i ∈ [n] generate ot2,i as defined in step 4 of Sim2 w.r.t. input k′

i,b′
i

, where k′
i,b′
i

is taken at random from the

uniform distribution. Send {ot2,i}i∈[n] to R∗.
3. Upon receiving the 2nd round from R∗ compute (ct′i,0, ct′i,1)i∈[n] as follows:

(a) If |K| > k

i. Sample a random symmetric encryption key k and compute cti ← Enc(k, ri) for all i ∈ [n] with ri ← {0, 1}λ.
ii. Generate k1, . . . , kn as an n-out-of-n secret sharing of a random r ← {0, 1}λ.

(b) If |K| ≤ k
i. Sample {si}i∈K at random from distribution D.
ii. Sample a random symmetric encryption key k and compute cti ← Enc(k, si) for all i ∈ K.
iii. Generate k1, . . . , kn as an n-out-of-n secret sharing of a k.

(c) For all i ∈ K sample ct′i,0 ← {0, 1}
λ and generate ct′i,1 as described in the protocol using cti.

(d) For all i /∈ K sample ct′i,1 ← {0, 1}
λ and generate ct′i,0 as described in the protocol using ki.

43

Send (ct′i,0, ct′i,1)i∈[n] to R∗ and if a valid 3rd round is received from R∗ increment ctr = ctr + 1.
4. If ctr = 12λ then output q = 12λ

T , otherwise, perform a new rewind, i.e. go back to step (4).1.
5. Set maxrew′ = dλq e.

5) Query the ideal functionality If |K| ≤ k Sim sets d = λ · maxrew′ and sends to the ideal functionality (K, 1d) obtaining
(~s1, . . . , ~sd), where ~sj = {si}i∈K for j ∈ [d].

6) Forcing the output Sim2 on input (~s1, . . . , ~sd) computes the following steps:

Threads for forcing the output Sim2 initializes ctr = 0 and computes the following steps
1. Increment ctr = ctr + 1
2. Compute (ct′i,0, ct′i,1)i∈[n] as describe in Step 4 “Estimate abort probability” but using ~sctr as input for

the case where |K| ≤ k.
3. If ctr > λ · maxrew′ output fail.
4. If R∗ gives an accepting Round 3 output the view of R∗ in this thread; else go to step (6).1.

Sim also keeps a count of its overall running time and if it reaches 2λ steps it output fail.

Claim 6.3 Sim runs in expected polynomial time in λ.

The analysis of the simulator follows similarly to the analysis in [GK96] as recapped in [Lin16]. We analyze
the running time in more detail. Let ε be the probability that the adversary R∗ outputs a valid third round.
The following analysis takes into account that each time Sim follows the steps of Sim it runs in polynomial
time.

In the first step (“First thread”) the simulator clearly runs in polynomial time. The estimation of the
probability for the second step (“Estimate the abort probability”) is executed until Sim does not collect 12λ
valid third rounds from R∗. Since the probability that R∗ outputs, a valid third round is ε, Sim stops after
12λ/ε attempts.

From the analysis in [GK96] it follows that the estimation p is within a constant factor from ε, unless of a
negligible probability 2−λ (therefore the case of running 2λ steps adds only a polynomial amount of overhead
to the simulator).

This results in an overall running time of the simulator that is expected polynomial in λ.

Claim 6.4 Sim outputs fail with negligible probability in λ.

There are three possibilities that the simulator Sim outputs fail:

1. The simulator executes more than 2λ steps
2. The simulator executes more than maxrew rewinds in step 3 (“Extracting the input of R∗”)
3. The simulator executes more than λ ·maxrew′ rewinds in step 6 (“Forcing the output”)

The first case is directly bounded by the previous proof, i.e. if the simulator runs in expected polynomial
time in λ then it only executes more than 2λ steps with negligible probability.

To show that the second case is negligible, we need to bound the probability with which Sim extracts the
input of R∗. The extraction of the input from R∗ is performed by Sim1 following the extraction procedure of
Sim1. Therefore if Sim1 fails the extraction with non-negligible probability, it is possible to show a reduction
against the parallel (simulation) security of the underlying OTListRew.

To bound the probability of the third case we first prove that the probability with which R∗ is answering
after receiving a simulated 2nd and 3rd rounds (as described in step (4)) is negligible close to the probability
that R∗ is answering after receiving a 2nd and 3rd round of the protocol computed honestly.

In order to do so we consider the following hybrids:

Hybrid H0: This hybrid corresponds to the real world execution.
Hybrid H′0: The hybrids act exactly as the previous hybrid but upon receiving receiver’s messages ot1,1, . . . , ot1,n

the input bit b′i of the receiver is extracted in exponential time. Then the hybrid sends the 2nd round of
the sender (computed in an honest way) to R∗ and upon receiving d1, . . . , dn round from R∗ the set K is
computed as the indices i where b′i ⊕ di = 1, for i ∈ [n]. The rest of the protocol is executed as the honest
sender would do.

44

Hybrid H1: this hybrid is described as in the previous hybrid but the messages {ot2,i}i∈ is generated as
described in step (4).2 of Figure 6.2 (i.e. using the simulator Sim2 w.r.t. input k′i,b′

i
). The indistinguishability

of the hybrids follows from the sender’s privacy the underlying OT protocol OTListRew, which we formally
prove in Claim 6.5.

Hybrid H2: this hybrid, is described as in the previous hybrid with the following differences.
The hybrid sets K as specified in step (3).2 of Figure 6.2, then for i ∈ [n], the hybrid generates the
ciphertexts ct′i,0, ct′i,1 as follows:
1. If i ∈ K set ct′i,0 ← {0, 1}

λ, while ct′i,1 is generated as in the previous hybrid.
2. If i /∈ K set ct′i,1 ← {0, 1}

λ, while ct′i,0 is generated as in the previous hybrid.
If |K| ≤ k then hybrid already corresponds to the ideal world, since all the information about the inputs
si where i ∈ [n] such that i /∈ K is removed from the protocol execution. Otherwise, we proceed with the
following hybrids.
The indistinguishability between this and the previous hybrid follows from the perfect security of (multiple
instances of) the one-time pad. The reduction is shown in Claim 6.6.
In both of the following hybrids, it is assumed that |K| > k.
Hyrid H3: this hybrid, is described as in the previous hybrid but the hybrid switches from the generation

of a (n− k)-out-of-n secret sharing of the symmetric encryption key k to the generation of a (n− k)-
out-of-n secret sharing of a random value. The indistinguishability between this and the previous
hybrid follows from the security of the k-out-of-n secret sharing scheme. The reduction is shown in
Claim 6.7.

Hybrid H4: this hybrid, is described as in the previous hybrid but the hybrid switches from symmetric
encryptions of the actual inputs si’s, i.e. cti ← Enc(k, si) to encryptions of random values, i.e.
cti ← Enc(k, ri), ri ← {0, 1}λ. The indistinguishability between this and the previous hybrid follows
from the IND-CPA security of the underlying symmetric encryption scheme. For this subcase, this
hybrid corresponds to the ideal world. The reduction is shown in Claim 6.8.

Claim 6.5 Let the parallel version of OTListRew be a three-round seder private OT protocol (against aborting
malicious receiver), then the hybrids H′0 and H1 are computationally indistinguishable.

Proof. To prove that the hybrids are computationally indistinguishable, we rely on the simulator of the
underlying OT protocol OTListRew. We prove this claim by contradiction. Let CH be the challenger of the
sender private OTListRew. We define the adversary A for OTListRew which internally runs R∗ and acts as a
proxy between R∗ and the challenger with respect to the messages of one execution of OTListRew. In more
detail, A upon receiving {ot1,i}i∈[n] from R∗ sends them to the challenger along with {k′i,0, k′i,1}i∈[n], where
are chosen at random. A upon receiving {ot2,i}i∈[n] from the challenger sends them to R∗ and continues
the rest of the protocol as an honest sender would do, using as keys {k′i,0, k′i,1}i∈[n] in the third round. The
reduction runs the distinguisher (which exists by contradiction) on the output of A. The reduction gives as
output the output of the distinguisher.

ut

Claim 6.6 The hybrids H1 and H2 are perfectly indistinguishable.

Proof. In this proof, we denote the number of times for which b′i ⊕ di = 1 as `, i.e. |K| = `. We prove this
claim by contradiction. We assume that there exists an adversary R∗, that can distinguish between the two
hybrids H1 and H′2, with non-negligible probability, then we can use R∗ to construct an adversary A that
breaks the underlying (n− `) or ` instances of the one-time pads.

Upon receiving {ot1,i}i∈[n] from R∗ the adversary A runs in exponential time and extracts bits b′i for all
i ∈ [n]. For the generation of the second round, namely of {ot2,i}i∈[n], the reduction behaves as specified in
the previous hybrid. Observe that after this step, there exists no information about the keys k′1⊕b′

i
for all

i ∈ [n] in the OT execution. In the next step, for the generation of the third round of the sender, A behaves
as described in the protocol until the generation of the ciphertexts.

Now, we distinguish between two cases:

45

1. bi = b′i ⊕ di = 1 for less than or equal to k i’s, i.e. |K| ≤ k.
2. bi = b′i ⊕ di = 1 for more than k i’s, i.e. |K| > k .

In the first case, the generation of the ciphertexts ct′i,0 for al i ∈ [n] happens as described in the protocol
execution. For the generation of the ciphertexts ct′i,1 the adversary A interacts with a challenger that executes
` instances of a one-time pad.14 In more detail, it generates cti ← Enc(k, si) and samples ri ← {0, 1}λ for
all i ∈ [n] such that b′i ⊕ di = 0. It then sends (cti, ri)i∈[n]:b′

i
⊕di=0 as its (n− `) challenges to the underlying

challenger of the one-time pad and receives as a reply ct′i,1, which A uses as a reply of the third round for A′.
The remaining ciphertexts ct′i,1 are generated as described in the previous hybrid.

In this case, the reduction concludes with the observation that if the challenger of the (n− `) one-time pad
instances generates the ciphertexts ct′i,1 using cti for all i ∈ [n] such that b′i ⊕ di = 0, then this corresponds
to hybrid H1 and if the challenger generates ct′i,1 using ri for all i ∈ [n] such that b′i ⊕ di = 0, then this
corresponds to hybrid H2. If the adversary A′ is now able to distinguish between H1 and H2 with non-negligible
probability, then our constructed adversary A breaks the underlying (n − `) one-time pad instances with
non-negligible probability. This results in a contradiction and concludes the proof for this case. In this case,
Lemma 6.2 already follows since all the information about the inputs si where i ∈ [n] such that b′i ⊕ di = 0 is
removed from the protocol execution.

In the second case, the generation of the ciphertexts ct′i,1 for al i ∈ [n] happens as described in the
protocol execution. For the generation of the ciphertexts ct′i,0 the adversary A interacts with a challenger
that executes ` instances of a one-time pad. In more detail, it samples ri ← {0, 1}λ for all i ∈ [n] such that
b′i ⊕ di = 1. It then sends (ki, ri)i∈[n]:b′

i
⊕di=1 as its ` challenges to the underlying challenger of the one-time

pad and receives as a reply ct′i,0, which A uses as a reply of the third round for A′. The remaining ciphertexts
ct′i,0 are generated as described in the previous hybrid.

In this case, the reduction concludes with the observation that if the challenger of the ` one-time pad
instances generates the ciphertexts ct′i,0 using ki for all i ∈ [n] such that b′i ⊕ di = 1, then this corresponds
to hybrid H1 and if the challenger generates ct′i,0 using ri for all i ∈ [n] such that b′i ⊕ di = 1, then this
corresponds to hybrid H2. If the adversary A′ is now able to distinguish between H1 and H2 with non-
negligible probability, then our constructed adversary A breaks the underlying ` one-time pad instances with
non-negligible probability. This results in a contradiction and concludes the proof for this case. In this case,
to conclude the proof of the lemma, we need to proceed using the following hybrids. ut

Claim 6.7 If b′i ⊕ di = 1 for more than k i’s (i.e. |K| > k), then the hybrids H2 and H3 are perfectly
indistinguishable.

Proof. In this proof, we assume that there exist exactly (n− k − 1) indices for which b′i ⊕ di = 0. We prove
this claim by contradiction. We assume that there exists an adversary A′, that can distinguish between the
two hybrids H2 and H3, in the case that bi ⊕ di = 1 for more than k i’s, with non-negligible probability, then
we can use A′ to construct an adversary A that breaks the underlying k-out-of-n secret sharing scheme.

Upon receiving {ot1,i}i∈[n] from R∗ the adversary A runs in exponential time and extracts bits b′i for
all i ∈ [n]. For the generation of the second and third round the reduction behaves as specified in the
previous hybrid until the generation of the shares for the symmetric encryption k. Instead of generating the
shares by itself, A samples a random value r ← {0, 1}λ and sends (k, r) to the underlying challenger of a
(n− k)-out-of-n secret sharing scheme that replies with {ki}i∈[n]:b′

i
⊕di=0. Due to the previous hybrid, all the

remaining ciphertexts, i.e. {ki}i∈[n]:b′
i
⊕di=1 , already correspond to random values. For the generation of the

remaining ciphertexts and for the remaining steps, A proceeds as described in the previous hybrid.
We conclude the reduction with the observation that if the challenger of the (n−k)-out-of-n secret sharing

scheme generates the shares w.r.t k, then A simulates hybrid H2 and if the challenger of the (n− k)-out-of-n
secret sharing scheme generates the shares w.r.t the random value r, then this corresponds to hybrid H3. If
14 (n− `) instances here means that the challenger flips a single bit b and then encrypts, in all (n− `) executions of

the one-time pad, the challenge message corresponding to the bit b. This directly reduces to the single instance case
using a simple hybrid argument.

46

the adversary A′ is now able to distinguish between H2 and H3 with non-negligible probability, then our
constructed adversary A breaks the underlying (n− k)-out-of-n secret sharing scheme with non-negligible
probability. This results in a contradiction and concludes the proof. ut

Claim 6.8 If b′i ⊕ di = 1 for more than k i’s (i.e. |K| > k), and SE is an IND-CPA secure symmetric
encryption scheme, then the hybrids H3 and H4 are computationally indistinguishable.

Proof. We prove this claim by contradiction. We assume that there exists an adversary R∗, that can distinguish
between the two hybrids H3 and H4, in the case that bi ⊕ di = 1 for more than k i’s, with non-negligible
probability, then we can use R∗ to construct an adversary A that breaks the underlying IND-CPA secure
symmetric encryption scheme.

Let us fix the first round message {ot1,i}i∈[n] that maximizes the distinguishing advantage of the adversary
R∗ in the above two experiments. Note that in OTListRew the input of the receiver is fixed in the first round,
therefore it is fixed once {ot1,i}i∈[n] are generated. Let b′i be the inputs of the receiver, respectively, used in
{ot1,i}i∈[n]. We define the adversary A for OT′ which internally runs R∗ and acts as a proxy between R∗ and
the challenger of the IND-CPA security.

In more details, A takes as auxiliary input ({ot1,i}i∈[n], {b′i}i∈[n]) and compute the following steps. A
generate the 2nd round as described in the previous hybrid, then in the third round A samples a (n− k)-
out-of-n secret sharing of a random value and uses those values in the generation of the ciphertexts ct′i,0. To
obtain the ciphertexts cti the adversary submits as challenge queries to its underlying challengers the pairs
(si, ri) for all i ∈ [n], with ri ← {0, 1}λ to obtain as a reply cti for all i ∈ [n]. It then uses these ciphertexts
as in the protocol description for the generation of the ciphertexts ct′i,1. Finally, A outputs (ct′i,0, ct′i,1) to A′.

We conclude the reduction with the observation that if the challenger of the IND-CPA secure encryption
generates all the ciphertexts cti w.r.t the sender inputs {si}i∈[n], then A simulates hybrid H3 and if the
challenger of the symmetric encryption scheme generates the ciphertexts w.r.t. the random values ri, then this
corresponds to hybrid H4. If the adversary R∗ is now able to distinguish between H3 and H4 with non-negligible
probability, then our constructed adversary A breaks the IND-CPA security of the underlying symmetric
encryption scheme with non-negligible probability. This results in a contradiction and concludes the proof of
the claim. Since this hybrid corresponds to the ideal world, this concludes also the proof of Lemma 6.2. ut

6.2 Proof of the Sender Privacy

Theorem 6.9. Let X be a high min-entropy random variable defined by a probability distribution D and let
OTListRew the 1-out-of-two OT described in Figure 5.1 then the OT protocol OTListRew

k,n described in Figure 6.1
is sender private (accordingly to Definition 2.6) against aborting adversary.

Proof (Sketch). This lemma can be proven in the same way as Lemma 5.8. Therefore, we refer to Lemma 5.8
for further details. ut

6.3 Proof of B-rewind Receiver Security

Lemma 6.10. OTListRew the 1-out-of-two OT described in Figure 5.1 which is B-rewind receiver private,
then OTListRew

k,n is B-rewind receiver private OT protocol (accordingly to Definition 3.5).

Proof (Sketch). This lemma can be proven similarly to the bullet (3) of Claim 6.4. ut

Remark 6.11. We finally observe that if the delayed-input property is not needed, then the k-out-of-n OT
described in Figure 6.1 can be easily modified to work in the alternated model. Indeed, if the receiver knows
the input in the first round already, then it knows the shares {di}i∈[n], and these can be sent in the clear
already in the first round (instead of waiting until the second round). Accordingly, the sender that receives
these shares can compute all its messages already in the second round. Hence, the only party speaking in the
third round will be the receiver.

47

7 Two-Party Computation

In this section, we construct a three-round (in the simultaneous message model) 2-party computation protocol
Π2PC that is 1-rewinding secure list-simulatable with delayed function selection for NC1 circuits (we refer to
Definition 3.3 for a formal definition).

To construct our protocol, we make use of the following tools.

– A two-round information-theoretic two client, m server MPC protocol Φ = (Φ1, {Φ2,i}i∈[m])15 for
computing NC1 circuits, that satisfies security with selective abort against a malicious, adaptive adversary
corrupting a single client and at most t = (m− 1)/3. Here, we fix m = 8λ. We need the protocol to satisfy
two additional properties:
• We require the first round message of the protocol to be independent of the function description and

only depend on its size.
• Given a first round message from the clients, the servers in the second round, are given descriptions
of two functions f0, f1 and should be able to generate the second-round message corresponding to
these two functions on the same first-round message from the client. In other words, we require the
protocol’s first round message to be reusable once.

In [IKSS21] the authors argue how to obtain such a scheme.
– A PRF PRF : {0, 1}λ × {0, 1}∗ → {0, 1}∗.
– A symmetric encryption scheme SE = (Enc,Dec).
– A delayed-input, 1-rewinding secure extractable commitment scheme ExtCom = (ExtCom1,ExtCom2,ExtCom3)

which has been presented in Section 2.2.
– A three-round list simulatable against sometimes aborting adversaries λ-out-of-m OT protocol OTλ,m:=

(OTλ,m1 ,OTλ,m2 ,OTλ,m3 ,OTλ,mout). We require the protocol to be Bot = 6 rewind secure against corrupted
receivers for the uniform distribution U , i.e. for the functionality FUOT. In more detail, the uniform
distribution U here samples m random strings of length λ each acting as the randomness si for all i ∈ [m]
used for the commitment generated in the first round of the protocol.

– A three-round list simulatable against sometimes aborting corrupted receivers, and private against
corrupted sender 1-out-of-2 OT protocol OT1,2 := (OT1,2

1 ,OT1,2
2 ,OT1,2

3 ,OT1,2
out) that is Bot = 6 rewind

secure against corrupted receiver for the uniform distribution U ′, i.e. for the functionality FU ′OT. In more
detail, the uniform distribution U ′ here samples two random strings of length λ acting as the secret keys
(ski,j,k0 , ski,j,k1) used for the ciphertexts generated in the third round of the protocol.

– A garbling scheme GC = (Garble,Eval).

We propose the formal construction of our protocol in Figure 7.1, and refer to the introduction for an
informal description of the protocol.

Figure 7.1: The three rounds of the 2PC protocol Π2PC

Initialization: The sender S has input y and the receiver R has input x.

Round 1.
Sender:

1. Compute comi
1 := ExtCom1(1λ; si) with si ← {0, 1}∗ for all i ∈ [m].

2. Send ({comi
1}i∈[m]) to R.

Receiver:
1. Compute (x1, . . . , xm) ← Φ1(x). We assume that xi ∈ {0, 1}` and we denote by xi,j the
j-th bit of xi fo r all j ∈ [`].

2. Sample xi,j,1, . . . , xi,j,λ−1 ← {0, 1} and set xi,j,λ−1 := xi,j⊕k∈[λ−1] xi,j,k for all i ∈ [m], j ∈
[`].

15 Here, Φ2,i is the function that takes {yi,j}j∈[`] and {xi,j,k}j∈[`],k∈[λ] as inputs and first reconstructs {xi,j}j∈[`] and
then applies the function computed by the i-th server in the outer protocol Φ on f, {xi,j , yi,j}j∈[`]

48

3. Choose a random subset K ⊂ [m].
4. For all i ∈ [m], j ∈ [`], k ∈ [λ] sample ri,j,k ← {0, 1}λ and compute oti,j,k1 ←

OT1,2
1 (1λ, xi,j,k). Sample r ← {0, 1}λ and compute ot1 ← OTλ,m1 (1λ,K; r).

5. Send oti1 and {oti,j,k1 }i∈[m],j∈[`],k∈[λ] to S.
Round 2.

Sender:
1. Sample ski,j,k0 , ski,j,k1 ← {0, 1}λ for all i ∈ [m], j ∈ [`] and k ∈ [λ].
2. Sample ρi,j,k and compute oti,j,k2 ← OT1,2

2 (oti,j,k1 , (ski,j,k0 , ski,j,k1); ρi,j,k) for all i ∈ [m], j ∈
[`] and k ∈ [λ].

3. Compute ot2 ← OTλ,m2 (ot1, {sj}j∈[m]).
4. Send ot2 and {oti,j,k2 }i∈[m],j∈[`],k∈[λ] to R.

Receiver:
1. Compute comi

2 ← ExtCom2(comi
1) for all i ∈ [m].

2. Send ({comi
2}i∈[m], f) to S.

Round 3.
Sender:

1. Sample ki ← {0, 1}λ for all i ∈ [m].
2. Compute (y1, . . . , ym) ← Φ1(y). We assume that yi ∈ {0, 1}` and we denote by yi,j the
j-th bit of yi for all j ∈ [`].

3. Compute comi
3 := ExtCom3(1λ, yi, ki, {ski,j,k0 , ski,j,k1 , ρi,j,k}j∈[`],k∈[λ]; si) for all i ∈ [m].

4. Compute Φ̃i, {labi,j0 , labi,j1 }i∈[m],j∈[`], {labi,j,k0 , labi,j,k1 }i∈[m],j∈[`],k∈[λ] ← Garble(1λ,Φ2,i; ri)
for all i ∈ [m] where ri := PRF(ki, f). Here {labi,j0 , labi,j1 }i∈[m],j∈[`] are the input labels for
the sender and {labi,j,k0 , labi,j,k1 }i∈[m],j∈[`],k∈[λ] are the input labels for the receiver.

5. Sample ki,j,k0 , ki,j,k1 ← {0, 1}∗ and generate cti,j,kb := Enc(ski,j,kb , labi,j,kb ; PRF(ki,j,kb , f)) for
all b ∈ {0, 1}, i ∈ [m], j ∈ [`] and k ∈ [λ].

6. Send {comi
3, Φ̃i}i∈[m] and {cti,j,k0 , cti,j,k1 , labi,jyi,j}i∈[m],j∈[`],k∈[λ] to R.

Receiver:
1. Compute oti,j,k3 ← OT1,2

3 (oti,j,k2 ; ri,j,k) for all i ∈ [m], j ∈ [`] and k ∈ [λ].
2. Compute ot3 ← OTλ,m3 (ot2; r).
3. Send ot3 and {oti,j,k3 }i∈[m],j∈[`],k∈[λ] to S.

Figure 7.2: The output computation of the 2PC protocol Π2PC.

Output Computation.
Sender:

1. Verify that all the OTs are accepting, and reject if this is not the case.
Receiver:

1. Compute {si}i∈K := OTλ,mout (ot2; r)
2. Compute ski,j,kxi,j,k

:= OT1,2
out(oti,j,k2 ; ri,j,k) and labi,j,kxi,j,k

:= Dec(ski,j,kxi,j,k
, cti,j,kxi,j,k

) for all i ∈
[m], j ∈ [`], k ∈ [λ].

3. For all i ∈ K:
(a) Compute (yi, ki, {sk′i,j,k0 , sk′i,j,k1 }j∈[`]) from comi

1, comi
3 and randomness si.

(b) Compute ri := PRF(ki, f).
(c) Compute Φ̃i, {l̃ab

i,j

0 , l̃ab
i,j

1 }j∈[`], {lab′i,j,k0 , lab′i,j,k1 }j∈[`] := Garble(1λ,Φ2,i; ri).
(d) Check if Φ̃i that is received in the third round is the same as the one computed above.
(e) Check that labi,jyi,j = l̃ab

i,j

yi,j for all j ∈ [`].

49

(f) Check that ski,j,kxi,j,k
= sk′i,j,kxi,j,k

for all j ∈ [`], k ∈ [λ]
(g) Compute labi,j,k1−xi,j,k := Dec(sk′i,j,k1−xi,j,k , cti,j,k1−xi,j,k) for all j ∈ [`], k ∈ [λ].
(h) Check that labi,j,kb = lab′i,j,kb for all j ∈ [`], k ∈ [λ] and b ∈ {0, 1}.
(i) Check that oti,j,k2 = OT1,2

2 (oti,j,k1 , (ski,j,k0 , ski,j,k1); ρi,j,k) for all j ∈ [`], k ∈ [λ]
4. If any of the above checks fails, output ⊥.
5. For all i ∈ [m], compute zi := Eval(Φ̃i, {labi,jyi,j}j∈[`], {labi,j,kxi,j,k

}j∈[`],k∈[λ]).
6. Compute the output by running outΦ on {zi}i∈[m], the input x and the random tape used

for generating (x1, . . . , xm).

Theorem 7.1. Let XS be a high min-entropy random variable defined by a probability distribution XS, the
protocol Π2PC (Figure 7.1) is 1-rewinding secure list-simulatable against sometimes aborting adversaries with
delayed function selection for NC1 circuits for the ideal functionality FXS (according to Definition 3.3), that
makes block box use of OT1,2,OTk,λ,ExtCom,PRF,SE, and GC.

In the next two sections, we prove the security against malicious senders (Section 7.1) and security against
(sometimes aborting) malicious receivers (Section 7.2).

7.1 Simulation based security against adversarial senders

We provide the formal description of our simulator SimS in Figure 7.3. We start the proof assuming that the
adversarial sender provides an accepting third round with non-negligible probability, and then we elaborate
on the case where the adversary aborts with overwhelming probability.

Hybrid H0: This corresponds to the output of the real experiment, where the adversarial sender can send
two-second rounds, and expect two to receive two valid third rounds (recall that we want to prove that
our protocol is 1-rewind secure).

Hybrid H1: In this hybrid, for each i ∈ [m] we extract the value {yi, ki, {sk′i,j,k0 , sk′i,j,k1 , ρi,j,k}j∈[`],k∈[`] using
extractable commitment scheme, and, as explained in the simulation (Figure 7.3), construct the set C
and abort when |C| > λ. In Lemma 7.2 we prove that H0 and H1 are computationally indistinguishable
and that H1 runs in expected polynomial time. We refer to Figure 7.4 for the formal description of H1.

Hybrid H2: this hybrid is exactly like H1 with the difference that the values {xi}i∈K and the output of the
receiver is computed running the simulator for Φ. More formally, if all the checks succeed, then H2 does
the following:
– Instruct SimΦ to adaptively corrupt the set of servers indexed by K and obtain {xi}i∈K . Perform

all the checks that an honest receiver does and if any of these fails then return abort to the ideal
functionality.

– For each i ∈ C ∪K, compute zi := Eval(Φ̃i, {labi,jyi,j}j∈[`], {labi,j,kxi,j,k
}j∈[`],k∈[λ]).

– Send {zi}i∈C∪K as the second round message from the corrupted servers to SimΦ. If SimΦ instructs
the honest client to abort, then the hybrid aborts.

The indistinguishability between the two hybrids comes immediately from the same arguments used
in [IKSS21, Claim C.11].

Hybrid H3: This hybrid behaves exactly like the previous one, with the difference that receiver messages for
all the instances of OT1,2 are now computed using random inputs. The indistinguishability between the
two hybrids comes from the Bot-rewind security of OT1,2. In Lemma 7.5 we prove that H2 and H3 are
computationally indistinguishable.

Hybrid H4: In this hybrid, we use the simulator SimΦ and the values {xi}i∈C∪K . Note that H4 is identical
to the output of the simulated experiment. In Lemma 7.6 we prove that H3 and H4 are statistically
indistinguishable.

50

Figure 7.3: Simulator SimS against malicious senders.

Simulator Sim against S∗
Step 1 Perform the extraction procedure from the extractable commitments as described in Figure

7.4, and during the rewinds act as follows.
1. Use random inputs to compute all the messages of OT1,2.
2. Compute the messages of OTλ,m as the honest receiver does using a random input K ⊂ [m]

with |K| = λ.
Step 2.

1. When the extractor returns (with over extraction) {yi, ki, {sk′i,j,k0 , sk′i,j,k1 , ρi,j,k}i∈[m]}j∈[`],k∈[`]

run SimΦ on input y1, . . . , ym and function f . When SimΦ queries the ideal functionality on
xS record this query, and for each i ∈ [m] do the following.
(a) For each j ∈ [`], k ∈ [m], b ∈ {0, 1} compute labi,j,kb := Dec(ski,j,kb , cti,j,kb)
(b) Compute ri := PRF(ki, f).
(c) Compute Φ̃i, {l̃ab

i,j

0 , l̃ab
i,j

1 }j∈[`], {lab′i,j,k0 , lab′i,j,k1 }j∈[`] := Garble(1λ,Φ2,i; ri).
(d) Check if Φ̃i that is received in the third round is the same as the one computed above.
(e) Check that labi,jyi,j = l̃ab

i,j

yi,j for all j ∈ [`].
(f) Check that ski,j,kb = sk′i,j,kb and labi,j,kb = lab′i,j,kb for all j ∈ [`], k ∈ [λ], b ∈ {0, 1}
(g) Check that oti,j,k2 = OT1,2

2 (oti,j,k1 , (ski,j,k0 , ski,j,k1); ρi,j,k) for all j ∈ [`], k ∈ [λ]
(h) If any of the checks fail, then add i to a set C (which is initially empty).

2. If |C| > λ then send an abort to the ideal functionality.
3. If |C| ≤ λ then continues the execution and instruct SimΦ to adaptively corrupt the servers

indexed by the set C and obtain {xi}i∈C .
4. Instruct SimΦ to adaptively corrupt the set of servers indexed by K and obtain {xi}i∈K .

Perform all the checks that an honest receiver does and if any of these fails then return abort
to the ideal functionality.

5. For each i ∈ C ∪K, compute zi := Eval(Φ̃i, {labi,jyi,j}j∈[`], {labi,j,kxi,j,k
}j∈[`],k∈[λ]).

6. Send {zi}i∈C∪K as the second round message from the corrupted servers to SimΦ. If SimΦ
instructs the honest client to abort, then the simulator sends abort to the ideal functionality.
Otherwise, it asks the ideal functionality to deliver outputs to the honest receiver.

Figure 7.4: H1

MH1

Round 1. Compute the first round of Π2PC as the honest receiver, and send it to the adversary. Upon
receiving the message ({comi

1}i∈[m]) from S? forward it to the left interface.
Round 2. Upon receiving ({comi

2}i∈[m], f) on the left interface forward it to S?.
Round 3. Compute the third round as the honest receiver would do. Upon receiving the third round

from S? do the following.
– If the third round received from S? is accepting (i.e., the honest receiver would not abort)

then forward {comi
3}i∈[m] to the left interface.

– Else, send an abort message on the left interface.

H1

1. Act as the honest receiver of ExtCom would, agains the sender MH1 . If MH1 send a valid third
round then continue as follows, abort otherwise and return what MH1 returns.

2. Rewind MH1 , until three accepting transcripts for ExtCom have been collected such that 1) the
transcripts all share the same first round and 2) each transcript is computed with respect to a
different second round.

51

3. Run the 3-extractor of ExtCom on input these three transcripts, and when the extractor returns
τ, {yi, ki, {sk′i,j,k0 , sk′i,j,k1 , ρi,j,k}i∈[m],j∈[`],k∈[`] do the following.
(a) For each j ∈ [`], k ∈ [m], b ∈ {0, 1} compute labi,j,kb := Dec(ski,j,kb , cti,j,kb)
(b) Compute ri := PRF(ki, f).
(c) Compute Φ̃i, {l̃ab

i,j

0 , l̃ab
i,j

1 }j∈[`], {lab′i,j,k0 , lab′i,j,k1 }j∈[`] := Garble(1λ,Φ2,i; ri).
(d) Check if Φ̃i that is received in the third round of the thread that contains τ .
(e) Check that labi,jyi,j = l̃ab

i,j

yi,j for all j ∈ [`].
(f) Check that ski,j,kb = sk′i,j,kb and labi,j,kb = lab′i,j,kb for all j ∈ [`], k ∈ [λ], b ∈ {0, 1}
(g) Check that oti,j,k2 = OT1,2

2 (oti,j,k1 , (ski,j,k0 , ski,j,k1); ρi,j,k) for all j ∈ [`], k ∈ [λ]
(h) If any of the checks fail, then add i to a set C (which is initially empty).

4. If |C| > λ then abort.
5. If |C| ≤ λ the continue as follows.
6. For all i ∈ [m], compute zi := Eval(Φ̃i, {labi,jyi,j}j∈[`], {labi,j,kxi,j,k

}j∈[`],k∈[λ]).
7. Compute the output by running outΦ on {zi}i∈[m], the input x and the random tape used for

generating (x1, . . . , xm).

Lemma 7.2. Assuming that OTλ,m is Bot-rewind secure, private against corrupted sender k-out-of-n oblivious
transfer protocol, then H0 and H1 are computationally indistinguishable.

Proof. Let {yα, kα, {sk′α,j,k0 , sk′α,j,k1 , ρα,j,k}α∈[m],j∈[`],k∈[`] be the value extracted from the α-th extractable
commitment in H1. For each j ∈ [`], k ∈ [m], b ∈ {0, 1} let labα,j,kb be the value obtained from Dec(skα,j,kb , ctα,j,kb).
Let rα := PRF(kα, f) and Φ̃2,α, {l̃ab

α,j

0 , l̃ab
α,j

1 }j∈[`], {lab′α,j,k0 , lab′α,j,k1 }j∈[`] := Garble(1λ,Φ2,α; rα)).
We denote with Extα the event where the following occurs:

1. Φ̃2,α is received in the third round of the thread that contains τ .
2. labα,jyα,j = l̃ab

α,j

yα,j for all j ∈ [`].
3. skα,j,kb = sk′α,j,kb for all j ∈ [`], k ∈ [λ], b ∈ {0, 1}
4. labα,j,kb = lab′α,j,kb for all j ∈ [`], k ∈ [λ] and b ∈ {0, 1}.
5. otα,j,k2 = OT1,2

2 (otα,j,k1 , (skα,j,k0 , skα,j,k1); ρα,j,k) for all j ∈ [`], k ∈ [λ]

We prove the following intermediate claim.
Claim 7.3 Let ε be the aborting probability of the adversary, then ∀α ∈ [K],Pr [Extα|α ∈ K] = 1− negl(λ),
where K denotes the input used to generate the messages of OTλ,m in H1.

Proof. The proof follows from the observation that during the rewinds H1 keeps fixed the input K used
OTλ,m. Hence, in any triple of accepting transcripts, the extractable commitments indexed by α (∀α ∈ K),
are honestly generated (this can be checked upon receiving the output of OTλ,m). Hence, we can invoke the
3-extractability property and be sure that we have extracted corresponds to the correct message.

ut

Claim 7.4 ∀α ∈ [m], |Pr [Extα|α ∈ K] − Pr [Extα|α /∈ K] | ≤ negl(λ), where K denotes the input used to
generate the messages of OTλ,m in H1.

Proof. In Claim 7.3 we have argued that the extraction from the extractable commitments indexed by α is
successful for every α ∈ K. We now argue that we can extract successfully from the α-th commitment even
when α /∈ K. Suppose by contradiction that the claim does not hold. This means that the probability of
success of the extractor on the α-th commitment depends on the input K used by the receiver to compute
the messages of OTλ,m. This intuitively means that we can construct a reduction to the Bot-rewind receiver
security of OTλ,m. The adversary AOTλ,m , on input K0,K1 ⊂ [m], which denote the challenge messages, such
that α ∈ K0 and α /∈ K1, interacts with a challenger. The challenger that acts as the honest receiver for
OTλ,m using as input Kb, with b← {0, 1}. AOTλ,m works as follows.

52

1. Upon receiving ot1 from the external challenger, compute the first round as the honest receiver would in
the real-world experiment, but use ot1, in the place of the message that would have been generated by
running OTk,λ. Send the first round of Π2PC to S?.

2. Upon receiving the first round from S?, reply with a second round computed as the honest receiver would
do.

3. Upon receiving two second rounds from S?, forward (ot1
2, ot2

2) to the external challenger (where otd2
represents the sender message for OTλ,m send in the d-th second round message received from S?).

4. Upon receiving (ot1
3, ot2

3) from the challenger use these to compute two accepting third rounds for Π2PC.
5. Upon receiving the third round of Π2PC from S?, rewind S? collect the transcript for the α-th extractable

commitment and repeat the steps 2, 3 and 4 twice.
6. If three transcripts for the α extractable commitments have not been obtained, then return a random guess,

else rely on the 3-extractability property of ExtCom to obtain {yα, kα, {sk′α,j,k0 , sk′α,j,k1 , ρα,j,k}j∈[`],k∈[λ].
7. For each j ∈ [`], k ∈ [m], b′ ∈ {0, 1} let labi,j,kb′ be the value obtained from Dec(skα,j,kb′ , ctα,j,kb′). Let
rα := PRF(kα, f) and Φ̃2,α, {l̃ab

α,j

0 , l̃ab
α,j

1 }j∈[`], {lab′α,j,k0 , lab′α,j,k1 }j∈[`] := Garble(1λ,Φ2,α; rα)). Return 1
if all the following conditions are satisfied with respect to the transcript generated in the main thread,
return 0 otherwise
(a) Φ̃2,α is received in the third round of the main thread.
(b) labα,jyα,j = l̃ab

α,j

yα,j for all j ∈ [`].
(c) skα,j,kb′ = sk′α,j,kb′ for all j ∈ [`], k ∈ [λ], b′ ∈ {0, 1}
(d) labα,j,kb′ = lab′α,j,kb′ for all j ∈ [`], k ∈ [λ] and b′ ∈ {0, 1}.
(e) otα,j,k2 = OT1,2

2 (otα,j,k1 , (skα,j,k0 , skα,j,k1); ρα,j,k) for all j ∈ [`], k ∈ [λ]

We note that the rewinds performed during the extraction do not perturb the reduction due to the Bot

rewind security of OTλ,m (we recall that Bot = 6).
Let ε be the probability that S? provides an accepting transcript in H1. Then we have that Pr [Extα|α ∈ K] =

Pr
[
AOTλ,m = 1|b = 0

]
· ε3 and Pr [Extα|α /∈ K] = Pr

[
AOTλ,m = 1|b = 1

]
· ε3. By contradiction, it must be

that |Pr
[
AOTλ,m = 1|b = 0

]
− Pr

[
AOTλ,m = 1|b = 1

]
| is non-negligible, but this contradicts the receiver

privacy of OTλ,m. ut

We are now ready to prove that H0 and H1 are computationally indistinguishable. We first argue that for
each i ∈ C ∩K one of the checks done by the honest receiver in H1 independently fails with probability at
least 1/2. To see why this is the case, consider some i ∈ K ∩C. If i was added to C as a result of the check in
Step 2.(c) failing, then the honest receiver also catches this with probability 1. If i was added to C as a result
of a check in Step 2.(e) fails, then it means that there exists j, k and b ∈ {0, 1} such that sk′i,j,kb 6= ski,j,kb .
In this case, the honest receiver catches this with probability at least 1/2 since xi,j,k = b with probability
1/2. If i was added to C as a result of the check in Step 2.(d) failing, then honest receiver in H1 catches this
with probability 1. This shows that for each i ∈ C ∩K, one of the checks done by the honest receiver in H1
independently fails with probability at least 1/2.

We have proven in Theorem 7.4 that the probability of extracting successfully from the α-th commitment
is independent of whether α belongs to K or not. Hence, we can now prove that if K is chosen uniformly at
random, then the probability that |K ∩C| ≤ λ/100 is 2−O(λ). This last part of the proof follows from exactly
the same arguments of [IKSS21, Claim C.10.]

Finally, we need to prove that H1 terminates in expected polynomial time. We note that the rewinding
threads are identically distributed to the main thread in H1. Let ε denote the probability that A does not
abort. Then, we have that the expected running time of H1 is 1− ε+ ε 1

ε times a fixed polynomial required to
compute the commitments and the OT messages. Thus, the overall expected cost is poly(λ)(2− ε).

ut

Lemma 7.5. Assuming that OT1,2 is Bot-rewind secure, private against corrupted sender 1-out-of-2 oblivious
transfer protocol, then H2 and H3 are computationally indistinguishable.

53

Proof. Assume by contradiction that there exists a distinguisher that can distinguish between the two hybrids
with non-negligible advantage. We show how to construct an adversary AOT1,2 that breaks the receiver privacy
of OT1,2. The OT challenger receives challenge messages {xi,j,k}i∈[m],j∈[`],k∈[λ] and 0. That is, the challenger,
in the (i, j, k)-th OT execution will either use the input xi,j,k or 0. AOT1,2 works as follows.

– Upon receiving the OT messages from the challenger, use them to compute a complete interaction with
S?.

– Upon receiving the third round, rewind S? two times and use the 3-extractability property of ExtCom
thus obtaining {yi, ki, {sk′i,j,k0 , sk′i,j,k1 , ρi,j,k}i∈[m],j∈[`],k∈[`], and construct the set C as described in H2
(and H3). If C > λ then return a random guess, return whether S? returns.

Note that when the OT messages are computed using the values {xi,j,k}i∈[m],j∈[`],k∈[λ], then the view of S?

corresponds to H2, else it corresponds to H3. Moreover, the extraction of {yi, ki, {sk′i,j,k0 , sk′i,j,k1 , ρi,j,k}i∈[m],j∈[`],k∈[`]
(hence the reduction) is successful with probability ε3, where ε is the non-negligible probability that S?
provides an accepting transcript. The proof ends with the observation that the rewinds performed to extract
from ExtCom do not perturb the reduction due to the Bot rewind security (we recall that Bot = 6, and that
in each thread S? can ask to different second rounds).

ut

Lemma 7.6. Assuming the security of the outer MPC protocol, we have H3 is statistically indistinguishable
from H4.

Proof. Assume by contradiction that there exists a distinguisher that can distinguish between the two hybrids
with non-negligible advantage. We show how to construct an adversary AΦ that breaks the security of the
protocol Φ. AΦ works as follows.

– Rewind the adversarial sender two times and use the 3-extractability property of ExtCom thus obtaining
{yi, ki, {sk′i,j,k0 , sk′i,j,k1 , ρi,j,k}i∈[m],j∈[`],k∈[`], and construct the set C as described in H3 (and H4). If C > λ
then return a random guess, otherwise continue as follows.

– Send {yi}i∈[m] to the external challenger.
– Corrupt the sender client and sends xR as the input of the receiver client to the external challenger.
– Before receiving the second round message from the challenger, ask the challenger to adaptively corrupt

the servers indexed by the set C and the set K.
– Upon receiving {xi}i∈C∪K , use it to to perform all the checks as in H3 (and H4) and evaluates the garbled

circuits Φ̃i for each i ∈ C ∪K thus obtaining {zi}i∈C∪K .
– Send {zi}i∈C∪K to the challenger and obtain the output of the honest receiver.
– Return whatever the adversarial sender returns.

Note that if the outer protocol messages given by the challenger are generated using the real algorithms
then the view of S? is identical to the view it has in H3. Otherwise, it is identical to the view S? has in H4.
The proof ends with the observation that the extraction of {yi, ki, {sk′i,j,k0 , sk′i,j,k1 , ρi,j,k}i∈[m],j∈[`],k∈[`] (hence
the reduction) is successful with probability ε3, if ε is the non-negligible probability that S? provides an
accepting transcript.

ut

7.2 Proof against corrupted receivers

We recall that we prove the security of the protocol only against non-aborting receivers. We denote the
simulator of OTλ,m with (Simλ,m

1 ,Simλ,m
2) and the simulator of OTλ,m with (Sim1,2

1 ,Sim1,2
2).

We consider the following sequence of hybrid experiments.

Hybrid H0: this is identical to the real game experiment.

54

Hybrid H1: The difference between this and the previous hybrid experiment is that Sim1,2
1 and Simλ,m

1 are
run. Upon receiving the output from these simulators, the experiment rewinds up to the second round,
and completes an execution against the corrupted receiver as the honest sender would do.
H0 and H1 are statistical indistinguishable due to the security of Sim1,2

1 and Simλ,m
1 . We recall that this

holds due to the fact that these simulators simply perform a sequence of rewinds, where each rewinding
thread is identical to the main thread in the real-world experiment.

Hybrid H2: The difference with the previous hybrid is that upon receiving the outputs from Sim1,2
1 and

Simλ,m
1 , these are used to set the inputs (and run) Sim1,2

2 and Simλ,m
2 respectively. We refer to Figure

7.5 for the formal description of H2. The indistinguishability between the two hybrids comes from the
security offered by Sim1,2

2 and Simλ,m
2 .

Hybrid Hγ3 , with γ ∈ {1, . . . , λ}: Let K be the valued returned by Simλ,m
1 . This hybrid works exactly like

the previous one, with the difference that, when the extraction performed by Sim1,2
1 and Simλ,m

1 is
successful, then the j-th execution of ExtCom1 commits to 0λ if i ∈ I where I is a (uniform-)random
subset of [m] \K with |I| = γ. We refer to Figure 7.6 for the formal description of the hybrid. We note
that H0

3 and H2 are identical. In Lemma 7.7 we prove that Hγ−1
3 ≈ Hγ3 for each γ ∈ {2, . . . , λ}.

Hybrid H4: The difference between this and the hybrid Hλ3 is that any PRF evaluation is replaced by the
evaluation of a random function (we refer to Figure 7.7 for the formal description of the hybrid). The
indistinguishability between this hybrid and Hλ3 comes from the security of the PRF.

Hybrid H5: The difference between this and the hybrid Hλ4 is that during the phase denoted as forcing the
output, all the ciphertexts that are not opened to the adversarial receiver (this is non-ambiguously defined
by the values extracted using the OT simulators) are set to be encryption of a constant value (0λ in our
case). We refer to Figure 7.8 for the formal description of the hybrid. The indistinguishability between
this hybrid and H4 comes from the semantic security of the encryption scheme.

Hybrid H6: The difference between this and the hybrid H5 is that during the phase denoted as forcing the
output, all the garbled circuits not open to the adversarial receiver (this is non-ambiguously defined by
the values extracted using the OT simulators of OTλ,m) are simulated. We refer to Figure 7.9 for the
formal description of the hybrid. The indistinguishability between this hybrid and H5 comes from the
security of the garbled circuit.

Hybrid H7: The difference between this and the hybrid Hλ6 is that during the phase denoted as forcing the
output, we use the simulator SimΦ generates the first round messages {yi}i∈K from honest sender as well
as the second round messages {zi}i/∈K from the honest servers. We refer to Figure 7.10 for the formal
description of the hybrid. The indistinguishability between this hybrid and H6 comes from the security of
the outer protocol Φ.
This part of the proof ends with the observation that the H7 corresponds to the simulated experiment (see
Figure 7.11). In the case where the sender aborts with overwhelming probability, the proof follows exactly
the same steps, with the exception that there is no need to extract and to argue that the extraction is
correct. Indeed in this case the honest receiver would simply abort.
We finally argue that the running time of the simulator is expected polynomial time. This holds since
the work performed in each rewinding thread is polynomial, and moreover, the rewinding threads are
identically distributed to the simulated thread. Given that the simulator just needs to collect three
accepting transcripts, we have that in expectation the simulator will run in polynomial time.

Figure 7.5: H2

Input extraction. Run Sim1,2
1 and Simλ,m

1 . For each rewind performed by the simulators prior to
the extraction do the following
1. Let ski,j,k0 , ski,j,k1 be the input sampled by Sim1,2

1 from D1,2, for each i ∈ [m], j ∈ [`], k ∈ [λ],
and let s1, . . . , sm the values that Simλ,m

1 samples when querying Dλ,m.
2. Compute comi

1 := ExtCom1(1λ; si) for all i ∈ [m] and send ({comi
1}i∈[m]) to R?.

3. Upon receiving oti1 and {oti,j,k1 }i∈[m],j∈[`],k∈[λ] from R? forward these to Simλ,m
1 and Sim1,2

1
respectively.

55

4. When Sim1,2
1 or Simλ,m

1 send {oti,j,k2 }i∈[m],j∈[`],k∈[λ] and ot2 respectively, forward these messages
to R?.

5. Upon receiving two second-round {c, c′} from R?, sample xS ← DS and for each
({comi

2}i∈[m], f) ∈ {c, c′} do the following
- For each i ∈ [m]

i. Sample ki ← {0, 1}λ for all i ∈ [m].
ii. Compute (y1, . . . , ym)← Φ(xS).
iii. Compute comi

3 := ExtCom3(1λ, yi, ki, {ski,j,k0 , ski,j,k1 , ρi,j,k}j∈[`],k∈[λ]; si) for all i ∈ [m]
(where ρi,j,k is the randomness used by Sim1,2

1 to compute the message oti,j,k2).
iv. Compute Φ̃i, {labi,j0 , labi,j1 }i∈[m],j∈[`], {labi,j,k0 , labi,j,k1 }i∈[m],j∈[`],k∈[λ] ←

Garble(1λ,Φ2,i, ri) for all i ∈ [m] where ri := PRF(ki, f). Here {labi,j0 , labi,j1 }i∈[m],j∈[`]

are the input labels for the sender and {labi,j,k0 , labi,j,k1 }i∈[m],j∈[`],k∈[λ] are the input
labels for the receiver.

v. Generate cti,j,kb := Enc(ski,j,kb , labi,j,kb ; PRF(ki,j,kb , f)) for all b ∈ {0, 1}, i ∈ [m], j ∈ [`]
and k ∈ [λ].

- Send C̃, {cti0, cti1, comi
3, Φ̃i}i∈[m] and {cti,j,k0 , cti,j,k1 , labi,jyi,j}i∈[m],j∈[`],k∈[λ] to R?.

6. Upon receiving ot3 and {oti,j,k3 }i∈[m],j∈[`],k∈[λ] forward these to Simλ,m
1 and Sim1,2

1 respectively.
Forcing the output. Upon receiving (1κ1 , {xi,j,k}i∈[m],j∈[`],k∈[λ]}, z1) from Sim1,2

1 and (1κ2 ,K, z2)
from Simλ,m

1 do the following.
1. Let κ← min{κ1, κ2}, for each ι ∈ [κ], i ∈ [m], j ∈ [`], k ∈ [λ], sample ski,j,kι ← {0, 1}λ, and set

(s1
ι , . . . , s

m
ι) := (s1, . . . , sm).

2. For each ι ∈ [κ] (i.e., for each rewind performed by the OT simulators Sim1,2
2 and Simλ,m

2 on
input respectively (1κ, {ski,j,kι }ι∈[κ],i∈[m],j∈[`],k∈[λ], z1) and ({siι}ι∈κ,i∈K), z2), receive ot2 and
{oti,j,k2 }i∈[m],j∈[`],k∈[λ] from Simλ,m

2 and Sim1,2
2 respectively, and do the following.

(a) For each i ∈ [m] pick ski,j,k0 , ski,j,k1 ← {0, 1}λ for each j ∈ [`], k ∈ [λ]
(b) For each i ∈ K compute oti,j,k2 ← OT1,2

2 (oti,j,k1 , (ski,j,k0 , ski,j,k1); ρi,j,k) for all j ∈ [`] and
k ∈ [λ].

(c) Send ot2 and {oti,j,k2 }i∈[m],j∈[`],k∈[λ] to R?.
3. Upon receiving two second-round {c, c′} from R?, sample xS ← DS and for each

({comi
2}i∈[m], f) ∈ {c, c′} do the following

- For each b ∈ {0, 1}, for each i ∈ [m] do the following
i. Compute (y1, . . . , ym)← Φ1(xS).
ii. ri := PRF(ki, f).
iii. Φ̃i, {labi,j0 , labi,j1 }i∈[m],j∈[`], {labi,j,k0 , labi,j,k1 }j∈[`],k∈[λ] ← Garble(1λ,Φ2,i; ri).
iv. Compute comi

3 := ExtCom3(1λ, y, ki, {ski,j,k0 , ski,j,k1 , ρi,j,k}j∈[`],k∈[λ]; si),
v. Sample ki,j,k0 , ki,j,k1 ← {0, 1}∗ and generate cti,j,k0 := Enc(ski,j,k0 , labi,j,k0 ; PRF(ki,j,k0 ,)),

cti,j,k1 := Enc(ski,j,k1 , labi,j,k1 ; PRF(ki,j,k1 ,)) for all k ∈ [λ].
- Send {comi

3, Φ̃i}i∈[m] and {cti,j,k0 , cti,j,k1 , labi,jyi,j}i∈[m],j∈[`],k∈[λ]

Figure 7.6: Hybrid Hγ3 with γ ∈ [λ].

Input extraction. Run Sim1,2
1 and Simλ,m

1 . For each rewind performed by the simulators prior to
the extraction do the following
1. Let ski,j,k0 , ski,j,k1 be the input sampled by Sim1,2

1 from D1,2, for each i ∈ [m], j ∈ [`], k ∈ [λ],
and let s1, . . . , sm the values that Simλ,m

1 samples when querying Dλ,m.
2. Sample xS ← DS .

56

3. Compute comi
1 := ExtCom1(1λ; si) for all i ∈ [m] and send ({comi

1}i∈[m]) to R?.
4. Upon receiving oti1 and {oti,j,k1 }i∈[m],j∈[`],k∈[λ] from R? forward these to Simλ,m

1 and Sim1,2
1

respectively.
5. When Sim1,2

1 or Simλ,m
1 send {oti,j,k2 }i∈[m],j∈[`],k∈[λ] and ot2 respectively, forward these messages

to R?.
6. Upon receiving two second-round {c, c′} from R?, sample xS ← DS and for each

({comi
2}i∈[m], f) ∈ {c, c′} do the following

- For each i ∈ [m] do the following
i. Sample ki ← {0, 1}λ for all i ∈ [m].
ii. Compute (y1, . . . , ym)← Φ1(xS).
iii. Compute comi

3 := ExtCom3(1λ, yi, ki, {ski,j,k0 , ski,j,k1 , ρi,j,k}j∈[`],k∈[λ]; si) for all i ∈ [m]
(where ρi,j,k is the randomness used by Sim1,2

1 to compute the message oti,j,k2).
iv. Compute Φ̃i, {labi,j0 , labi,j1 }i∈[m],j∈[`], {labi,j,k0 , labi,j,k1 }i∈[m],j∈[`],k∈[λ] ←

Garble(1λ,Φ2,i, ri) for all i ∈ [m] where ri := PRF(ki, f). Here {labi,j0 , labi,j1 }i∈[m],j∈[`]

are the input labels for the sender and {labi,j,k0 , labi,j,k1 }i∈[m],j∈[`],k∈[λ] are the input
labels for the receiver.

v. Generate cti,j,kb := Enc(ski,j,kb , labi,j,kb ; PRF(ki,j,kb , f)) for all b ∈ {0, 1}, i ∈ [m], j ∈ [`]
and k ∈ [λ].

(a) Send C̃, {cti0, cti1, comi
3, Φ̃i}i∈[m] and {cti,j,k0 , cti,j,k1 , labi,jyi,j}i∈[m],j∈[`],k∈[λ] to R?.

7. Upon receiving ot3 and {oti,j,k3 }i∈[m],j∈[`],k∈[λ] forward these to Simλ,m
1 and Sim1,2

1 respectively.
Forcing the output. Upon receiving (1κ1 , {xi,j,k}i∈[m],j∈[`],k∈[λ]}, z1) from Sim1,2

1 and (1κ2 ,K, z2)
from Simλ,m

1 do the following.
1. Let κ← min{κ1, κ2}, for each ι ∈ [κ], i ∈ [m], j ∈ [`], k ∈ [λ], sample ski,j,kι ← {0, 1}λ. Let I

be a random subset of [m] \K with |I| = α, for each i ∈ I, set siι := 0λ, else set siι := si.
2. For each ι ∈ [κ] (i.e., for each rewind performed by the OT simulators Sim1,2

2 and Simλ,m
2

on input respectively ({ski,j,kι }ι∈[κ],i∈[m],j∈[`],k∈[λ], z1) and ({siι}ι∈κ,i∈K , z2), receive ot2 and
{oti,j,k2 }i∈[m],j∈[`],k∈[λ] from Simλ,m

2 and Sim1,2
2 respectively, and do the following.

(a) For each i ∈ [m] pick ski,j,k0 , ski,j,k1 ← {0, 1}λ for each j ∈ [`], k ∈ [λ]
(b) For each i ∈ K compute oti,j,k2 ← OT1,2

2 (oti,j,k1 , (ski,j,k0 , ski,j,k1); ρi,j,k) for all j ∈ [`] and
k ∈ [λ].

(c) Send ot2 and {oti,j,k2 }i∈[m],j∈[`],k∈[λ] to R?.
3. Upon receiving two second-round {c, c′} from R?, sample xS ← DS and for each

({comi
2}i∈[m], f) ∈ {c, c′} do the following

- For each i ∈ [m] do the following
i. Pick ki ← {0, 1}λ.
ii. Compute (y1, . . . , ym)← Φ1(xS).
iii. ri := PRF(ki, f).
iv. Φ̃i, {labi,j0 , labi,j1 }i∈[m],j∈[`], {labi,j,k0 , labi,j,k1 }j∈[`],k∈[λ] ← Garble(1λ,Φ2,i; ri).
v. Sample ki,j,k0 , ki,j,k1 ← {0, 1}∗ and generate cti,j,k0 := Enc(ski,j,k0 , labi,j,k0 ; PRF(ki,j,k0 ,)),

cti,j,k1 := Enc(ski,j,k1 , labi,j,k1 ; PRF(ki,j,k1 ,)) for all k ∈ [λ].
vi. If i ∈ I then compute comi

3 := ExtCom3(0λ) else compute
comi

3 := ExtCom3(1λ, y, ki, {ski,j,k0 , ski,j,k1 , ρi,j,k}j∈[`],k∈[λ]; si).
(a) Send {comi

3, Φ̃i}i∈[m] and {cti,j,k0 , cti,j,k1 , labi,jyi,j}i∈[m],j∈[`],k∈[λ] to R.

Lemma 7.7. Let ExtCom be the delayed-input commitment scheme 1-rewind secure protocol of Section 2.2.
Let OTλ,m be a λ-out-of-m sender private OT (accordingly to Definition 2.6) protocol, then the hybrids Hα−1

3
and Hα3 are computationally indistinguishable.

57

Proof. Suppose by contradiction that there exists an adversary that distinguishes the two hybrids with
non-negligible probability q, then we show how to use this adversary to contradict the hiding of ExtCom.
Let CH be the corresponding challenger for the hiding security game of ExtCom. We make the following two
observations before starting the reduction: (1) the simulators Sim1,2

1 and Simλ,m
2 require only a constant

number of accepting transcripts in order to perform the extraction of the inputs used by the receiver in the
OT executions. Let us denote this constant with Rot; (2) by assumption, the adversary R∗ does not abort
with non-negligible probability p.

The reduction Acom works as follows.

1. Upon receiving com1 from the external challenger, set comα
1 ← com1. Compute the first message

accordingly to H2 (and H3) with the difference that comα
1 is used.

2. Upon receiving the second round from R? act as in H2 (and H3), with the following differences:
(a) Allow Sim1,2

1 and Simλ,m
1 to perform up to Rot rewinds only.

(b) Simλ,m
1 queries D′λ,m, instead of Dλ,m. D′λ,m behaves exactly like Dλ,m, with the difference that the

α-th output (sα) is set to 0λ.
(c) Any time it is required to compute a third round for the α-th execution of the extractable commitment,

use in its place a value uniformly random sampled from the space of all the valid third rounds of
ExtCom.

3. IfRot accepting transcripts have been collected and it is possible to extract the inputs {xi,j,k}i∈[m],j∈[`],k∈[λ]}
via Sim1,2

1 and K via Simλ,m
1 then continue as follows, otherwise, output a random bit and stop.

4. If α ∈ K, then output a random bit and stop, else continue.
5. For each i ∈ [m], j ∈ [`], k ∈ [λ], sample ski,j,k ← {0, 1}λ. Let I be a random subset of K with |I| = α,

for each i ∈ I, set si := 0λ.
6. Run Sim1,2

2 and Simλ,m
2 on input respectively ({ski,j,k}i∈[m],j∈[`],k∈[λ], z1) and ({si}i∈K , z2), receive ot2

and {oti,j,k2 }i∈[m],j∈[`],k∈[λ] from Simλ,m
2 and Sim1,2

2 , compute the second round accordingly to Hα−1
2 (and

Hα2).
7. Upon receiving {c, c′} from R? in the second round, parse c as ({comi

2}i∈[m], f) and c′ as {com′i2 }i∈[m].
and send (comα

2 , com′α2) to the challenger.
8. Set m0 ← (kα, {skα,j,k0 , skα,j,k1 , ρα,j,k}j∈[`],k∈[λ]) and m1 ← 0λ, and send (m0,m1) to the challenger.
9. Upon receiving (comα

3 , com′α3) from the challenger use these to complete the interaction with R? accordingly
to Hα−1

2 (and Hα2).

Let q be the non-negligible advantage the adversary has in distinguishing the hybrids Hα−1
2 and Hα2 .

Let Ext be the event where Sim1,2
1 and Simλ,k

1 extract successfully, then the probability that Acom wins is
Pr [Ext] (1/2 + q) + (1− Pr [Ext])/2 = 1/2 + qPr [Ext].

To prove that the reduction is successful we just need to prove the following claim.

Claim 7.8 Pr [Ext] is non-negligible.

Proof. Suppose that this is not the case, then we can construct a reduction that breaks the sender privacy
(Definition 2.6) of OTλ,m. The reduction takes as auxiliary input the first round of the adversary, and the
inputs encoded in the OT message otλ,m1 that we denote with K. Note that, due to the sender privacy of
OTλ,m we have that K = OTExt(otλ,m1). The reduction proceeds as follows.

1. Sample a random α ∈ [m]. For each i ∈ [m] \ {α}, let si be the randomness used in the i-th execution of
ExtCom. Send the challenge messages (K, {s1, . . . , sα, . . . , sm}), where sα = 0λ.

2. Upon receiving otλ,m from the challenger, use it to compute the second round of the protocol.
3. Upon receiving the second round from R?, complete the third round as in H2.
4. If R? aborts then return 0, else return 1.

We distinguish between two cases, α ∈ K and α /∈ K.

58

When α /∈ K then the behavior of R? is independent from the input used by the challenger to compute
the messages of OTλ,m. Indeed, If this is not the case, then we can use the above adversary to break the
security of OTλ,m.

When α ∈ K, in the worst case, the probability that R? provides an accepting third round could be 0.
From the implications above we can conclude that the probability with wich the adversary does not

abort (i.e., provide an accepting transcript) is at least p′ = (1− λ/m)p+ λ/m · 0 = (m− λ)p/m, which is
non-negligible. Hence, Pr [Ext] = p′Rot . The proof of the claim ends with the observation that Rot is constant.

ut
ut

Figure 7.7: Hybrid H4.

Input extraction. Perform the same steps as in Hλ3 .
Forcing the output. Upon receiving (1κ1 , {xi,j,k}i∈[m],j∈[`],k∈[λ]}, z1) from Sim1,2

1 and (1κ2 ,K, z2)
from Simλ,m

1 do the following.
1. Let κ← min{κ1, κ2}, for each ι ∈ [κ], i ∈ [m], j ∈ [`], k ∈ [λ], sample ski,j,kι ← {0, 1}λ if i /∈ K

then siι := 0λ else siι := si.
2. For each ι ∈ [κ] (i.e., for each rewind performed by the OT simulators Sim1,2

2 and Simλ,m
2

on input respectively ({ski,j,kι }ι∈[κ],i∈[m],j∈[`],k∈[λ], z1) and ({siι}ι∈κ,i∈K , z2), receive ot2 and
{oti,j,k2 }i∈[m],j∈[`],k∈[λ] from Simλ,m

2 and Sim1,2
2 respectively, and do the following.

(a) Additionally, for each i ∈ [m] pick ski,j,k0 , ski,j,k1 ← {0, 1}λ for each j ∈ [`], k ∈ [λ]
(b) For each i ∈ K compute oti,j,k2 ← OT1,2

2 (oti,j,k1 , (ski,j,k0 , ski,j,k1); ρi,j,k) for all j ∈ [`] and
k ∈ [λ].

(c) Send ot2 and {oti,j,k2 }i∈[m],j∈[`],k∈[λ] to R?.
3. Upon receiving two second-round {c, c′} from R?, sample xS ← DS and for each

({comi
2}i∈[m], f) ∈ {c, c′} do the following

- For each i ∈ [m] do the following
Compute (y1, . . . , ym)← Φ1(xS).
If i ∈ K then
i. Pick ki ← {0, 1}λ.
ii. ri := PRF(ki, f).
iii. Φ̃i, {labi,j0 , labi,j1 }i∈[m],j∈[`], {labi,j,k0 , labi,j,k1 }j∈[`],k∈[λ] ← Garble(1λ,Φ2,i; ri).
iv. Sample ki,j,k0 , ki,j,k1 ← {0, 1}∗ and generate cti,j,k0 := Enc(ski,j,k0 , labi,j,k0 ; PRF(ki,j,k0 ,)),

cti,j,k1 := Enc(ski,j,k1 , labi,j,k1 ; PRF(ki,j,k1 ,)) for all k ∈ [λ].
v. Compute comi

3 := ExtCom3(1λ, y, ki, {ski,j,k0 , ski,j,k1 , ρi,j,k}j∈[`],k∈[λ]; si).
else
i. ri ← {0, 1}λ.
ii. Φ̃i, {labi,j0 , labi,j1 }i∈[m],j∈[`], {labi,j,k0 , labi,j,k1 }j∈[`],k∈[λ] ← Garble(1λ,Φ2,i; ri).
iii. Sample ri,j,k0 , ri,j,k0 ← {0, 1}λ and generate cti,j,k0 := Enc(ski,j,k0 , labi,j,k0 ; ri,j,k0), cti,j,k1 :=

Enc(ski,j,k1 , labi,j,k1 ; ri,j,k1) for all k ∈ [λ] j ∈ [`].
iv. comi

3 := ExtCom3(0λ)
- Send {comi

3, Φ̃i}i∈[m] and {cti,j,k0 , cti,j,k1 , labi,jyi,j}i∈[m],j∈[`],k∈[λ] to R.

Figure 7.8: Hybrid H5.

Input extraction. Perform the same steps as in H4.
Forcing the output. Perform step 1 and 2 as in H4.

59

3. Upon receiving two second-round {c, c′} from R?, sample xS ← DS and for each
({comi

2}i∈[m], f) ∈ {c, c′} do the following
- For each i ∈ [m] do the following
Compute (y1, . . . , ym)← Φ(xS).
If i ∈ K then
i. Pick ki ← {0, 1}λ.
ii. ri := PRF(ki, f).
iii. Φ̃i, {labi,j0 , labi,j1 }i∈[m],j∈[`], {labi,j,k0 , labi,j,k1 }j∈[`],k∈[λ] ← Garble(1λ,Φ2,i; ri).
iv. Sample ki,j,k0 , ki,j,k1 ← {0, 1}∗ and generate cti,j,k0 := Enc(ski,j,k0 , labi,j,k0 ; PRF(ki,j,k0 ,)),

cti,j,k1 := Enc(ski,j,k1 , labi,j,k1 ; PRF(ki,j,k1 ,)) for all k ∈ [λ].
v. Compute comi

3 := ExtCom3(1λ, y, ki, {ski,j,k0 , ski,j,k1 , ρi,j,k}j∈[`],k∈[λ]; si).
else
i. ri ← {0, 1}λ.
ii. Φ̃i, {labi,j0 , labi,j1 }i∈[m],j∈[`], {labi,j,k0 , labi,j,k1 }j∈[`],k∈[λ] ← Garble(1λ,Φ2,i; ri).
iii. Generate cti,j,k

xi,j,k
:= Enc(ski,j,kι , labi,j,k)), cti,j,k1−xi,j,k := Enc(ski,j,k

xi,j,k
, 0λ) for all j ∈ [`] and

k ∈ [λ].
iv. comi

3 := ExtCom3(0λ)
- Send {comi

3, Φ̃i}i∈[m] and {cti,j,k0 , cti,j,k1 , labi,jyi,j}i∈[m],j∈[`],k∈[λ] to R.

Figure 7.9: Hybrid H6.

Input extraction. Perform the same steps as in H5.
Forcing the output. Perform step 1 and 2 as in H5.

3. Upon receiving two second-round {c, c′} from R?, sample xS ← DS , compute (y1, . . . , ym)←
Φ1(xS). For each ({comi

2}i∈[m], f) ∈ {c, c′} do the following
- For each i ∈ [m] do the following
If i ∈ K then
i. Pick ki ← {0, 1}λ.
ii. ri := PRF(ki, f).
iii. Φ̃i, {labi,j0 , labi,j1 }i∈[m],j∈[`], {labi,j,k0 , labi,j,k1 }j∈[`],k∈[λ] ← Garble(1λ,Φ2,i; ri).
iv. Sample ki,j,k0 , ki,j,k1 ← {0, 1}∗ and generate cti,j,k0 := Enc(ski,j,k0 , labi,j,k0 ; PRF(ki,j,k0 ,)),

cti,j,k1 := Enc(ski,j,k1 , labi,j,k1 ; PRF(ki,j,k1 ,)) for all k ∈ [λ].
v. Compute comi

3 := ExtCom3(1λ, y, ki, {ski,j,k0 , ski,j,k1 , ρi,j,k}j∈[`],k∈[λ]; si).
else
i. Compute zi ← Φi({xi,j,k}j∈[`],k∈[m], {yi,j}j∈[`])
ii. Φ̃i, {labi,j}j∈[`], {labi,j,k}j∈[`],k∈[λ] ← SimGC(1λ, 1|Φi|, 12`, zi).
iii. Generate cti,j,k

xi,j,k
:= Enc(ski,j,kι , labi,j,k)), cti,j,k1−xi,j,k := Enc(ski,j,k

xi,j,k
, 0λ) for all j ∈ [`] and

k ∈ [λ].
iv. comi

3 := ExtCom3(0λ)
- Send {comi

3, Φ̃i}i∈[m] and {cti,j,k0 , cti,j,k1 , labi,jyi,j}i∈[m],j∈[`],k∈[λ] to R.

Figure 7.10: H7.

Input extraction. Perform the same steps as in H6.
Forcing the output. Perform step 1 and 2 as in H6.

60

3. Upon receiving two second-round {c, c′} from R? in the ι-th rewind, sample xS ← DS and for
each ({comi

2}i∈[m], f) ∈ {c, c′} do the following
(a) Run SimΦ by corrupting the client corresponding to the receiver and the set of servers

indexed by K and obtain {yi}i∈K .
(b) For each i ∈ [m], j ∈ [`] compute xi,j = ⊕k∈[λ]xi,j,k. Let xi = xi,1|| . . . ||xi,`. Run SimΦ on

input {xi}i/∈K as the first round message sent by the malicious client and f as the func-
tion to be computed. When SimΦ makes a query to the ideal functionality on input xR,
intercept this query and compute out := f(xS , xR). Provide out as the output from the
ideal functionality to SimΦ and obtain {zi}i/∈K .

(c) For each i ∈ [m] do the following
(d) If i ∈ K then

i. Pick ki ← {0, 1}λ.
ii. ri := PRF(ki, f).
iii. Φ̃i, {labi,j0 , labi,j1 }i∈[m],j∈[`], {labi,j,k0 , labi,j,k1 }j∈[`],k∈[λ] ← Garble(1λ,Φ2,i; ri).
iv. Sample ki,j,k0 , ki,j,k1 ← {0, 1}∗ and generate cti,j,k0 := Enc(ski,j,k0 , labi,j,k0 ; PRF(ki,j,k0 ,)),

cti,j,k1 := Enc(ski,j,k1 , labi,j,k1 ; PRF(ki,j,k1 ,)) for all k ∈ [λ].
v. Compute comi

3 := ExtCom3(1λ, y, ki, {ski,j,k0 , ski,j,k1 , ρi,j,k}j∈[`],k∈[λ]; si).
else
i. Φ̃i, {labi,j}j∈[`], {labi,j,k}j∈[`],k∈[λ] ← SimGC(1λ, 1|Φi|, 12`, zi).
ii. Generate cti,j,k

xi,j,k
:= Enc(ski,j,kι , labi,j,k)), cti,j,k1−xi,j,k := Enc(ski,j,k

xi,j,k
, 0λ) for all j ∈ [`] and

k ∈ [λ].
iii. comi

3 := ExtCom3(0λ)
- Send {comi

3, Φ̃i}i∈[m] and {cti,j,k0 , cti,j,k1 , labi,jyi,j}i∈[m],j∈[`],k∈[λ] to R.

Figure 7.11: Simulator SimR against malicious receivers.

Sim1. Run Sim1,2
1 and Simλ,m

1 . For each rewind performed by the simulators prior to the extraction do
the following
1. Let ski,j,k0 , ski,j,k1 be the input sampled by Sim1,2

1 from D1,2, for each i ∈ [m], j ∈ [`], k ∈ [λ],
and let s1, . . . , sm the values that Simλ,m

1 samples when querying Dλ,m.
2. Compute comi

1 := ExtCom1(1λ; si) for all i ∈ [m] and send {comi
1}i∈[m] to R?.

3. Upon receiving oti1 and {oti,j,k1 }i∈[m],j∈[`],k∈[λ] from R? forward these to Simλ,m
1 and Sim1,2

1
respectively.

4. When Sim1,2
1 or Simλ,m

1 send {oti,j,k2 }i∈[m],j∈[`],k∈[λ] and ot2 respectively, forward these messages
to R? along with xS with xS ← DS .

5. Upon receiving two second-round {c, c′} from R?, for each ({comi
2}i∈[m], f) ∈ {c, c′}, where f0

is the function received in c and f1 is the function received in c′ do the following
- For each i ∈ [m] do the following

i. Sample ki ← {0, 1}λ for all i ∈ [m].
ii. Compute (y1, . . . , ym)← Φ1(xS).
iii. Compute comi

3 := ExtCom3(1λ, yi, ki, {ski,j,k0 , ski,j,k1 , ρi,j,k}j∈[`],k∈[λ]; si) for all i ∈ [m]
(where ρi,j,k is the randomness used by Sim1,2

1 to compute the message oti,j,k2).
iv. Compute Φ̃i, {labi,j0 , labi,j1 }i∈[m],j∈[`], {labi,j,k0 , labi,j,k1 }i∈[m],j∈[`],k∈[λ] ←

Garble(1λ,Φ2,i, ri) for all i ∈ [m] where ri := PRF(ki, f). Here {labi,j0 , labi,j1 }i∈[m],j∈[`]

are the input labels for the sender and {labi,j,k0 , labi,j,k1 }i∈[m],j∈[`],k∈[λ] are the input
labels for the receiver.

61

v. Generate cti,j,kb := Enc(ski,j,kb , labi,j,kb ; PRF(ki,j,kb , f)) for all b ∈ {0, 1}, i ∈ [m], j ∈ [`]
and k ∈ [λ].

(a) Send C̃, {cti0, cti1, comi
3, Φ̃i}i∈[m] and {cti,j,k0 , cti,j,k1 , labi,jyi,j}i∈[m],j∈[`],k∈[λ] to R?.

6. Upon receiving ot3 and {oti,j,k3 }i∈[m],j∈[`],k∈[λ] forward these to Simλ,m
1 and Sim1,2

1 respectively.
7. Upon receiving (1κ1 , {xi,j,k}i∈[m],j∈[`],k∈[λ]}, z1) from Sim1,2

1 and (1κ2 ,K, z2) from Simλ,m
1 , for

each i ∈ [m], j ∈ [`] compute xi,j = ⊕k∈[λ]xi,j,k. Let xi = xi,1|| . . . ||xi,`, and reconstruct the
input of the corrupted receiver xR.

8. Let κ← min{κ1, κ2}, return (1κ, (xR, f0, f1), aux = (K, {xi,j,k}i∈[m],j∈[`],k∈[λ]}, z1, z2).
9. For each ι ∈ [κ], i ∈ [m], j ∈ [`], k ∈ [λ], sample ski,j,kι ← {0, 1}λ if i /∈ K then siι := 0λ, else
siι := si.

10. For each ι ∈ [κ] (i.e., for each rewind performed by the OT simulators Sim1,2
2 and Simλ,m

2
on input respectively ({ski,j,kι }ι∈[κ],i∈[m],j∈[`],k∈[λ], z1) and ({siι}ι∈κ,i∈K , z2), receive ot2 and
{oti,j,k2 }i∈[m],j∈[`],k∈[λ] from Simλ,m

2 and Sim1,2
2 respectively, and do the following.

(a) For each i ∈ [m] pick ski,j,k0 , ski,j,k1 ← {0, 1}λ for each j ∈ [`], k ∈ [λ]
(b) For each i ∈ K compute oti,j,k2 ← OT1,2

2 (oti,j,k1 , (ski,j,k0 , ski,j,k1); ρi,j,k) for all j ∈ [`] and
k ∈ [λ].

(c) Sample xιS ← XS .
(d) Send ot2 and {oti,j,k2 }i∈[m],j∈[`],k∈[λ] to R? along with xιS .

11. Upon receiving two second-round {c, c′} from R? in the ι-th rewind, and for each
({comi

2}i∈[m], f) ∈ {c, c′} do the following
(a) Run SimΦ by corrupting the client corresponding to the receiver and the set of servers

indexed by K and obtain {yi}i∈K . Run SimΦ on input {xi}i/∈K as the first round message
sent by the malicious client and f as the function to be computed. When SimΦ makes a
query to the ideal functionality on input xR, intercept this query provide outι ← f(xιS , xR)
as the output from the ideal functionality to SimΦ and obtain {zi}i/∈K .

(b) For each i ∈ [m] do the following
(c) If i ∈ K then

i. Pick ki ← {0, 1}λ.
ii. ri := PRF(ki, f).
iii. Φ̃i, {labi,j0 , labi,j1 }i∈[m],j∈[`], {labi,j,k0 , labi,j,k1 }j∈[`],k∈[λ] ← Garble(1λ,Φ2,i; ri).
iv. Sample ki,j,k0 , ki,j,k1 ← {0, 1}∗ and generate cti,j,k0 := Enc(ski,j,k0 , labi,j,k0 ; PRF(ki,j,k0 ,)),

cti,j,k1 := Enc(ski,j,k1 , labi,j,k1 ; PRF(ki,j,k1 ,)) for all k ∈ [λ].
v. Compute comi

3 := ExtCom3(1λ, y, ki, {ski,j,k0 , ski,j,k1 , ρi,j,k}j∈[`],k∈[λ]; si).
else
i. Φ̃i, {labi,j}j∈[`], {labi,j,k}j∈[`],k∈[λ] ← SimGC(1λ, 1|Φi|, 12`, zi).
ii. Generate cti,j,k

xi,j,k
:= Enc(ski,j,kι , labi,j,k)), cti,j,k1−xi,j,k := Enc(ski,j,k

xi,j,k
, 0λ) for all j ∈ [`] and

k ∈ [λ].
iii. comi

3 := ExtCom3(0λ)
- Send {comi

3, Φ̃i}i∈[m] and {cti,j,k0 , cti,j,k1 , labi,jyi,j}i∈[m],j∈[`],k∈[λ] to R.
12. Upon receiving δ1,2 from Sim1,2

2 and δλ,m from Simλ,m
2 . If δ1,2 = δλ,m, set δ := δ1,2,and

continue, else abort the execution.
13. Save the state of Sim1 aux, and return (1κ, (xR, f0, f1, z), where (f0, f1) represent the function

sent from the receiver in the δ-th thread.
Sim2. Upon receiving ({outι0, outι1}ι∈κ, aux = (K, {xi,j,k}i∈[m],j∈[`],k∈[λ]}) continue the δ-th thread

from the third round, and do all the steps that Sim1 does from point 11.a until point (excluded)
point 13 up to κ times, with the only difference that when SimΦ makes a query to the ideal
functionality on input xR, intercept this query and reply with outι (when SimΦ is queried the ι-th
time for the ideal functionality fb) as the output from the ideal functionality to SimΦ and obtain
{zi}i/∈K .

62

Additional property against adversarial receivers. Suppose that the function the receiver picks is
always of the following form:

– Let xR := (x, β) be the input of the receiver, and xS := (y, s0, s1) be the input of the sender
– The function fα,g returns g(x, y), sβ⊕α, where β, α ∈ {0, 1}, and g is just another NC1 function.

Consider the simulator ˜Sim1 that works exactly like Sim1 with the following differences

– During the input extraction phase, instead of sampling from XS , Sim1 samples from X dS . X dS queries XS
thus obtaining (y, s0, s1) and returns (y, sd, sd).

– Sim1 rewinds the adversarial receiver only Rot times (i.e., Sim1,2
1 and Simλ,n

1 stop after Rot rewinds).

Assuming that we have an adversary that provides a valid third round with non-negligible probability ε,
then ˜Sim1 extracts correctly the input of the adversarial receiver with non-negligible probability either when
d = 0 or when d = 1. More formally, let Extd be the event where ˜Sim1 extracts correctly the input of the
adversarial receiver when querying X dS , then we have that

Claim 7.9 Pr
[
∃d ∈ {0, 1}|Extd

]
is non-negligible.

Proof. If by contradiction the claim does not hold it means that ˜Sim1 fails when d = 0 and d = 1. In particular,
this means that the probability that ˜Sim1 collects Rot accepting transcripts is negligible in both cases, hence,
this means that the aborting probability of the adversary changes by a non-negligible amount, compared
with when the adversarial receiver is interacting with Sim1. Note that in the threads where d = α⊕ β the
view of the adversary in Sim1 is identical to the view of the adversary in ˜Sim1. To conclude the proof we need
to argue that d = α⊕ β with non-negligible probability in at least Rot rewinding threads. Suppose that this
probability is negligible both when d = 0 and when d = 1, then this would contradict what we just argued
(i.e., it would contradict the security of Sim1). ut

Theorem 7.10. Let ` = poly(λ) and {XSj}j∈[`] be a high min-entropy random variable defined by a proba-
bility distribution {XSj}j∈[`], the protocol Π2PC (Figure 7.1) is 1-rewinding secure `-sender list-simulatable
against sometimes aborting adversaries with delayed function selection for NC1 circuits for the ideal func-
tionality F{XSj }j∈[`] (according to Definition 3.4), that makes block box use of OT1,2,OTk,λ,ExtCom,PRF,SE,
and GC.

The proof of this theorem proceeds very similar to Theorem 7.1. In particular, the proof differs slightly
only in proving the security against ` corrupted receivers. In this case, we observe that the proof uses the
same hybrid arguments {Hi}i∈[7] of Section 7.2, but each hybrid Hi is iterated ` times one for each execution
of Π2PC which is performed between the j-th sender and the j-th receiver for j ∈ [`]. The indistinguishability
between the hybrids is argued similarly to the proof of Section 7.2.

8 List Non-Malleable OT

8.1 Definition `-Non-Malleable k-out-of-m Oblivious Transfer

In this section, we give the definition of list non-malleable k-out-of-m Oblivious Transfer. Roughly speaking,
we consider an adversarial man-in-the-middle (denoted by MIM) that interacts with up to ` senders S1, . . . , S`
on the left, and up to ` receivers R1, . . . , R` on the right. The guarantee of non-malleability ensures that the
distribution of the inputs that the adversary uses in the right sessions (as a sender) is independent of whether
the adversary receives messages generated from honest senders, or generated from a simulator (who uses
only the inputs that muset appear in the output view of the adversarial receiver). More formally, This is
formalized by the existence of a simulator S which interacts with MIM as senders in the left sessions and as
honest receivers in the right sessions. S having access to the list-simulatable ideal OT functionality F list

NMOT
(Figure 8.2), is able to simulate S1, . . . , S`.

This definition is very close in spirit to the one described in [IKSS21], but adapted to our list simulatability
paradigm.

63

Definition 8.1 (`-Non-Malleable k-out-of-m Oblivious Transfer). An `-non-malleable Oblivious
Transfer protocol (NM-OT) is a protocol between a sender S with inputs {xi}i∈[m] from a the domain X and
a receiver R with input K ⊂ [m] where |K| = k, that satisfies the following properties:

Correctness: For every i ∈ [m], xi ∈ {0, 1}λ and K ⊂ [m] such that |K| = k,

outR〈S({xi}i∈[m], R(K))〉 = {xi}i∈K

Receiver Security (under Parallel Composition with Fixed Roles):
For every non-uniform PPT adversary S∗ there exists a non-uniform PPT adversary Sim for the ideal world

such that
RealNM-OT,S∗(1λ)} ≈ IdealFmOT,Sim(1λ)

where RealNM-OT,S∗ denotes the distribution of the output of the adversary S∗ (controlling the sender)
after a real execution of the protocol NM-OT where the receiver has inputs {Kj}j∈[`] and the sender has
input {xi}i∈[m]. IdealFmOT,Sim denotes the analogous distribution in an ideal execution with a trusted party
that computes FmOT (see Figure 8.1) for the parties and hands the output to the receiver.

Figure 8.1: Functionality FmOT

Functionality FmOT
FmOT running with a sender S, a receiver R and an adversary Sim proceeds as follows:

– Upon receiving a message (send, {xi}i∈[m], S,R) from S where each xi ∈ {0, 1}λ, record
{xi}i∈[m] and send send to R and Sim. Ignore any subsequent send messages.

– Upon receiving a message (receive,K) from R, where K ⊂ [m] send {xc}c∈K to R and receive
to S and Sim and halt. (If no (send, ·) message was previously sent, do nothing).

List Non-Malleability: Consider any PPT adversary (denoted by MIM), with any auxiliary input aux, that
interacts with up to ` senders S1, . . . , S` on a left session and up to ` receivers R1, . . . , R` on a right,
where for every j ∈ [`], Rj has input Kj . Let RealMIM,NM-OT(1λ, {Kj}j∈[`]) denote the joint distribution of
the view of the adversary and the outputs of honest parties in the real-world world experiment described in
Figure 8.3. Moreover let inpMIM = {x̃i,j}i∈[M],j∈H be the inputs of MIM implicitly defined in the real-world
experiment while MIM is acting as a malicious sender. We require the existence of an expected non-uniform
polynomial time simulator Sim that with black-box access to the adversary MIM interacts with the ideal
functionality F list

NMOT (see Figure 8.2) as described in the ideal world experiment of Figure 8.3, and return
an output, denoted by IdealSim,F list

NMOT
(1λ, {Kj}j∈[`]) such that the following holds for any {Kj}j∈[`]

RealMIM,NM-OT(1λ, {Kj}j∈[`]), inpMIM ≈c IdealSim,F list
NMOT

(1λ, {Kj}j∈[`])

Figure 8.2: The list functionality F list
NMOT

The functionality is parametrized by the samplers X , and by the honest receivers inputs {Kj}j∈[`].

1. Upon receiving the receivers-inputs of the corrupted parties {K̃j}j∈[`], and k ∈ N, for each κ ∈ [k]
do the following
- For each j ∈ [`] sample {xi,j,κ}i∈[m] ← X and compute outκi,j := {xc,j,κ}c∈K̃j

2. Send {outκj }κ∈[k],j∈[`] to MIM.
3. Upon receiving (abort) from MIM do the following. For each j ∈ abort send an abort command to

Pj.

64

Figure 8.3: Real and ideal world

RealMIM,NM-OT(1λ, {Kj}j∈[`])

1. For each i ∈ [m], j ∈ [`] sample xi,j ← X i.
2. For each j ∈ [`] compute the first round π1

Sj
of NM-OT

as the honest sender Sj would do on input ({xi,j}i∈[m])
and the randomness rj ← {0, 1}λ and send π1

Sj
to MIM.

3. For each j ∈ [`] compute the first round π1
Rj

of NM-OT
as the honest receiver Rj would do on input (Kj) and
the randomness rj ← {0, 1}λ and send π1

Rj
to MIM.

4. For each q ∈ {2, 3}
(a) For each j ∈ [`] upon receiving π̃q−1

Rj
from MIM

(playing as a malicious receiver), compute the q-
th round π̃q

Sj
of NM-OT as the honest sender Sj

would do and send it to MIM.
(b) For each j ∈ [`] upon receiving π̃q−1

Sj
from MIM

(playing as a malicious sender), compute the q-th
round π̃q

Rj
of NM-OT as the honest receiver Rj

would do and send it to MIM.
5. For each j ∈ [`] upon receiving π̃3

Rj
, compute the output

outj as Sj would do, and return the view of MIM.

IdealSim,F list
NMOT

(1λ, {Kj}j∈[`])

1. ({K̃j}j∈[`], 1k, z)← SimA1 (1λ, {Kj}j∈[`])
2. Send {K̃j}j∈[`] to the ideal functionality F list

NMOT
which computes {outκj }j∈[`],κ∈[k] as described us-
ing the sampled inputs {xi,j}i∈[m],j∈[`] as described
before.

3. Whenever SimA2 ({outκj }j∈[`],κ∈[k], z) queries A with
a message ({πq

Sj
}j∈[`],q∈[3]), replace the query with

({πq
Sj
}j∈[`],q∈[3], {xi,j}i∈[m],j∈[`]) and forward the

pair to A.
4. (ι,View, {x̃i,j}i∈[M],j∈H) ←

SimA2 ({outκj }j∈[`],κ∈[k], z) with ι ∈ [k] ∪ {⊥}.
5. Send (abort) where abort is a set of indices that

determines which honest parties should not receive
the output from F list

NMOT.
6. Return View, {x̃i,j}i∈[M],j∈H .

8.2 Construction of `-Non-Malleable k-out-of-m OT

In this section, we gave our construction of ` non-malleable list-simulatable k-out-of-m OT (formally described
in Figure 8.5).

Our construction is similar to the one presented in [IKSS21], the crucial difference is that we use our
three-round two-party computation protocol Π, which satisfies the notion of list simulatability against
sometimes aborting (instead of a simulation secure two-party computation protocol). To construct our 3-round
non-malleable OT protocol we make use of the following tools.

– An information-theoretic m(λ) · `(λ) non-malleable coding scheme/split-state non-malleable code NM =
(Code,Decode).

– A low-depth proof ldp = (Prove,Verify) for P.
– An existentially unforgeable signature scheme DS = (Setup,Sign,Verify).
– A 3-round public-coin syncronous non-malleable commitment with simulatability property ΠNMC =

(SNMC, RNMC).
– A three-round list simulatable, against sometimes aborting adversaries, two-party computation protocol

Π accordingly to Definition 3.4 for NC1 circuits (constructed in Section 7). Π implements the function
fNM−OT described in Figure 8.4, the corresponding ideal list functionality parametrized by the distribution
DNM−OT defined over the sender’s inputs, i.e. the distribution induced by the digital signature scheme,
the non-malleable commitment scheme, the non-malleable code, as well as the uniform distribution. More
formally, this distribution is defined by the distributions derived from DS.Setup, 2 · λ ·m random values,
λ ·m codewords generated by NM.Code as well as 2 · λ ·m commitments and decommitments generated
by the execution of the commitment phase of ΠNMC.

We propose the formal description of our k-out-of-m NM-OT protocol in Figure 8.5 and refer the reader
to the introductory section for an informal discussion on how the protocol works.

Figure 8.4: Function fNM-OT parametrized with (c1, . . . , cλ)

fNM-OT.
S’s input: (x, ldp) with x = (vk, {(s′L,i,j , s′R,i,j), (Li,j , Ri,j , xj), (decL,i,j , sL,i,j),
(decR,i,j , sR,i,j)}i∈[λ],j∈[m]). R’s input: indices K and {ki}i∈[λ].

65

The function fNM−OT upon receiving the inputs defined above does the following.

1. Set x′ = (vk, {(s′L,i,j , sL,i,j , s′R,i,j , sR,i,j), (Li,j , Ri,j , xj)}i∈[λ],j∈[m]).
2. If LDP.Verify(x′, ldp) 6= 1, output ⊥.
3. Otherwise set out = (vk, {xj}j∈K). Additionally, for every i ∈ [λ], if ci ⊕ ki = 0, append
{(decL,i,j , sL,i,j)}j∈[m] to out and if ci ⊕ ki = 1, append {(decR,i,j , sR,i,j)}j∈[m] to out.

4. Append {xj}j∈K and {s′R,i,j , s′L,i,j}i∈λ,j∈[m] to out.
5. Output out.

Figure 8.5: Our `(λ) Non-Malleable k-out-of-m OT protocol.

Initialization: The sender S has inputs {xj}j∈[m] and the receiver R uses as its input a set K ⊆ [m]
where |K| = k
Protocol: S and R interact in the following way:

1. S generates (vk, sk)← DS.Setup(1λ) and does the following:
– For each i ∈ [λ], j ∈ [m], sample ri,j ← {0, 1}∗ and compute (Li,j , Ri,j) :=

NM.Code((vk‖xj); ri,j).
– For each i ∈ [λ], j ∈ [m]:
• Sample sL,i,j and sR,i,j ← {0, 1}∗.
• Engage with R in a commitment phase ofΠNMC w.r.t message sL,i,j , producing commitment

transcript comL,i,j and decommitment decL,i,j .
• Engage with R in a commitment phase ofΠNMC w.r.t message sR,i,j , producing commitment
transcript comR,i,j and decommitment decR,i,ja.

• Set s′L,i,j = Li,j ⊕ sL,i,j and s′R,i,j = Ri,j ⊕ sR,i,j .
– Set x′ = (vk, {(s′L,i,j , sL,i,j , s′R,i,j , sR,i,j), (Li,j , Ri,j , xj)}i∈[λ],j∈[m]) and
L = {(vk, {(s′L,i,j , sL,i,j , s′R,i,j , sR,i,j), (Li,j , Ri,j , xj)}i∈[λ],j∈[m]) : ∀i ∈ [λ], j ∈ [m], Li,j =
s′L,i,j ⊕ sL,i,j , Ri,j = s′R,i,j ⊕ sR,i,j ,NM.Decode(Li,j , Ri,j) = (vk‖xj)}. Then compute ldp =
LDP.Prove(x′,L).

2. Both parties engage in a run of the two-party protocol Π where:
– R acts as the receiver using as its private input K and (k1, . . . , kλ), and parametrizing the

delayed function with (c1, . . . , cλ), where ki, ci ← {0, 1} for all i ∈ [λ].
– S acts as the sender using (x, ldp) as its input where x =

(vk, {(s′L,i,j , s′R,i,j), (Li,j , Ri,j , xj), (decL,i,j , sL,i,j), (decR,i,j , sR,i,j)}i∈[λ],j∈[m]).
Additionally, S signs the messages generated from Π, denoted by (Π1,Π2,Π3). It sets σi ←
DS.Sign(sk,Πi) for all i ∈ [3] and sends it to R.

3. R parses out = (vk, {(deci,j , si,j)}j∈[m], {xj}j∈K , {s′L,i,j , s′R,i,j}i∈[λ],j∈[m]). It outputs {xj}j∈K if
and only if the following conditions hold:
(a) DS.Verify(vk,Πi, σi) for all i ∈ [3].
(b) For each i ∈ [λ] compute ci ⊕ ki = γi. If γi = 0 then {(deci,j , si,j)}j∈[m] (contained in out)

are valid decommitment information for {comL,i,j}i∈[λ],j∈[m], else {(deci,j , si,j)}j∈[m] are valid
decommitment information for {comR,i,j}i∈[λ],j∈[m].

a The commitment phases are executed in parallel with the execution of Π.

Theorem 8.2. Let X be a high min-entropy random variable defined by a probability distribution D, then the
k-out-of-m OT NM-OT described in Figure 8.5 satisfies Definition 8.1 for the functionality F list,X

OT , against
sometimes aborting adversaries. Moreover NM-OT makes black-box use of Π, Πcom, NMC and DS.

Proof. The correctness of the described protocol follows directly from the correctness of the underlying
primitives.

66

List non-malleability. We prove now that the protocol in Figure 8.5 satisfies list non-malleability.
This proof proceeds by hybrid arguments. In the first hybrid, we start by considering a real-world execution

where the MIM interacts with ` honest senders on the left and ` honest receivers on the right. The last hybrid
corresponds to the experiments where the MIM interacts with the simulator Sim = (Sim1,Sim2).

Hybrid H0: This hybrid corresponds to the real world. In more detail, in this hybrid, we have an execution
of the MIM with ` honest senders {Sl}l∈[`] on the left, using inputs {xj,l ∈ X}j∈[m], and ` honest receivers
on the right, using indices ({Kl}l∈[`]).

Hybrid H1: This hybrid proceeds as the previous one but the hybrid extracts the inputs {x̃j,l}j∈[m],l∈[`]
played by MIM as malicious sender. The hybrid proceeds with the extraction in the following way. Let p(λ)
the probability that the MIM completes this execution without aborting and set γ(λ) = max(λ, p−2(λ)).
The hybrid does a first honest execution (let us indicate it as the main execution). Then if this execution
is accepting for an honest receiver the hybrid proceeds by fixing the first round received in the right
session (in the first execution) and rewinding the MIM from the 3rd to the 2nd round γ(λ) times. In
each rewind, the hybrid (acting as honest receiver) takes the values (cl1, . . . , clλ) uniformly at random
(note that these values can be specified in the second round as they are part of the function computed
by Π), for each of the ` executions (i.e. l ∈ [`]). If the MIM completes again in one of this rewind, let
(c′l1 , . . . , c′lλ) be the value chosen (acting as honest receiver) by the hybrid. For every l ∈ [`], let index
α ∈ [λ] be such that clα ⊕ klα = 0 and c′lα ⊕ klα = 1. Moreover, let s̃′Ll,α,j , s̃′Rl,α,j for each j ∈ [m] be
the value obtained in the main execution. The hybrid uses the values d̃ecLl,α,j , s̃Ll,α,j , d̃ecRl,α,j , s̃Rl,αj ,j
(obtained as output from the main and rewinding executions) and the values s̃′Ll,α,j , s̃′Rl,α,j to compute
L̃lα,j , R̃

l
α,j and subsequently x̃j,l.

If no such rewinding thread exists, or if there exists l ∈ [`] for which there does not exist α ∈ [λ] such
that clα ⊕ klα = 0 and c′lα ⊕ klα = 1, then set x̃j,l = ⊥ for all i ∈ [m].
The output of this hybrid is the joint distribution

ViewMIM〈{Sl({xj,l}j∈[m])}l∈[`], {Rl(Kl)}j∈[`]〉, {x̃j,l}i∈[m],l∈[`]

Hybrid H2: This hybrid proceeds as the previous hybrid, with the difference that, instead of the honest
protocol, the simulator Π.SimS of Π is executed in all sessions where the MIM acts as a receiver. The
hybrid in all the ` sessions where she was following the honest sender procedure using input {xj,l}j∈[m],l∈[`]
she stars, instead, executing Π.SimS = (Π.Sim1

S ,Π.Sim2
S) parametrized by the distribution DNM−OT

Specifically, the hybrids run Π.Sim1
S acting as ` malicious receivers, and it does so acting as a proxy for

the messages of Π between Π.Sim1
S and MIM in all the sessions where the MIM acts as a receiver. Upon

receiving ({K̃l, {ki,l}i∈[m], f
l
0, f

l
1}l∈[`], 1κ) from NM-OT.Sim1, the hybrid acts as the ideal functionality

of Π would do and computes output {outbj,κ}j∈[`],κ∈[k],b∈{0,1} using honest sender’s input sampled from
DNM−OT. At this point the hybrid runs Π.Sim2

S on input {outbj,κ}j∈[`],κ∈[k],b∈{0,1} and acts with her as
the ideal functionality of Π would do (using the honest sender’s inputs previously sampled). Moreover,
the hybrid acts as a proxy for the messages of Π between Π.Sim2

S and MIM in all the sessions where the
MIM acts as a receiver. Finally the hybrid receives (ι,ViewMIM) from Π.Sim2

S .
Receiver messages for the right executions are generated exactly as in H1 w.r.t. honest receiver input Kl.
The extraction of the values {x̃j,l}j∈[m],l∈[`] proceeds exactly as in H1 with the only differences that also
in the rewinding threads the messages of the honest sender are simulated. The output of this hybrid is
ViewMIM and {x̃j,l}j∈[m],l∈[`].

Hybrid H3: This hybrid proceeds as the previous hybrid, but defining inpSl differently, for all l ∈ [`]. inpSl is
defined as described in H2 except for the values {s′Ll,i,j and s′Rl,i,j}i∈[λ], which are described as specified
below. Let (kl1, . . . , klλ) be the values that Π.SimS queries to the ideal functionality for the l-th session.
Moreover, let (cl1, . . . , clλ) be the values that MIM sent as input of the delayed functions for the l-th
session. Then, the hybrid answers (acting as the ideal functionality) to Π.SimS using the honest sender’s
inputs (i.e., using inpSl as described in H2) except that if c̃li ⊕ kli = 0 the value s′Rl,i,j is set as a random
string, and otherwise the value s′Ll,i,j is set as a random string, for each i ∈ [λ].

67

Finally, note that in the rewinding threads, the values (c̃l1, . . . , c̃lλ) that MIM sent as input of the delayed
functions change, and the values {s′Ll,i,j and s

′
Rl,i,j}i∈[λ] are adjusted consequently. It is important to

notice that after this hybrid the answers given by the hybrid (acting as the ideal functionality) in a thread
are dependent only on one of the two states of the non-malleable code.

Hybrid H4: This hybrid proceeds as the previous hybrid, with the difference that if the challenger obtains a
verification key in one of the right sessions that is identical to a verification key used in one of the left
sessions, this hybrid outputs ⊥. The indistinguishability between this and the previous hybrid follows
from the unforgeability of the digital signature scheme DS.

Hybrid H5: This hybrid corresponds to the ideal world. It proceeds as the previous hybrid with the difference
that inpSl is differently defined. In more detail, for every l ∈ [`], i ∈ [m] and α ∈ [λ], the hybrid sets
(Ljα,i, R

j
α,i)← NM.Sim(1p(λ)).

We note that at this point, the functionality F list
OTα,β can be perfectly simulated with access to the ideal

functionality F list
NMOT. Therefore, the output of this hybrid is identical to the ideal view.

The indistinguishability between this and the previous hybrid follows from the security of the non-malleable
codes NM.

Lemma 8.3. The hybrids H0 and H1 are indistinguishable.

Proof. We start the proof by making the following two claims:

1. After the MIM executes the first round the values d̃ecLl,α,j , s̃Ll,α,j , d̃ecRl,α,j , s̃Rl,αj ,j are fixed due to the
statistically binding property of ΠNMC.

2. Due to the soundness of ldp and the security of Π it is possible to argue that the values L̃lα,j , R̃lα,j are
correctly reconstructed from s̃Ll,α,j ⊕ s̃′Ll,α,j and s̃Rl,α,j ⊕ s̃′Rl,α,j .

To conclude the proof it suffices to show that such a rewinding execution (with a non-aborting transcript)
can be found within γ(λ) attempts, except with probability negl(λ). To see this, we observe that the
probability of a non-aborting transcript is p(λ), and therefore, the probability that all γ(λ) trials abort is
(1− p(λ))γ(λ) = negl(λ). ut

Lemma 8.4. Let Π be the 1-rewinding `-senders secure two-party computation protocol constructed in Section
7, then the hybrids H1 and H2 are indistinguishable.

Proof. Assuming an adversary MIM that distinguishes between the hybrids H1 and H2 with probability q(λ)
then we construct an ` adversarial receivers R∗1, . . . , R∗` that breaks the the 1-rewinding `-senders security of
the underlying Π protocol. Let C be the corresponding challenger.

The reduction construct and adversary R∗1, . . . , R∗` which runs internally MIM acting as described both
in hybrids H1 and H2, i.e. acting as an honest receivers on the right executions and as an honest senders on
the left executions where the reduction is acting as a proxy between C and MIM. To be more precise, the
reduction computes the following steps:

1. For each l∗ ∈ [`] the reduction simulates the l∗-th malicious receiver R∗l∗ for C in the following way.
(a) Obtain the first round message for the left execution externally from C, and use it to generate the

first round of the protocol accordingly to H1 and H2, for the the l∗’th left execution. Moreover in the
right executions generate the first round messages according to the receiver strategy using the inputs
{Kj}j∈[`]. Obtain first-round messages from the MIM (both on the left and the right executions), and
output the MIM’s message in the l∗’th left execution to C.

(b) Obtain the second round message for the left execution externally from C, and use it to generate the
second round of the protocol accordingly to H1 and H2, for the l∗’th left execution.

(c) In the right executions generate the second round messages according to the honest receiver strategy.
(d) Obtain second-round messages from the MIM (both on the left and the right executions),
(e) Rewind MIM one-time and repeat steps (c) and (d). Then, output the MIM’s message in the l∗’th left

execution to C (for both of the two threads).

68

(f) Obtain the (two) third round messages for the left execution externally from C, and use it to generate
the third round of the protocol accordingly to H1 and H2, for the l∗’th left execution (for both of the
two threads).

(g) In the right executions (for both of the two threads) generate the third-round messages according to
the honest receiver strategy.

(h) For both threads obtain third-round messages from the MIM (both on the left and the right executions),
and output the MIM’s message in the l∗’th left execution to C.

(i) If none of the two executions abort computes the values {x̃j,l}j∈[m],l∈[`] as describe in both H1 and
H2.

2. The reduction output the view of R∗1, . . . , R∗` in the above experiments together with {x̃j,l}j∈[m],l∈[`].

Note that (1) If C sends simulated messages the experiments is distributed as H1 and H2 otherwise; (2)
by our assumption MIM is non aborting with some non-negligible probability p(λ) in H1, moreover notice
that by the security of Π follows that the probability with which MIM aborts in H2 is a probability p∗(λ)
negligibly close to p(λ). Therefore the reduction has non-negligible probability p2

∗(λ) · q(λ) to succeed. ut

Lemma 8.5. Let ΠNMC be a 3-round syncronous public coin non-malleable commitment with simulatability
property then the hybrids H3 and H4 are computationally indistinguishable.

Proof. For the proof of this lemma, we consider the intermediate hybrids Hl0,j ,Hl1,j , . . . ,Hlλ,j where for every
l ∈ [`], j ∈ [m] and i ∈ [λ], hybrid Hli,j , is identical to hybrid Hli−1,j , except for that one of the value {s′Ll,i,j
and s′Rl,i,j}i∈[λ] is chosen as a random string. More specifically, if cli,j ⊕ kli,j = 0 the value s′Rl,i,j is set as a
random string, and otherwise the value s′Ll,i,j is set as a random string, for each i ∈ [λ], where cli,j is the i-th
input in the j-th session for the delayed function and kli,j is the i-th input played by MIM acting as a receiver
in the j-th session.

To prove this lemma, we now prove the indistinguishability of the hybrids Hli−1,j , and Hli,j , for all i ∈ [λ] by
contradiction. In more detail, assuming there exists a distinguisher DH which distinguishes between the hybrids
Hli∗−1,j , and Hli∗,j with probability q(λ), for a i∗ ∈ [λ], then we construct an adversarial man-in-the-middle
MIM∗ that breaks the non-malleability of the underlying ΠNMC protocol. Let C be the challenger for this
game.

The reduction constructs and adversary MIM∗ which has i∗ as advice. On the start of the experiment
MIM∗ sets the values s′Rl,i∗,j , sRl,i∗,j and s

′
Ll,i∗,j , sLl,i∗,j as described in H1,i∗−1,i. Then, MIM∗ flips a bit b

at random and chooses a string r at random. If b = 0 MIM∗ sends to C the values (sLl,i∗,j , r) and the values
(sRl,i∗,j , r) otherwise.

MIM∗ runs now the MIM acting as described both in Hli∗−1,j , and (Hli∗,j), i.e. acting as an honest receiver
on the right executions and as an honest sender in the left executions, except that in l-th session. In this
execution, the reduction acts as a proxy for the messages of ΠNMC and C acting as a sender in the left
execution and as a receiver in the right execution.

In particular, the reduction MIM∗ acts as follows.

1. Upon receiving com1 from the external challenger as a first round of the commitment phase of ΠNMC, set
com1

Ll,i∗,j ← com1 if b = 0 and as com1
Rl,i∗,j ← com1 otherwise. Compute the rest of the first message of

the left session, running Π.Sim1
S , accordingly to Hli∗−1,j , and (Hli∗,j).

2. Upon receiving the first round from MIM in the right session forward the first round of ΠNMC to the
external challenger, namely forward c̃om1

Ll,i∗,j if b = 0 and c̃om1
Rl,i∗,j otherwise. Let c̃om2 the second round

of ΠNMC obtained from the external challenger, set c̃om2
Ll,i∗,j ← com2 if b = 0 and as com2

Rl,i∗,j ← com2

otherwise. Compute the rest of the second message of the right session accordingly to Hli∗−1,j , and (Hli∗,j).
3. Compute the second message of the left session, running Π.Sim1

S , accordingly to Hli∗−1,j , and (Hli∗,j).
4. Upon receiving the second round (and specifically the value cli∗,j) from MIM in the right session act as in

Hli∗−1,j , and (Hli∗,j), with the following differences:
(a) Allow Π.Sim1

S to perform up to RΠ rewinds only.

69

(b) Π.Sim1
S queries D′NM−OT, instead of DNM−OT. D′NM−OT behaves exactly like DNM−OT, with the fol-

lowing difference: if b = 0 the decommitment information of comLl,i∗,j are set to 0λ, otherwise the
decommitment information of comRl,i∗,j are set to 0λ.

(c) Any time it is required to compute a second round for non-malleable commitment obtained from the
challenger in the right session, use in its place a value uniformly random sampled from the uniform
distribution (note that this is possible since ΠNMC is public-coin).

(d) Any time it is required to compute a third round for non-malleable commitment obtained from the
challenger in the left session, use in its place a value uniformly random sampled from the space of
all the valid third rounds of ΠNMC (note that this is possible since ΠNMC enjoys the simulatability
property).

5. If RΠ accepting transcripts have been collected and it is possible to extract the inputs of MIM acting as a
receiver in the left session and specifically the value then continue as follows, otherwise, output a random
bit and stop.

6. If kli∗,j ⊕ cli∗,j = b, then output a random bit and stop, else continue.
7. Compute the second message on the left session accordingly to Hli∗−1,j , and (Hli∗,j), running Π.Sim2

S on
input the honest seder’s input as specified in Hli∗−1,j , with difference that if if b = 0 the decommitment
information of comLl,i∗,j are set to 0λ, otherwise the decommitment information of comLl,i∗,j are set to
0λ.

8. Compute the second message of the right session accordingly to Hli∗−1,j , and (Hli∗,j). In particular
use as honest input of the receiver in the right session the strings (k̃l1, . . . , k̃lλ), (c̃l1, . . . , c̃lλ), where
k̃li∗,j ⊕ c̃li∗,j = 1− b and all the rest are chosen from the uniform distribution over {0, 1}.

9. Upon receiving the 2nd round in the left session from MIM forwards the second round of ΠNMC to the
external challenger obtaining the 3rd round of the commitment phase of ΠNMC, namely com3.
Set com3

Ll,i∗,j ← com3 if b = 0 and as com3
Rl,i∗,j ← com3 otherwise. Compute the rest of the third message

of the left session, running Π.Sim2
S , accordingly to Hli∗−1,j , and (Hli∗,j).

10. Compute the third message of the right session accordingly to Hli∗−1,j , and (Hli∗,j).
11. Upon receiving the third round from MIM in the right session reconstruct from MIM the value R̃li∗,j if

b = 0 and the value L̃li∗,j if b = 1, moreover forward the third round of ΠNMC to the external challenger.
12. Generate a new second-round message according to the honest receiver strategy on the right executions,

and proceed as described in steps from (4) to (10) described above.
13. If none of the two executions abort computes the values {x̃j,l}j∈[m],l∈[`] as describe in both Hli∗−1,j , and

(Hli∗,j).
14. Output the view of MIM∗ and the values {x̃j,l}j∈[m],l∈[`] as well as the value L̃li∗,j if b = 1 (respectively

the value R̃li∗,j if b = 0).

We now describe the distinguisher DNMC for ΠNMC which, by definition, has on input the view of MIM∗
and the message committed in the right session by MIM∗ which is L̃li∗,j if b = 0 (respectively the value R̃li∗,j
if b = 1). The values {x̃j,l}j∈[m],l∈[`] and the value L̃li∗,j if b = 1 (respectively the value R̃li∗,j if b = 0) are set
as an auxiliary input. DNMC sets the value x̃j,l as R̃li∗,j ⊕ L̃li∗,j , while the remaining {x̃j,l}j∈[m],l∈[`]are left
untouched. At this point DNMC runs DH on input {x̃j,l}j∈[m],l∈[`] and the view of MIM∗ given in output the
output of DH.

Note that (1) If C sends a commitment of r the experiment is distributed as Hli∗,j and as Hli∗−1,j otherwise.
(2) The extraction of k̃li∗,j (conditioned on k̃li∗,j ⊕ c̃li∗,j 6= b) is successful with non-negligible probability after
a constant number of rewinds given Claim 7.9. (3) MIM is not aborting in the 3rd round of the hybrid Hli∗−1,j
with probability p(λ), she is aborting in the 3rd round of the hybrid Hli∗,j with probability negligibly close to
p(λ), due to the hiding of ΠNMC. (4) Pre and post-rewind the distribution of MIM inputs acting as a receiver
in the left sessions does not change due to the hiding of ΠNMC.

Therefore, we can conclude that the reduction is successful with non-negligible probability. ut

Lemma 8.6. Let NM be m(λ) · `(λ) symmetric non-malleable codes satisfying Definition 2.7, then the hybrids
H5 and H4 are indistinguishable against an unbounded adversary.

70

Proof. For the proof of this lemma, we consider the intermediate hybrids {Hl4,i,j}j∈[m],l∈[`],i∈[λ]∪{0} where:

1. H4 = H`4,λ,0,H5 = H`4,λ,m,
2. for j ∈ [m],H`4,λ,j−1 = H1

4,0,j ,
3. for l ∈ [`],Hl−1

4,λ,j = Hl4,0,j ,
4. for every j ∈ [m], l ∈ [`], i ∈ [λ],Hl4,i,j is identical to Hl4,i−1,j except that Hl4,i,j samples (Lli,j , Rli,j) ←

NM.Code(0).

To prove this lemma, we now prove the indistinguishability of the hybrids Hl4,i−1,j and Hl4,i,j for all
j ∈ [m], l ∈ [`], i ∈ [λ] by contradiction. Then there exist i∗, j∗, l∗ and an abounded distinguisher that
distinguish hybrids Hl∗4,i∗−1,j∗ and Hl∗4,i∗,j∗

We define a pair of tampering functions (fMIM, gMIM) and an additional function hMIM as follows:

1. fMIM, gMIM and hMIM share a common state that is generated as follows:
(a) Execute Π.Sim using the honest receiver strategy in the right executions with input {Kl}l∈[`] and uni-

formly chosen {cl1, . . . , clλ}l∈[`], {kl1, . . . , klλ}j∈[`] until Π.Sim generates a query to the ideal functionality
at the end of the second round.

(b) At this point, Π.Sim outputs a view and transcript of the MIM until the second round as well as
{K̃l, c̃

l
1, . . . , c̃

l
λ}l∈[`] and {k̃l1, . . . , k̃lλ}l∈[`] that corresponds to the receiver’s input in the left executions.

(c) Rewind the third round once with uniformly and independently chosen {c′l1 , . . . , c′lλ}l∈[`].
(d) Obtain the rewinding view (with the same first round) and obtain MIM’s input which is acting as a

receiver in these sessions {c̄l1, . . . , c̄lλ}l∈[`] (note that the rest of the MIM’s inputs, acting as receivers,
are fixed after the first round). If c̃li ⊕ k̃li 6= c̄li ⊕ k̃li, continue. Otherwise, abort.

(e) Generate (Lli,j , Rli,j) for every (j, l, i) ∈ [m]× [`]× [λ] \ {j∗, l∗, i∗} according to Hl∗4,i∗−1,j∗ (respectively
Hl∗4,i∗,j∗).

(f) Output the view of the MIM until round 2 in the main rewinding threads, including (i∗, j∗, l∗), the
values (Lli,j , Rli,j)(j,l,i)∈[m]×[`]×[λ]\{i∗,j∗,k∗}.

(g) Additionally, output the receiver’s inputs ({K̃l, c̃
l
1, . . . , c̃

l
λ, k̃l1, . . . , k̃lλ}l∈[`]) and the sender’s inputs

{(vkl, xlj , comLl,i,j , comRl,i,j , (decLl,i,j , sLl,i,j), (decRl,i,j , sRl,i,j)}i∈[λ],j∈[m],l∈[`].
2. Next, the function hMIM on input L, sets Ll∗i∗,j∗ = L,Rl

∗

i∗,j∗ = 0. The function has hardwired values
({K̃l, c̃

l
1, . . . , c̃

l
λ, k̃l1, . . . , k̃lλ}l∈[`]){(vkl, xlj , comLl,i,j , comRl,i,j , (decLl,i,j , sLl,i,j), (decRl,i,j , sRl,i,j)}i∈[λ],j∈[m],l∈[`]

as well as the values (Lli,j , Rli,j , s′Ll,i,j , s
′
Rl,i,j)(j,l,i)∈[m]×[`]×[λ]\{i∗,j∗,k∗}. The function sets the value

s′
Ll∗ ,i∗,j∗

= sLl∗ ,i∗,j∗ ⊕ L and s′
Rl∗ ,i∗,j∗

as a random string. The function using the hardwired val-
ues and s′

Ll∗ ,i∗,j∗
, s′
Rl∗ ,i∗,j∗

computes the output out for the honest senders in the all ` left executions. It
then invokes Π.Sim2 on out to generate the third round message of the protocol transcript in the main
thread if c̃l∗i∗ ⊕ k̃l∗i∗ = 0, and generates the third round message of the protocol transcript in the rewinding
thread if c̄l∗i∗ ⊕ k̃l∗i∗ = 0. It outputs the resulting transcript as the view of MIM.

3. Next, the function fMIM on input L, sets Ll∗i∗,j∗ = L,Rl
∗

i∗,j∗ = 0. The function has hardwired values
({K̃l, c̃

l
1, . . . , c̃

l
λ, k̃l1, . . . , k̃lλ}l∈[`]){(vkl, xlj , comLl,i,j , comRl,i,j , (decLl,i,j , sLl,i,j), (decRl,i,j , sRl,i,j)}i∈[λ],j∈[m],l∈[`]

as well as the values and (Lli,j , Rli,j , s′Ll,i,j , s
′
Rl,i,j)(j,l,i)∈[m]×[`]×[λ]\{i∗,j∗,k∗}. The function sets the value

s′
Ll∗ ,i∗,j∗

= sLl∗ ,i∗,j∗ ⊕ L and s′
Rl∗ ,i∗,j∗

as a random string. The function using the hardwired values
and s′

Ll∗ ,i∗,j∗
, s′
Rl∗ ,i∗,j∗

computes the output out for the honest senders in the all ` left executions.
It then invokes Π.Sim2 on out to generate the third round message of the protocol transcript in the
main thread if c̃l∗i∗ ⊕ k̃l∗i∗ = 0, and generates the third round message of the protocol transcript in
the rewinding thread if c̄l∗i∗ ⊕ k̃l∗i∗ = 0. Using the opening information {(˜decL,αj ,j , s̃L,αj ,j)}j∈[m],l∈[`] or
{(˜decR,αj ,j , s̃R,αj ,j)}j∈[m],l∈[`] and the values {s̃′Ll,αj ,j , s̃′Rl,αj ,j}j∈[m],l∈[`] obtained from the MIM, it
computes and output the values {L̃lαj ,j}j∈[m],l∈[`] or {R̃lαj ,j}j∈[m],l∈[`].

71

4. Next, the function gMIM on input L, sets on input R, sets Ll∗i∗,j∗ = 0, Rl∗i∗,j∗ = R. The function has hardwired
values ({K̃l, c̃

l
1, . . . , c̃

l
λ, k̃l1, . . . , k̃lλ}l∈[`]), {(vkl, xlj , comLl,i,j , comRl,i,j , (decLl,i,j , sLl,i,j), (decRl,i,j , sRl,i,j)}i∈[λ],j∈[m],l∈[`]

as well as the values (Lli,j , Rli,j , s′Ll,i,j , s
′
Rl,i,j)(j,l,i)∈[m]×[`]×[λ]\{i∗,j∗,k∗}. The function sets the value

s′
Rl∗ ,i∗,j∗

= sRl∗ ,i∗,j∗ ⊕ R and s′
Ll∗ ,i∗,j∗

as a random string. The function using the hardwired val-
ues and s′

Ll∗ ,i∗,j∗
, s′
Rl∗ ,i∗,j∗

computes the output out for the honest senders in the all ` left executions.
It then invokes Π.Sim2 on out to generate the third round message of the protocol transcript in the
main thread if c̃l∗i∗ ⊕ k̃l∗i∗ = 1, and generates the third round message of the protocol transcript in
the rewinding thread if c̄l∗i∗ ⊕ k̃l∗i∗ = 1. Using the opening information {(˜decL,αj ,j , s̃L,αj ,j)}j∈[m],l∈[`] or
{(˜decR,αj ,j , s̃R,αj ,j)}j∈[m],l∈[`] and the values {s̃′Ll,αj ,j , s̃′Rl,αj ,j}j∈[m],l∈[`] obtained from the MIM, it
computes and output the values {L̃lαj ,j}j∈[m],l∈[`] or {R̃lαj ,j}j∈[m],l∈[`].

By Definition 2.7 of 1-many non-malleable codes,

(L,NM.Decode(fMIM(L), gMIM(R))|(L,R← NM.Code(xl
∗

j∗))) ≈ε
(L,NM.Decode(fMIM(L), gMIM(R))|(L,R← NM.Code(0))) ≈ε

and
(L,NM.Decode(gMIM(L), fMIM(R))|(L,R← NM.Code(xl

∗

j∗))) ≈ε
(L,NM.Decode(gMIM(L), fMIM(R))|(L,R← NM.Code(0))) ≈ε

By the data processing inequality, this implies that for every function h(·),

(h(L),NM.Decode(fMIM(L), gMIM(R))|(L,R← NM.Code(xl
∗

j∗))) ≈ε
(h(L),NM.Decode(fMIM(L), gMIM(R))|(L,R← NM.Code(0))) ≈ε

and
(h(L),NM.Decode(gMIM(L), fMIM(R))|(L,R← NM.Code(xl

∗

j∗))) ≈ε
(h(L),NM.Decode(gMIM(L), fMIM(R))|(L,R← NM.Code(0))) ≈ε

Setting h = hMIM for fMIM and gMIM defined above, these distributions correspond to the outputs of Hl∗4,i∗−1,j∗

(respectively Hl∗4,i∗,j∗) respectively, whenever c̃l
∗

i∗ ⊕ k̃l∗i∗ 6= c̄l
∗

i∗ ⊕ k̃l∗i∗ , the distributions Hl∗4,i∗−1,j∗ and Hl∗4,i∗,j∗
are ε(λ)-statistically indistinguishable because they jointly only depend on one of the shares, L or R. Since
ε(λ) = negl(λ), this concludes the proof.

ut

Receiver Privacy. We prove now that the protocol in Figure 8.5 satisfies receiver privacy against a corrupted
sender S∗. The simulator Sim for the receiver privacy runs the simulator of Π.Sim = (Π.Sim1,Π.Sim2) against
a corrupted sender. In more detail, Sim starts Π.Sim1 and acts as a proxy for the messages of Π between
her and S∗ (rewinding S∗ when Π.Sim1 asks so). Moreover, Sim acts as an ideal functionality for Π.Sim1

and upon receiving the extracted sender inputs {x∗i }i∈[m] from S∗ she invokes the ideal functionality FmOT
on {x∗i }i∈[m]. At this point Sim runs Π.Sim2 and acts as a proxy for the messages of Π between her and S∗
(rewinding S∗ when Π.Sim2 asks so). Sim gives in output the output of Π.Sim2.

The indistinguishability between the real game where S∗ acts with an honest receiver R and the simulated
game where S∗ acts with Sim follows from the receiver security of Π. Moreover, since Π.Sim runs in polynomial
time so does Sim.

ut

72

8.3 List-Simultaneous Multiparty OT

The (multiparty) simultaneous OT functionality is an n-party functionality that implements simultaneous (or
parallel) α-out-of-β OT between n parties. Informally, this functionality consists of n · (n− 1) instances of
α-out-of-β OT. For every i ∈ [n], j ∈ [n], j 6= i, a secure OT is implemented between the pair (Pi, Pj) where
Pi is the sender and Pj is the receiver.

Formally, we define the ideal (multiparty) simultaneous OT functionality Fn·(n−1)
OT . this consists of n(n−1)

independent instances of α-out-of-β OTs, one for each ordered pair (i, j) ∈ [n]× [n] such that i 6= j. The (i, j)-
th OT instance obtains input xi,j = (x1

i,j , . . . , x
β
i,j) form sender Pi and input yi,j ⊆ [β] with |yi,j | = α from

the receiver Pj . The functionality then outputs {xki,j}k∈yj,i to Pj and outputs ⊥ to Pi for each i, j ∈ {[n]× [n]}
with i 6= j.

Definition 8.7 (Simultaneous OT Protocol). A (multiparty) simultaneous OT protocol mpOT is defined
by a tuple of algorithms (mpOT1,mpOT2,mpOT3, outmpOT). For each round r ∈ [4], the i-th party in the
protocol runs mpOTr on 1λ, the index i, the private input {xi,j , yi,j}i6=j and the transcript of the protocol in
the first (r − 1) rounds to obtain mpOTir. It sends mpOTir to every other party via a broadcast channel. We
let mpOT(r) denote the transcript of the protocol mpOT in the first r rounds. The output computing function
outmpOT takes the index i of a party, its private input, its random tape, and the transcript mpOT(3) and
generates the output outi. The protocol is required to satisfy the following property.

Correctness: For every choice of inputs {xi,j , yi,j}i∈[n],j 6=i for parties {Pi}i∈[n], we have:

Pr[(out1, . . . , outn) = Fn·(n−1)
OT ({xi,j , yi,j}i∈[n],j 6=i)] = 1

where outi denotes the output obtained by the i-th party from the mpOT protocol when executed on the
private input and random tape of Pi.

In terms of security, we consider a slight variation of the notion of list MPC that we have recalled in
Definition 3.2. In particular, in this notion we have two types of inputs: static, and list. The static inputs are
inputs decided at the onset of the ideal/real-world experiment, whereas the list-inputs are the input sampled
by the ideal functionality (on behalf of the honest parties) by using some samplers {Xi}i∈[H]. In the specific
case of the OT functionality we consider here, the inputs of the honest receivers are fixed, whereas the inputs
of the honest senders are sampled from the ideal functionality in the spirit of Definition 3.2. We provide the
formal definition of the ideal and real-world in Figure 8.7, and we say that a simultaneous OT protocol is
secure if it satisfies the following.

Definition 8.8 (Secure Simultaneous OT Protocol).

Security: Let A be an adversary corrupting an arbitrary subset of parties indexed byM (we denote the indices
of the honest parties with H = [n]\M), that obtains auxiliary input aux. Let {RealA,mpOT(1λ,M,H, {yi,j}i∈H,j∈M)}λ
denote the joint distribution of the view of the adversary and the outputs of honest parties in the real-
world world experiment described in Figure 8.7. We require the existence of an expected polynomial time
simulator Sim that with black-box access to the adversary A interacts with the ideal functionality F list

OTα,β

(see Figure 8.6) as described in the ideal world experiment of Figure 8.7, and return an output, denoted
by {IdealSim,F list

OTα,β
(1λ,M,H, {yi,j}i∈H,j∈M)} such that the following holds for any {yi,j}i∈H,j∈M

{RealA,mpOT(1λ,M,H, {yi,j}i∈H,j∈M)}λ∈N
≈c{IdealSim,F list

OTα,β
(1λ,M,H, {yi,j}i∈H,j∈M)}λ∈N.

73

Figure 8.6: The list functionality F list
OTα,β

The functionality is parametrized by the samplers {Xi}i∈H , and by the honest receivers inputs
{yi,j}i∈H,j∈M , where yi,j ⊆ [β], with |yi,j | = α for each i ∈ H, j ∈M .

1. Upon receiving the receivers-inputs of the corrupted parties {yi,j}i∈M,j∈H , and k ∈ N, for each
κ ∈ [k] do the following
- For each i ∈ H, j ∈ M sample xi,j,κ ← Xi, where xi,j,κ = (x1

i,j,κ, . . . , x
β
i,j,κ), and compute

outκi,j := {xci,j,κ}c∈yj,i
2. Send {outκi,j}κ∈[k],i∈H,j∈M to A
3. Upon receiving (ι, {xi,j}i∈M,j∈H , abort) from A do the following. For each j ∈ H \ abort send
{xci,j}i∈M,c∈yj,i and {xj,i,ι}i∈M to the honest Pj . For each j ∈ abort send an abort command to
Pj .

Figure 8.7: Real and ideal world

RealA,mpOT(1λ,M,H, {yi,j}i∈H,j∈M)

1. For each i ∈ H sample {xi,j}j∈[M] ← X i.
2. For each i ∈ H compute the first round πi1 of mpOT as

the honest Pi would do on input ({xi,j , yi,j}j∈[n]\{i})
and the randomness ri ← {0, 1}λ and send πi1 to A.

3. Upon receiving {πi1}i∈M from A, for each i ∈ H compute
the second round πi2 of mpOT as the honest party Pi thus
obtaining πi2 and send (πi2, {xi,j}j∈M) to A.

4. Upon receiving {πi2}i∈M from A, for each i ∈ H compute
πi3 as the honest party Pi would do thus obtaining πi3,
and send πi3 to A.

5. Upon receiving {πi3}i∈M , compute the output outi as Pi
would do, and return the view of A.

IdealSim,F list
OTα,β

(1λ,M,H, {yi,j}i∈H,j∈M)

1. ({yi,j}i∈M,j∈H , 1k, z)← SimA1 (1λ)
2. Send {yi,j}i∈M,j∈H to the ideal functionality
F list
OTα,β

which computes {outκi,j}i∈H,j∈M,κ∈[k]
as described using the sampled inputs
{xi,j,κ}i∈[H],j∈M,κ∈[k] as described before.

3. Whenever SimA2 ({outκi,j}i∈M,j∈H,κ∈[k], z) queries A
with a message ({πi}i∈H , γ) (with γ ∈ [k]), replace
the query with ({πi}i∈H , {xi,j,γ}i∈[H],j∈M , γ) and
forward the pair to A.

4. (ι, {xi,j}i∈[M],j∈H ,View) ←
SimA2 ({outκi,j}i∈M,j∈H,κ∈[k], z) with ι ∈ [k] ∪ {⊥}.

5. Send (ι, {xi,j}i∈[M],j∈H , abort) where abort is a set of
indices that determines which honest parties should
not receive the output from F list

OTα,β
.

6. Return View.

Remark 8.9 (Watchlist Protocol). The watchlist protocol is defined identically to the mpOT protocol (Defini-
tion 8.7).

Following the approach proposed in [IKSS21], to realize the watchlist protocol we let each pair of parties
Pi, Pj interact in an execution of non-malleable OT where in this execution Pi is acting as the sender and
Pj as receiver, for each j, i ∈ [n] with i 6= j. This allows each party to get an OT correlation with the other
party acting as a sender and each other party to obtain an OT correlation with each other party behaving as
the receiver.

More formally, the multiparty simultaneous OT mpOT works as follows:

– For i ∈ [n], let Pi’s OT input be ({Xi,j}j∈[n]\{i}, {yi,j}j∈[n]\{i}), where:
• For every j ∈ [n] \ {i}, yi,j ⊂ [m] such that |yi,j | = k, and
• For every j ∈ [n] \ {i}, Xi,j = (si,j,1, . . . , si,j,m).

– Furthermore, we denote an instance of the ` non-malleable m-choose-k OT protocol by NM-OT.

Then, for every i, j ∈ [n] with i 6= j, Pi and Pj execute an instance of NM-OT with Pi acting as the
sender using {si,j,k}k∈[m] as its input and Pj acting as the receiver using yj,i as its input. The proof of
security follows similar to the one of [IKSS21] and we provide a sketch of it below. More precisely we have
the following theorem.

Theorem 8.10. Let H ⊂ [n] denote the subset of honest parties. Let {Xi}i∈H be a high min-entropy random
variable defined by a probability distribution {Di}i∈H . Assuming that NM-OT satisfies Definition 8.1 (i.e.,
NM-OT enjoys receiver security w.r.t. ideal functionality FmOT and list non-malleability for functionality

74

F list
NMOT parametrized by {Xi}i∈H) against sometimes aborting adversaries, then the mpOT described above

satisfies Definition 8.7 for the functionality F list
OTα,β parametrized by {Xi}i∈H , against sometimes aborting

adversaries. Moreover mpOT makes black-box use of NM-OT.

Proof. Correctness of the n-party m-out-of-k (multiparty) simultaneous OT follows from the correctness of
the m-out-of-k OT protocol.

We describe how to prove a stronger security property of the resulting (multiparty) simultaneous OT
protocol: that for every corrupted subset M ⊂ [n] and set of honest parties H = [n] \M , there exists a
simulator SimmpOT such that for every (malicious) non-uniform adversary A that corrupts {Pi}i∈M , and for
every choice of inputs {yi,j}i∈H,j∈M the following two distributions are computational indistinguishable:

{RealA,mpOT(1λ,M,H, {yi,j}i∈H,j∈M)}λ∈N
≈c{IdealSim,F list

OTα,β
(1λ,M,H, {yi,j}i∈H,j∈M)}λ∈N.

Here, RealA,mpOT(1λ,M,H, {yi,j}i∈H,j∈M) denotes the adversary’s view and the output of the honest par-
ties in the real-world experiment defined in the Definition 8.7. Similarly {IdealSim,F list

OTα,β
(1λ,M,H, {yi,j}i∈H,j∈M)}λ∈N

denote adversary’s view and the outputs of honest parties in the ideal execution defined in the Definition 8.7.
The simulator SimmpOT is constructed as follows. It runs the simulator of the non-malleable OT NM-OT,

NM-OT.Sim = (NM-OT.Sim1,NM-OT.Sim2) where A plays the role of MIM. In more details SimmpOT in-
vokes NM-OT.Sim1 on dummy inputs [k]|H|·|M | acting as a proxy between A and NM-OT.Sim1 for the
messages of mpOT. Upon receiving ({ỹi,j}j∈H,i∈M , 1κ) from NM-OT.Sim1, the simulator SimmpOT forwards
({ỹi,j}j∈H,i∈M , 1κ) to the ideal functionality F list

OTα,β obtaining {outκi,j}i∈M,κ∈[k].
At this point SimmpOT runs NM-OT.Sim2 on input {outκi,j}i∈M,κ∈[k] and acts with her as the ideal

functionality F list
NMOT would do. Moreover,SimmpOT acts as a proxy between A and NM-OT.Sim2 for the

messages of mpOT.
Upon receiving (ι,View, {x̃i,j}i∈[M],j∈H) from NM-OT.Sim2, the simulator SimmpOT sends (ι, {x̃i,j}i∈[M],j∈H)

to F list
OTα,β and output View.
We now define a sequence of hybrid experiments:

Hybrid H0: This experiment corresponds to the real world execution of mpOT where the adversary A
is interacting with {Pi}i∈[n]\M which uses inputs {xi = {yi,j , si,j}j∈[n]\{i}}i∈[n]\M . The output of this
experiment is the joint distribution of the view of the adversary A and the output of honest parties in
this interaction.

Hybrid H1: This experiment is defined as the previous one except that in this experiment the honest parties in-
stead of using inputs {xi = {yi,j , si,j}j∈[n]\{i}}i∈[n]\M , they are using input {x′i = {[k], si,j}j∈[n]\{i}}i∈[n]\M .
Specifically, the input values are set to a dummy input [k] instead of their real inputs {{yi,j}j∈[n]\{i}}i∈[n]\M .
The output of honest parties is generated identically to H0. The output of this experiment is the joint
distribution of the view of the adversary A and the output of honest parties in this interaction. The
indistinguishability from H0 follows from the receiver security of NM-OT.

Hybrid H2: This experiment is defined as the previous one except that the simulator of the non-malleable
OT is used. Specifically, the hybrid follows the same steps of SimmpOT. The output of this experiment is
the joint distribution of the view of the adversary A and the output of honest parties in this interaction.
The indistinguishability from H1 follows from the list non-malleability of m-out-of-k NM-OT. Suppose
that this is not the case, then we can show a reduction where the adversary A is playing as MIM that
participates in at most `(λ) = n(λ)2 sessions where an honest party acts as OT sender, and at most
`(λ) = n(λ)2 sessions where an honest party acts as OT receiver. Therefore, if A has a non-negligible
advantage in distinguishing H1 and H2 then MIM has a non-negligible advantage in breaking the list
non-malleability of NM-OT.

The hybrid H0 corresponds the real-world and the hybrid H2 to the ideal world. This concludes the proof.
ut

75

9 Four-Round Multiparty Computation

In this section, we present our MPC protocol. This is essentially an instantiation of the IPS compiler [IPS08],
following the approach of [IKSS21]. In a nutshell, the IPS compiler works as follows: a client-server protocol Φ,
with a security threshold of 1/3 is being executed to evaluate the function f that should be computed by the
MPC protocol, this protocol is termed the outer protocol. To emulate the servers in this setting, additionally
another semi-malicious MPC protocol, the inner-protocol Πh, is executed in parallel to take over the role of
the servers in the client-server protocol Φ. Due to the fact that the executed inner protocol is not maliciously
secure, the overall protocol also does not achieve malicious security. To achieve full malicious security, we
apply a cut-and-choose protocol. In more detail, we execute multiple instances of the inner protocol Πh

and run a cut-and-choose protocol over these instances, which prevents and adversary from the malicious
generation of messages. The cut-and-choose is realized using a watchlist protocol as described in the previous
section.

More formally, our construction makes use of the following building blocks.

– A MAC scheme MAC.
– The Outer Protocol Φ = (Φ1,Φ2), a 2-round, n-client, m-server MPC protocol achieving privacy with

knowledge of outputs (Remark 2.12) against a malicious, adaptive adversary corrupting up to n − 1
clients and t = (m− 1)/3 servers. We also need the protocol to be equipped with a simulator that works
in two phases. In the first phase, it computes a first round of the honest parties accordingly to Φ1 using
default inputs. In the second phase SimΦ takes as input all the shares sent from the malicious client to
the honest servers, all the shares sent from on the behalf of the honest clients to the corrupted servers,
and generates its output by querying the ideal functionality using the inputs of the corrupted parties. Φ
realizes the functionality g, wich takes the inputs (z1, . . . , zn), and does the following
1. For each i ∈ [n] parse zi as x1, ki.
2. Compute y := f(x1, . . . , xn).
3. Compute σi := MAC(ki, y) for all i ∈ [n]
4. Return (y, σ1, . . . , σn).
In our protocol, we set t = 2λn2 and refer to Section 2.9 for more detail about the outer protocol we use.
All the properties required by our outer protocol are satisfied by the construction proposed in [IKP10].

– The inner protocol Πh = (Πh,1,Πh,2,Πh,3) realized in Appendix A. Let Us and Cs be two disjoint subsets of
[m] with |Cs| ≤ t and |Us|− |Cs| = m. In our construction, we will consider parallel executions of the inner
protocol, and an ideal world parametrized by Sout. Sout takes as input {φi→h1 }i∈M,h∈Us {φi→h1 }i∈H,h∈Cs,
where, for h ∈ Us, {φi→h1 }i∈M represents the inputs used by corrupted parties in the h-th execution of
the inner protocol, and for h ∈ Cs, {φi→h1 }i∈H,h∈Cs represents the inputs used by the honest parties in the
h-th execution of the inner protocol. On these inputs, Sout runs the second phase of SimΦ thus obtaining
φh2 , for each h ∈ Us.

– A list-simulatable secure Watchlist Protocol WL = (WL1,WL2,WL3) as realized in Section 8 for the
functionality F list,X

OT where X is defined by all the possible outputs that can be returned by the following
process (X is parametrized by the input of the honest parties xi for each i ∈ H, where H denotes the
indices-set of the honest parties).
1. Initialize the empty list Y . For each i ∈ H

(a) Choose a random MAC key ki ← {0, 1}∗ and set zi := (xi, ki).
(b) Compute (φi→1

1 , . . . , φi→m1)← Φ1(1λ, i, zi).
(c) Sample ri,h ← {0, 1}∗ for all h ∈ [m] and set yi,j := {ri,h, φi→h1 }.
(d) add yi,j to Y .

2. return Z = {Y, . . . , Y } with |Z| = n.
Here, we denote by wl(r) the transcript in the first r rounds of WL.
We refer to Figure 9.1 for the formal description of the protocol.

76

Figure 9.1: MPC

Initialization: Each party Pi uses xi as its input.

Round 1.
1. Choose a random MAC key ki ← {0, 1}∗ and sets zi := (xi, ki).
2. Compute (φi→1

1 , . . . , φi→m1)← Φ1(1λ, i, zi).
3. Sample a random subset KI ⊂ [m] of size λ and set xi,j := Ki for all j ∈ [n] \ {i}.
4. Sample ri,h ← {0, 1}∗ for all h ∈ [m] and set yi,j := {ri,h, φi→h1 } for all j ∈ [n] \ {i}.
5. Compute wli1 ←WL1(1λ, i, {xi,j , yi,j}j∈[n]\{i},wl(0)).
6. Broadcast wli1.

Round 2.
1. Compute wli2 ←WL2(1λ, i, {xi,j , yi,j}j∈[n]\{i},wl(1)).
2. Compute πih,1 := Πh,1(1λ, i, φi→h1 ; ri,h) for all h ∈ [m].
3. Broadcast wli2, {πih,1}h∈[m].

Round 3.
1. Compute wli3 ←WL3(1λ, i, {xi,j , yi,j}j∈[n]\{i},wl(2)).
2. Compute πih,2 := Πh,2(1λ, i, φi→h1 , πh(1); ri,h) for all h ∈ [m].
3. Broadcast wli3, {πih,2}h∈[m].

Round 4.
1. Run outWL on (i, {xi,j , yi,j}j∈[n]\{i}), the random tape and wl(4) to obtain
{rj,h, φj→h1 }j∈[n]\{i},h∈Ki .

2. For all j ∈ [n] \ {i} and h ∈ Ki, check that:
– The PRG computations in φj→h1 are correct.
– For all ` ∈ [2], whether πjh,` = Πh,`(1λ, j, φj→h1 , πh(`− 1); rj,h).

3. If any of the above checks fail, output ⊥.
4. For all h ∈ [m], compute πih,3 := Πh,3(1λ, i, φi→h1 , πh(2); ri,h).
5. Broadcast {πih,3}h∈[m].

Output Computation.
1. Compute φh2 := outΠh(i, π(3)) for all h ∈ [m].
2. Compute (y, σ1, . . . , σn) := outΦ({φh2}h∈[m]).
3. Check if σi is a valid tag on y using the key ki. If the check is successful output y, otherwise

output ⊥.

Theorem 9.1. Let wl be the watchlist protocol for the high min-entropy random variable X defined above
that samples randomly from Φ1 and {0, 1}λ, let Πh be a secure inner-protocol, Φ a secure outer protocol and
MAC a secure MAC scheme, then the protocol Π is secure against sometimes aborting adversaries.

To prove the security of this protocol, we first present the corresponding simulator and afterwards describe
the different hybrids and argue their indistinguishability.

Simulator. Let A be an adversary that corrupts the set of parties indexed by M and let H := [n] \M . The
simulator of Πmpc then works as follows:

Figure 9.2: Simulator Sim of Πmpc

Let (Sim1
wl,Sim2

wl) denote the simulator for the watchlist protocol. Let SimΠh denote the simulator for
the h-th inner-protocol, and let SimΦ denote the simulator for the outer protocol Φ = (Φ1,Φ2, outΦ).

1) First message & extraction of the input: Sim behaves as follows:

77

1. Run the simulator Sim1
wl of the watchlist protocol. This simulator requires the generation of

multiple second and third rounds to estimate the abort probability of the adversary. This,
in turn, requires the generation of messages w.r.t. the protocol Πh, which in this step of the
simulation are honestly generated using shares, returned by executions of Φ on random inputs.

2. Afterwards, the simulator Sim1
wl will output the extracted inputs of the adversary A where

it acts as a receiver {xi,j}i∈M,j∈H , the inputs of the adversary A where it acts as a sender
{yi,j}i∈M,j∈H and the integer d. Note that {yi,j}i∈M,j∈H represents the input-randomness
pairs the adversary has used to compute the first second round of Πh.

3. Set C := {xi,j}i∈M,j∈H .
2) Answering the ideal watchlist functionality query: Sim answers the ideal functionality

query that is asked by Simwl in the following way:
1. Run Φ on random inputs d-times to obtain {φi→j,k1 }i∈H,j∈[m] for all k ∈ [d].
2. When Simwl submits its ideal functionality query ({xi,j}i∈M,j∈H , 1d) answer with the tuple

({φi→h,1, ri,1h }h=xi,j ,xi,j∈C , . . . , {φi→h,d, r
i,d
h }h=xi,j ,xi,j∈C).

3) Forcing the output: Sim behaves as follows for the output of the watchlist protocol:
1. When Sim2

wl is forcing the output {φi→h,k, ri,kh }h=xi,j ,xi,j∈C) with k ∈ [d], for each h ∈ [m],
i ∈ H act as follows with respect to the inner-protocol messages
Second round (a) If h ∈ C then instruct SimΠh to corrupt the i-th party and give

(φi→h,k1 , ri,kh,1) as its corresponding input-randomness pair. Let πi,kh,1 be the output
computed by this party.

(b) If h /∈ C define the oracle Dh,k which on input i returns φi→h,k1 . For each i ∈ H if
h /∈ C compute (πi,kh,1, st

i,k
h,1) := SimΠh(1λ, i, 0λ),

(c) Send πi,kh,1 to complete the second round.
Third round (a) If h ∈ C then compute the second round of Πh with respect to the i-th

party using the input-randomness pair (φi→h,k1 , ri,kh,1). Let πi,kh,2 be the output computed
by this party.

(b) If h /∈ C compute (πi,kh,2, φ
i→h,k
1) := SimD

h,k

Πh
(1λ, i, πh(1), sti,kh,1).

(c) Send πi,kh,2 to complete the third round.
2. After the simulator Sim2

wl has forced the output on the adversary A, it will output the
corresponding index k ∈ [d] for which the forcing was successful. The following steps all proceed
w.r.t. the k′’th instance.

Sim checks the correctness of the openings:
1. Initialize the empty set C ′.
2. For each h ∈ [m], check if there exists some j ∈ H such that for every i ∈M,yi,j contains the

input and the randomness that explains the messages sent by corrupted parties in Πh as well
as the correct PRG computations. If not, it adds h to C ′.

3. If such a j exists, then for every i ∈M , use (φi→h,k1 , ri,kh,1) present in yi,j as the consistent input
and randomness used by the corrupted party Pi in the protocol Πh.

5) Further corruption of Φ based on opening: Sim distinguishes between two cases:
1. If |C ′| > λn2, then Sim instructs the ideal functionality to send abort to all the honest parties

and outputs the view of the adversary.
2. If |C ′| ≤ λn2, then for each i ∈ H, Sim chooses a random subset Ki of [m] of size λ. If for any
h ∈ Ki, {yj,i}j∈M contains inconsistent input and randomness, then Sim instructs the ideal
functionality to send abort to i. We denote by H ′ the subset of honest parties H ′ ⊂ H of
honest parties that did not abort.

6) Gerneration of the fourth round:
1. When Sout sends the query {zi := (xi, ki)}i∈M sends {xi}i∈M to the ideal functionality f .
2. Upon receiving y, compute σi := MAC(ki, y) for all i ∈ [n] and send (y, σ1, . . . , σn) to Sout.
3. Return whatever SimΠh returns for every h ∈ [m].

78

8) Output computation: Do as follows to compute the final output:
1. If H ′ 6= H, instruct the ideal functionality to output abort to all the honest parties.
2. For all h ∈ [m], compute φh2 as (y′, σ′1, . . . , σ′n) := outΠh(πh(3)).
3. Check if y′ = y and for each i ∈ H that σ′i = σi. For every i ∈ H, such that the above checks

pass, the ideal functionality is instructed to deliver the outputs to Pi. All other parties are
instructed to abort.

Sim also keeps a count of its overall running time and if it reaches 2λ steps it outputs fail.

Running time of the Simulator. The running time of this simulator depends on the running time of the
simulator for the watchlist protocol Simwl, the simulator for the inner-protocol SimΠh and the simulator for
the outer protocol Φ. Since all of these simulators run in expected polynomial time, also the simulator Sim
runs in expected polynomial time.

Hybrid Transactions Now, we prove the security of the previously described protocol and start by
introducing the different hybrids:
Hybrid H0: This hybrid corresponds to the execution of the protocol in the real world.
Hybrid H1: In this hybrid, the watchlist protocol wl is not executed honestly anymore but simulated, i.e.

the simulator Simwl = (Sim1
wl,Sim2

wl) is run. Simwl interacts with an ideal functionality parametrized by
X . In the hybrid, the messages of the inner protocol executions are computed accordingly to what the
simulator Simwl samples from X . The indistinguishability between this and the previous hybrid follows
from the security of the watchlist protocol wl and is proven in Lemma 9.2.

Hybrid H2: In this hybrid, the set C ′ is defined as described in the simulator and if the size of C ′ is bigger
than λn2, the honest parties abort. The indistinguishability between this and the previous hybrid is
proven in Lemma 9.3.

Hybrid H3: In this hybrid, the messages of the inner-protocol Πh executions are simulated. The indistin-
guishability between this and the previous hybrid follows from the security of the inner-protocol Πh and
the security of the outer protocol Φ. We refer to Figure 9.3 for the formal description of the hybrid, and
to Lemma 9.4 for the formal proof.

Figure 9.3: Hybrid H3

1) First message & extraction of the input: Sim behaves as follows:
1. Run the simulator Sim1

wl (recall that the ideal world for the watchlist protocol is
parametrized by X as defined in H1) until it returns the extracted inputs of the ad-
versary A where it acts as a receiver {xi,j}i∈M,j∈H , the inputs of the adversary A where it
acts as a sender {yi,j}i∈M,j∈H and the integer d. Note that {yi,j}i∈M,j∈H represents the
input-randomness pairs the adversary has used to compute the first second round of Πh.

2. Set C := {xi,j}i∈M,j∈H .
2) Answering the ideal watchlist functionality query: Sim answers the ideal functionality

query that is asked by Simwl in the following way:
1. Run Φ using the honest parties’ inputs d-times (using fresh randomness every time) thus

obtaining {φi→j,k1 }i∈H,j∈[m] for all k ∈ [d].
2. When Simwl submits its ideal functionality query ({xi,j}i∈M,j∈H , 1d) answer with the tuple

({φi→h,1, ri,1h }h=xi,j ,xi,j∈C , . . . , {φi→h,d, r
i,d
h }h=xi,j ,xi,j∈C).

3) Forcing the output: Sim behaves as follows for the output of the watchlist protocol:
1. When Sim2

wl is forcing the output {φi→h,k, ri,kh }h=xi,j ,xi,j∈C) with k ∈ [d], for each h ∈ [m],
i ∈ H act as follows with respect to the inner-protocol messages
Second round (a) If h ∈ C then instruct SimΠh to corrupt the i-th party and give

(φi→h,k1 , ri,kh,1) as its corresponding input-randomness pair. Let πi,kh,1 be the output
computed by this party.

79

(b) If h /∈ C define the oracle Dh,k which on input i returns φi→h,k1 . For each i ∈ H if
h /∈ C compute (πi,kh,1, st

i,k
h,1) := SimΠh(1λ, i, 0λ),

(c) Send πi,kh,1 to complete the second round.
Third round (a) If h ∈ C then compute the second round of Πh with respect to the

i-th party using the input-randomness pair (φi→h,k1 , ri,kh,1). Let πi,kh,2 be the output
computed by this party.

(b) If h /∈ C compute (πi,kh,2, φ
i→h,k
1) := SimD

h,k

Πh
(1λ, i, πh(1), sti,kh,1).

(c) Send πi,kh,2 to complete the third round.
2. After the simulator Sim2

wl has forced the output on the adversary A, it will output the
corresponding index k ∈ [d] for which the forcing was successful. The following steps all
proceed w.r.t. the k′’th instance.

Sim checks the correctness of the openings:
1. Initialize the empty set C ′.
2. For each h ∈ [m], check if there exists some j ∈ H such that for every i ∈M,yi,j contains

the input and the randomness that explains the messages sent by corrupted parties in Πh

as well as the correct PRG computations. If not, it adds h to C ′.
3. If such a j exists, then for every i ∈M , use (φi→h,k1 , ri,kh,1) present in yi,j as the consistent

input and randomness used by the corrupted party Pi in the protocol Πh.
5) Further corruption of Φ based on opening: Sim distinguishes between two cases:

1. If |C ′| > λn2, then make all the honest parties to abort.
2. If |C ′| ≤ λn2, then for each i ∈ H, Sim chooses a random subset Ki of [m] of size λ. If

for any h ∈ Ki, {yj,i}j∈M contains inconsistent input and randomness, then Sim instructs
the ideal functionality to send abort to i. We denote by H ′ the subset of honest parties
H ′ ⊂ H of honest parties that did not abort.

6) Gerneration of the fourth round:
1. When Sout sends the query {zi := (xi, ki)}i∈M compute y ← f(x1, . . . , xn) (i.e., use the

honest inputs, and the inputs returned from Sout to compute the output of the computation).
2. Compute σi := MAC(ki, y) for all i ∈ [n] and send (y, σ1, . . . , σn) to Sout.
3. Return whatever SimΠh returns for every h ∈ [m].

8) Output computation: Do as follows to compute the final output:
1. If H ′ 6= H, instruct the ideal functionality to output abort to all the honest parties.
2. For all h ∈ [m], compute φh2 as (y′, σ′1, . . . , σ′n) := outΠh(πh(3)).
3. Return y′.

Sim also keeps a count of its overall running time and if it reaches 2λ steps it outputs fail.

Hybrid H4: In this hybrid the messages of the honest parties for the outer protocol Φ are computed with
respect to a default input. I.e., in the rewinding threads and in the main thread, for each i ∈ H, the i-th
party computes (φi→1

1 , . . . , φi→m1)← Φ1(1λ, i, zi) where zi = 0. The indistinguishability between this and
the previous hybrid comes from the security of the outer protocol and from the fact that we deal with a
sometimes aborting adversary. We refer to Lemma 9.5

Hybrid H5: In this hybrid we make the following change. In the output phase, we recover (y′, σ1, . . . , σ1)
as in the previous hybrid and then check if y′ = y and if for each i ∈ H, if σ′i = σi. For every i ∈ H,
such that the above check passes, we instruct the ideal functionality to deliver the output of Pi. For all
the other parties, we instruct them to abort. In Lemma 9.6 we show that H4 and H4 are statistically
indistinguishable from the security of the MAC scheme.
The proof ends with the observation that H5 is identically distributed to the ideal world execution.

Lemma 9.2 (Indistinguishability of hybrids H0 and H1). Let WL be a secure watchlist protocol, then
the hybrids H0 and H1 are indistinguishable.

80

Proof. We prove this lemma by contradiction. We assume an adversary A that successfully distinguishes
between the hybrids H0 and H1 and use it to construct an adversary A′ that breaks the list-simulateability of
the underlying watchlist-protocol. The adversary A′ behaves as follows:

The adversary A′ acts as an augmented machine between the challenger of the underlying watchlist
protocol wl and the adversary A. In more detail, upon receiving the first round of the watchlist protocol
{wli1}i∈H , the adversary A′ forwards it to the adversary to receive the first round of the watchlist protocol from
the adversary {wli1}i∈M . For all further queries, i.e. {wlr1}i∈H for all r ∈ {2, 3}, which also includes rewinds
that are performed by the underlying challenger, the adversary A′ computes the corresponding messages of
the inner protocol Πh honestly for all h ∈ [m] and i ∈ H. Furthermore, during all these interactions with
the underlying challenger, the reduction also learns the value that is used by the challenger as an input to
generate its message. This value is used by the reduction to generate the other messages that require the
input of the watchlist protocol.

In case that the underlying challenger generates the messages of the watchlist protocol honestly, the
adversary A′ simulates H0 towards A and in the case that the underlying challenger simulates the messages
of the watchlist protocol, then the adversary A′ simulates H1 towards A. This concludes the proof of the
lemma. ut

Lemma 9.3 (Indistinguishability of hybrids H1 and H2). The hybrids H1 and H2 are statistically
indistinguishable.

Proof. This proof works exactly in the same way as the proof of [IKSS21, Claim 6.7]. We recap it here
verbatim for completeness. Fix any honest party Pi. Note that Pi aborts in H2 if |Ki ∩C ′| 6= 0. We show that
if |C ′| > λn2 then the probability of |Ki ∩ C ′| = 0 is negligible.

Note that Ki is distributed as a random subset of [m] of size λ. We now upper bound the probability that
|Ki ∩ C ′| = 0.

Pr[|Ki ∩ C ′| = 0] =
(
m−|C′|

λ

)(
m
λ

)
<

(
m−λn2

λ

)(
m
λ

)
= (m− λn2)!

m!
(m− λ)!

(m− λ− λn2)!
< (1− λ/m)λn

2

< 2−O(λ)

The lemma now follows from a standard union bound over the set of all honest parties. ut

Lemma 9.4 (Indistinguishability of hybrids H2 and H3). Let Πh be a secure inner-protocol and Φ be
a secure outer protocol then the hybrids H2 and H3 are indistinguishable.

Proof. The proof follows from the observation that the security of our protocol Πh described in Appendix A
holds under parallel composition, and from the fact that Sout satisfies Definition A.1. Indeed, due to the
security of Φ we have that the following distributions are indistinguishable for every {zi}i∈H
{{φi→h1 }i∈H,h∈Cs, {φh2}h∈Us : ∀i ∈ H (φi→1

1 , . . . , φi→m1)← Φ1(1λ, i, zi),∀h ∈ Us, φh2 ← Φ2(h, (φ1→h
1 , . . . , φn→h1))}

{{φi→h1 }i∈H,h∈Cs, {φh2}h∈Us : ∀i ∈ H (φi→1
1 , . . . , φi→m1)← Φ1(1λ, i, zi),∀h ∈ Us, φh2 ← SimΦ({φi→h1 }i∈H,h∈Cs,

{φi→h1 }i∈M,k∈Us}
condition on answering to a query of SimΦ of the form {zi}i∈M as follows

1. For each i ∈ [n] parse zi as x1, ki.
2. Compute y := f(x1, . . . , xn).

81

3. Compute σi := MAC(ki, y) for all i ∈ [n]
4. Return (y, σ1, . . . , σn).

ut

Lemma 9.5 (Indistinguishability of hybrids H2 and H3). If Φ is a secure outer protocol, then H2 and
H3 are indistinguishable.

Proof. We argue that if an adversary distinguishes between the two hybrids then we can contradict the fact
that the first rounds generated from the honest parties are identically distributed, regardless of the input
used to compute the messages of Φ1. The proof works as follows. We fix a first round and second round of the
execution executed accordingly to H2 (and H3). Note that by definition, the simulator of inner protocols does
not need the input to compute the first round (which is sent in the second round). We define an auxiliary
input, that contains all the information that can be extracted from the messages generated from the adversary
in the first and in the second rounds. This in particular means that we can check whether the first round of
i-th execution of the inner protocol has been computed correctly, for each i ∈ [m]. We can also extract the
receiver’s inputs from the watchlist protocol. We denote the indices of all the inner protocol executions that
have been computed incorrectly by the adversary and the indices that are input by the adversary as part
of the watchlist protocol executions (when the adversary acts as the receiver) with Bad, and the remaining
indices with Good. We give this auxiliary input to our reduction, which works as follows.

1. If |Bad| ≥ λn2 then return a random bit and stop, else send to the challenger Bad, to denote the indices
of the corrupted parties.

2. Upon receiving the shares {φi→h1 }i∈H,h∈[Bad], instruct Dh to return the share {φi→h1 }i∈H whenever SimΠh

makes a query, for each h ∈ Bad. Instruct Dh to return a random value whenever SimΠh makes a query,
for each h ∈ Good.

3. Complete the third round of the protocol using the inner protocol simulators answering to their queries
as described above, and by running the simulator of the watchlist protocol (note that this simulator can
run in straight-line due to the information we have in the auxiliary input).

4. Upon receiving the third round of the protocol from the adversary, the watchlist simulator returns
{rj,h, φj→h1 }j∈M,h∈[m]. If the number of invalid defenses received is greater or equal than λn2 then return
a random bit and stop, else send {rj,h, φj→h1 }j∈M,h∈[m] to the challenger.

5. Upon receiving {φh2}h∈Good, use the φh2 to answer the query to the ideal world that SimΠh makes, for each
h ∈ Good.

6. Complete the remaining steps of the protocol following H2 (and H3), and return whatever the adversary
returns.

The proof ends with the observation that if the messages of the challenger have been simulated (i.e., computed
with respect to a default input), then the adversary’s behavior corresponds to the one he has in H2, else it
corresponds to H2. ut

Lemma 9.6 (Indistinguishability of hybrids H3 and H4). Let MAC be a secure MAC scheme, then the
hybrids H3 and H4 are indistinguishable.

Proof. Therefore, the only difference between the two hybrids is that in H4 it is checked that y = y′ and that
for each i ∈ H σ′i = σi. For the honest parties where this check fails, they are instructed to abort. All other
honest parties are instructed to output y. In hybrid H4, on the other hand, the honest parties are instructed
to do the MAC verification and, depending on the result, they abort or output y′. If an honest party does not
abort in H4, then the correctness of the verification procedure implies that it does not abort in H3. Assume
that there exists an honest party Pi that aborts in H3, but that does not abort with non-negligible probability
in H5, then this means that (y′, σ′i) 6= (y, σi) and that the verification procedure on (y′, σ′i) outputs 1. This
contradicts the security of the MAC scheme and therefore concludes the proof. ut

Theorem 9.1 further implies the following corollary.

82

Corollary 9.7. Let wl be the watchlist protocol for the high min-entropy random variable X defined above,
let Πh be a secure inner-protocol, Φ a secure outer protocol and MAC a secure MAC scheme, then Π realizes
any input-less functionality with black-box use of the primitives against any PPT adversaries.

To argue that our corollary holds, we observe the following. A malicious generic PPT adversary is able to
perform two types of attacks: it can learn the inputs of the honest parties and it can force wrong outputs on
the honest parties. In the case of input-less functionalities, there is nothing to learn about the honest parties’
inputs. Hence, we need to make sure that the adversary cannot force an incorrect output (i.e., the probability
that an output occurs in the ideal world should be the same as the probability that the same output occurs in
the real world up to a negligible factor). If an adversary forces the honest parties to produce a wrong output,
then it must be that these honest parties have received an accepting transcript (i.e., no abort was triggered).
Therefore, by Theorem 9.1 (and by the definition of sometimes aborting security), there exists a simulator,
which directly results in the claim of Corollary 9.7. Note that this implication may not hold if we assume
security against non-aborting adversaries (i.e., adversaries that abort with negligible probability only).

Acknowledgements

This work is supported in part by DARPA under Cooperative Agreement HR0011-20-2-0025, the Algorand
Centers of Excellence programme managed by Algorand Foundation, NSF grants CNS-2246355, CCF-2220450
and CNS-2001096, US-Israel BSF grant 2015782, Amazon Faculty Award, Cisco Research Award and Sunday
Group. Any views, opinions, findings, conclusions or recommendations contained herein are those of the
author(s) and should not be interpreted as necessarily representing the official policies, either expressed or
implied, of DARPA, the Department of Defense, the Algorand Foundation, or the U.S. Government. The U.S.
Government is authorized to reproduce and distribute reprints for governmental purposes notwithstanding
any copyright annotation therein.

References

AAG+16. D. Aggarwal, S. Agrawal, D. Gupta, H. K. Maji, O. Pandey, and M. Prabhakaran. Optimal computational
split-state non-malleable codes. In TCC 2016-A, Part II, LNCS 9563, pages 393–417. Springer, Heidelberg,
January 2016. (Page 12.)

ABG+20. B. Applebaum, Z. Brakerski, S. Garg, Y. Ishai, and A. Srinivasan. Separating two-round secure computation
from oblivious transfer. In ITCS 2020, pages 71:1–71:18. LIPIcs, January 2020. (Pages 86, 94, and 95.)

ACJ17. P. Ananth, A. R. Choudhuri, and A. Jain. A new approach to round-optimal secure multiparty computation.
In CRYPTO 2017, Part I, LNCS 10401, pages 468–499. Springer, Heidelberg, August 2017. (Page 3.)

ADN+19. D. Aggarwal, I. Damgård, J. B. Nielsen, M. Obremski, E. Purwanto, J. Ribeiro, and M. Simkin. Stronger
leakage-resilient and non-malleable secret sharing schemes for general access structures. In CRYPTO 2019,
Part II, LNCS 11693, pages 510–539. Springer, Heidelberg, August 2019. (Page 13.)

AIR01. W. Aiello, Y. Ishai, and O. Reingold. Priced oblivious transfer: How to sell digital goods. In EURO-
CRYPT 2001, LNCS 2045, pages 119–135. Springer, Heidelberg, May 2001. (Pages 3 and 12.)

AJL+12. G. Asharov, A. Jain, A. López-Alt, E. Tromer, V. Vaikuntanathan, and D. Wichs. Multiparty computation
with low communication, computation and interaction via threshold FHE. In EUROCRYPT 2012, LNCS
7237, pages 483–501. Springer, Heidelberg, April 2012. (Page 15.)

BD18. Z. Brakerski and N. Döttling. Two-message statistically sender-private OT from LWE. In TCC 2018,
Part II, LNCS 11240, pages 370–390. Springer, Heidelberg, November 2018. (Pages 3, 11, and 12.)

BGI+18. E. Boyle, N. Gilboa, Y. Ishai, H. Lin, and S. Tessaro. Foundations of homomorphic secret sharing. In
ITCS 2018, pages 21:1–21:21. LIPIcs, January 2018. (Pages 86, 94, and 95.)

BGJ+18. S. Badrinarayanan, V. Goyal, A. Jain, Y. T. Kalai, D. Khurana, and A. Sahai. Promise zero knowledge
and its applications to round optimal MPC. In CRYPTO 2018, Part II, LNCS 10992, pages 459–487.
Springer, Heidelberg, August 2018. (Pages 3, 4, 5, and 9.)

BHP17. Z. Brakerski, S. Halevi, and A. Polychroniadou. Four round secure computation without setup. In
TCC 2017, Part I, LNCS 10677, pages 645–677. Springer, Heidelberg, November 2017. (Page 3.)

83

BMR90. D. Beaver, S. Micali, and P. Rogaway. The round complexity of secure protocols (extended abstract). In
22nd ACM STOC, pages 503–513. ACM Press, May 1990. (Pages 3 and 95.)

CCG+20. A. R. Choudhuri, M. Ciampi, V. Goyal, A. Jain, and R. Ostrovsky. Round optimal secure multiparty
computation from minimal assumptions. In TCC 2020, Part II, LNCS 12551, pages 291–319. Springer,
Heidelberg, November 2020. (Pages 3 and 19.)

CGL16. E. Chattopadhyay, V. Goyal, and X. Li. Non-malleable extractors and codes, with their many tampered
extensions. In 48th ACM STOC, pages 285–298. ACM Press, June 2016. (Page 13.)

COWZ22. M. Ciampi, R. Ostrovsky, H. Waldner, and V. Zikas. Round-optimal and communication-efficient multiparty
computation. In EUROCRYPT 2022, Part I, LNCS 13275, pages 65–95. Springer, Heidelberg, May / June
2022. (Page 3.)

CRSW22. M. Ciampi, D. Ravi, L. Siniscalchi, and H. Waldner. Round-optimal multi-party computation with
identifiable abort. In EUROCRYPT 2022, Part I, LNCS 13275, pages 335–364. Springer, Heidelberg,
May / June 2022. (Page 3.)

GGH+13. S. Garg, C. Gentry, S. Halevi, M. Raykova, A. Sahai, and B. Waters. Candidate indistinguishability
obfuscation and functional encryption for all circuits. In 54th FOCS, pages 40–49. IEEE Computer Society
Press, October 2013. (Page 13.)

GIS18. S. Garg, Y. Ishai, and A. Srinivasan. Two-round MPC: Information-theoretic and black-box. In TCC 2018,
Part I, LNCS 11239, pages 123–151. Springer, Heidelberg, November 2018. (Pages 86, 94, and 95.)

GJK15. V. Goyal, A. Jain, and D. Khurana. Witness signatures and non-malleable multi-prover zero-knowledge
proofs. Cryptology ePrint Archive, Report 2015/1095, 2015. https://eprint.iacr.org/2015/1095.
(Page 13.)

GK96. O. Goldreich and A. Kahan. How to construct constant-round zero-knowledge proof systems for NP.
Journal of Cryptology, 9(3):167–190, June 1996. (Pages 23, 34, and 44.)

GKP17. S. Garg, S. Kiyoshima, and O. Pandey. On the exact round complexity of self-composable two-party com-
putation. In EUROCRYPT 2017, Part II, LNCS 10211, pages 194–224. Springer, Heidelberg, April / May
2017. (Page 10.)

GMPP16. S. Garg, P. Mukherjee, O. Pandey, and A. Polychroniadou. The exact round complexity of secure
computation. In EUROCRYPT 2016, Part II, LNCS 9666, pages 448–476. Springer, Heidelberg, May 2016.
(Page 3.)

GMW87. O. Goldreich, S. Micali, and A. Wigderson. How to play any mental game or A completeness theorem for
protocols with honest majority. In 19th ACM STOC, pages 218–229. ACM Press, May 1987. (Page 3.)

Goy11. V. Goyal. Constant round non-malleable protocols using one way functions. In 43rd ACM STOC, pages
695–704. ACM Press, June 2011. (Page 3.)

GPR16. V. Goyal, O. Pandey, and S. Richelson. Textbook non-malleable commitments. In 48th ACM STOC, pages
1128–1141. ACM Press, June 2016. (Pages 10 and 11.)

GRRV14. V. Goyal, S. Richelson, A. Rosen, and M. Vald. An algebraic approach to non-malleability. In 55th FOCS,
pages 41–50. IEEE Computer Society Press, October 2014. (Page 10.)

GS18. S. Garg and A. Srinivasan. Two-round multiparty secure computation from minimal assumptions. In
EUROCRYPT 2018, Part II, LNCS 10821, pages 468–499. Springer, Heidelberg, April / May 2018.
(Page 88.)

GSZ20. V. Goyal, A. Srinivasan, and C. Zhu. Multi-source non-malleable extractors and applications. Cryptology
ePrint Archive, Report 2020/157, 2020. https://eprint.iacr.org/2020/157. (Page 13.)

HHPV18. S. Halevi, C. Hazay, A. Polychroniadou, and M. Venkitasubramaniam. Round-optimal secure multi-party
computation. In CRYPTO 2018, Part II, LNCS 10992, pages 488–520. Springer, Heidelberg, August 2018.
(Pages 3 and 10.)

HHPV21. S. Halevi, C. Hazay, A. Polychroniadou, and M. Venkitasubramaniam. Round-optimal secure multi-party
computation. Journal of Cryptology, 34(3):19, July 2021. (Page 7.)

HK12. S. Halevi and Y. T. Kalai. Smooth projective hashing and two-message oblivious transfer. Journal of
Cryptology, 25(1):158–193, January 2012. (Page 12.)

HKN+05. D. Harnik, J. Kilian, M. Naor, O. Reingold, and A. Rosen. On robust combiners for oblivious transfer
and other primitives. In EUROCRYPT 2005, LNCS 3494, pages 96–113. Springer, Heidelberg, May 2005.
(Page 4.)

IKP10. Y. Ishai, E. Kushilevitz, and A. Paskin. Secure multiparty computation with minimal interaction. In
CRYPTO 2010, LNCS 6223, pages 577–594. Springer, Heidelberg, August 2010. (Pages 14, 15, and 76.)

IKSS21. Y. Ishai, D. Khurana, A. Sahai, and A. Srinivasan. On the round complexity of black-box secure MPC. In
CRYPTO 2021, Part II, LNCS 12826, pages 214–243, Virtual Event, August 2021. Springer, Heidelberg.
(Pages 3, 4, 5, 6, 7, 8, 11, 12, 13, 15, 17, 48, 50, 53, 63, 65, 74, 76, and 81.)

84

https://eprint.iacr.org/2015/1095
https://eprint.iacr.org/2020/157

IKSS22. Y. Ishai, D. Khurana, A. Sahai, and A. Srinivasan. Round-optimal black-box protocol compilers. In
EUROCRYPT 2022, Part I, LNCS 13275, pages 210–240. Springer, Heidelberg, May / June 2022. (Page 87.)

IKSS23. Y. Ishai, D. Khurana, A. Sahai, and A. Srinivasan. Round-optimal black-box mpc in the plain model.
Cryptology ePrint Archive, Paper 2023/1173, 2023. https://eprint.iacr.org/2023/1173. (Page 3.)

IPS08. Y. Ishai, M. Prabhakaran, and A. Sahai. Founding cryptography on oblivious transfer - efficiently. In
CRYPTO 2008, LNCS 5157, pages 572–591. Springer, Heidelberg, August 2008. (Pages 3, 5, 8, and 76.)

Kal05. Y. T. Kalai. Smooth projective hashing and two-message oblivious transfer. In EUROCRYPT 2005, LNCS
3494, pages 78–95. Springer, Heidelberg, May 2005. (Pages 3 and 12.)

Kil88. J. Kilian. Founding cryptography on oblivious transfer. In 20th ACM STOC, pages 20–31. ACM Press,
May 1988. (Page 3.)

KO04. J. Katz and R. Ostrovsky. Round-optimal secure two-party computation. In CRYPTO 2004, LNCS 3152,
pages 335–354. Springer, Heidelberg, August 2004. (Page 3.)

KOS03. J. Katz, R. Ostrovsky, and A. Smith. Round efficiency of multi-party computation with a dishonest
majority. In EUROCRYPT 2003, LNCS 2656, pages 578–595. Springer, Heidelberg, May 2003. (Page 3.)

KOS18. D. Khurana, R. Ostrovsky, and A. Srinivasan. Round optimal black-box “commit-and-prove”. In TCC 2018,
Part I, LNCS 11239, pages 286–313. Springer, Heidelberg, November 2018. (Page 10.)

Lin16. Y. Lindell. How to simulate it - A tutorial on the simulation proof technique. Cryptology ePrint Archive,
Report 2016/046, 2016. https://eprint.iacr.org/2016/046. (Pages 23, 24, 34, 35, and 44.)

MOSV22. V. Madathil, C. Orsini, A. Scafuro, and D. Venturi. From privacy-only to simulatable OT: black-box,
round-optimal, information-theoretic. In 3rd Conference on Information-Theoretic Cryptography, ITC 2022,
July 5-7, 2022, Cambridge, MA, USA, LIPIcs 230, pages 5:1–5:20. Schloss Dagstuhl - Leibniz-Zentrum für
Informatik, 2022. (Page 9.)

NP01. M. Naor and B. Pinkas. Efficient oblivious transfer protocols. In 12th SODA, pages 448–457. ACM-SIAM,
January 2001. (Page 3.)

Ode09. G. Oded. Foundations of Cryptography: Volume 2, Basic Applications. Cambridge University Press, USA,
1st edition, 2009. (Pages 13 and 14.)

Pas04. R. Pass. Bounded-concurrent secure multi-party computation with a dishonest majority. In 36th ACM
STOC, pages 232–241. ACM Press, June 2004. (Page 3.)

PS21. A. Patra and A. Srinivasan. Three-round secure multiparty computation from black-box two-round
oblivious transfer. In CRYPTO 2021, Part II, LNCS 12826, pages 185–213, Virtual Event, August 2021.
Springer, Heidelberg. (Page 88.)

PW10. R. Pass and H. Wee. Constant-round non-malleable commitments from sub-exponential one-way functions.
In EUROCRYPT 2010, LNCS 6110, pages 638–655. Springer, Heidelberg, May / June 2010. (Page 3.)

SSR08. B. Shankar, K. Srinathan, and C. P. Rangan. Alternative protocols for generalized oblivious transfer. In
Distributed Computing and Networking, pages 304–309, Berlin, Heidelberg, 2008. Springer Berlin Heidelberg.
(Pages 5 and 40.)

Wee10. H. Wee. Black-box, round-efficient secure computation via non-malleability amplification. In 51st FOCS,
pages 531–540. IEEE Computer Society Press, October 2010. (Page 3.)

Yao86. A. C.-C. Yao. How to generate and exchange secrets (extended abstract). In 27th FOCS, pages 162–167.
IEEE Computer Society Press, October 1986. (Page 3.)

85

https://eprint.iacr.org/2023/1173
https://eprint.iacr.org/2016/046

A Inner Protocol

In this section, we present our three-round semi-honest MPC protocol Πh with black box uses of semi-honest
oblivious transfer, in the dishonest majority setting, used for the protocol described in Section 9.

We start by introducing the formal security notion that our protocol achieves in Appendix A.1 and then
continue by presenting a protocol for the 3MULTPlus functionality in Appendix A.2. The 3MULTPlus takes
as inputs (x1, y1), (x2, y2) and (x3, y3) respectively from parties P1, P2 and P3 and delivers to all the parties
(and not only to P1, P2 and P3) x1 · x2 · x3 + y1 + y2 + y3.

In Appendix A.3, we then argue that a protocol for the 3MULTPlus functionality is sufficient to obtain
a three-round protocol for general functionalities by applying the round-preserving transformations of
[BGI+18,GIS18,ABG+20].

A.1 Definition

In this section, we specify the security requirements that we require from the inner-protocol Πh. Informally,
these are:

Semi-malicious Security: Suppose that at the end of the second round an adversary A produces input
and randomness that explains the messages sent by all the corrupted parties in the previous rounds, then
the last round message sent by the honest parties reveals no other information about their inputs except
what is leaked from the output of the function. Here, the output of the function is generated by sampling
the input on behalf of the honest parties from the distribution D. We call this property semi-malicious
security.

Honest Behavior: Assume that at the end of the second round, an adversary A is unable to produce input
and randomness that explain the messages sent by the corrupted parties in the previous rounds, then the
input of the honest parties are leacked to the adversary. We call this property honest behavior.

Now, we present our definition more formally:

Syntax. The third-round inner protocol computing a function f is given by a tuple of algorithms (Π1, Π2, Π3,
outΠ) with the following syntax. For each round r ∈ [3], the i’th party in the protocol runs Πr on 1λ, the
index i, the private input xi and the transcript of the protocol in the first (r − 1) rounds to obtain πir. It
sends πir to every other party via a broadcast channel. We use π(r) to denote the transcript or Π in the first
r rounds. At the end of the interaction, parties run outΠ(π(3)) to compute the output.16

Definition A.1. We say that the protocol Π is an inner protocol for computing a function f with respect to
the distribution D if it satisfies the following properties:

Correctness: We say that the protocol Π correctly computes a function f if for every choice of inputs xi
for party Pi,

Pr[outΠ(π(3)) = f(x1, . . . , xn)] = 1,

where π(3) denotes the transcript of the protocol Π when the input of Pi is xi.
Security: We capture all the security properties in a real/ideal security game. Let A be an adversary corrupting

a subset of the parties indexed by the set M , let H be the set of indices denoting the honest parties and
let Sout be any stateful PPT algorithm such that for every {xi}i∈M {y : {xi}i∈H ← D, {xi}i∈M , y :=
f(x1, . . . , xn)} ≈ {y : {x′i}i∈M ← Sout({xi}i∈M), y′ := f({xi, x′j}i∈H,j∈M), y ← Sout(y′)}, the we require
the existence of a simulator SimΠh such that,

Real(A,D, {ri}i∈H) ≈c Ideal(A,SimΠh ,D,Sout),
16 In general, the output function additionally takes in the private input and randomness of a party to generate the

output. However, in our setting, the transcript of the protocol is publicly decodable, that is, the output is publicly
computable given the transcript [ABG+20].

86

where the real and ideal experiments are described in the figure below and for i ∈ H, ri is uniformly chosen
and {xi}i∈M are the input of the corrupted parties sent as part of their defence in the semi-malicious
case. SimΠh interacts with the ideal functionality, which takes as an input the inputs of the adversary
{xi}i∈M , applies Sout({xi}i∈M) to obtain {x′i}i∈M , samples the inputs on behalf of the honest parties
{xi}i∈H , computes y′ := f({xi, x′j}i∈H,j∈M), then computes y ← Sout(y′) and replies to the simulator
SimΠh with y.

Figure A.1: Security Game for the Inner Protocol

Real(A,D, {ri}i∈H)
1. For each i ∈ H sample xi ← D
2. For each r ∈ [2]:

(a) For each i ∈ H, compute πir := Πr(1λ, i, xi, π(r − 1); ri) where π(0) is the null string.
(b) Send {πir}i∈H to A.
(c) Receive {πir}i∈M from A. If r = 2, receive {πir, (xi, ri)}i∈M from A.

3. Check if the messages sent by the corrupted parties in π(2) are consistent with {xi, ri}i∈M .
4. Semi-Malicious Security: If they are consistent:

(a) For each i ∈ H, compute πi3 := Π3(1λ, i, xi, π(2); ri)
(b) Compute y := f(x1, . . . , xn).
(c) Send ({πi3}i∈H , y) to A.

5. Honest Behavior: If they are not consistent:
(a) For each i ∈ H, compute πi3 := Π3(1λ, i, xi, π(2); ri)
(b) Sent {πi3}i∈H to A.

6. Receive {πi3}i∈M from A.
7. Output the view of A and outΠ(π(3)).

Ideal(A,SimΠ ,D,Sout)

1. For each i ∈ H, compute πi1 := SimΠ(1λ, i, 0λ).
2. Send {πi1}i∈H to A and receive {πi1}i∈M from A.
3. For each i ∈ H, compute (πi2, {x̃i, r̃i}i∈H) := SimDΠ(1λ, i, π(1)).
4. Send {πi2}i∈H to A and receive {πi2, (xi, ri)}i∈M from A.
5. Check if the messages sent by the corrupted parties in π(2) are consistent with {xi, ri}i∈M .
6. Semi-Malicious Security: If they are consistent:

(a) Query the ideal functionality using {xi}i∈M to receive y.
(b) For each i ∈ H, compute πi3 := SimΠ(1λ, i, y, {xi, ri}i∈M , π(2)).
(c) Send ({πi3}i∈H , y) to A.

7. Honest Behavior: If they are not consistent:
(a) For each i ∈ H, compute πi3 := SimDΠ(1λ, i, π(2)).
(b) Send {πi3}i∈H to A.

8. Receive {πi3}i∈M from A.
9. Output the view of A and outΠ(π(3)).

A.2 Construction of the 3MULTPlus protocol

Before presenting how to construct the protocol for the 3MULTPlus functionality, we introduce the security
requirements that we require from the underlying OT protocol. These security requirements are the same
as the ones in [IKSS22, Appendix B.1] and, for its realization, we can rely on the protocol presented
in [IKSS22, Appendix A.1].

Syntax. Let OT = (OT1,OT2, outOT) be a two-round oblivious transfer protocol. The OT1 algorithm
takes in the security parameter 1λ and the receiver’s choice bit b and outputs the first round message ot1

87

along with a secret key sk. The OT2 algorithm takes in the first round message ot1, the sender inputs m0,m1
and outputs the sender message ot2. The outOT algorithm takes in the sender message ot2 and the secret key
sk and outputs the message mb. We say that the OT protocol is a two-round oblivious transfer with equivocal
receiver security [GS18,PS21] if it satisfies the following properties:

Correctness: For every input b of the receiver and m0,m1 of the sender:

Pr[outOT(ot2, (b, sk)) = mb] = 1,

where (ot1, sk)← OT1(1λ, b) and ot2 ← OT2(ot1,m0,m1).
Equivocal Receiver Security: There exists a special algorithm SimEq

OT that on input 1λ outputs (ot1, sk0, sk1)
such that for any b ∈ {0, 1},

{(ot1, skb) : (ot1, sk0, sk1)← SimEq
OT(1λ)} ≈c {(ot1, sk) : (ot1, sk)← OT1(1λ, b)}

Weak Adaptive Semi-Honest Sender Security: There exists a (stateful) simulator SimS such that
for every (stateful) adversary A corrupting the receiver and any sender inputs (m0,m1) (such that
|m0| = |m1|), we have:

{RealS(1λ,A, (m0,m1))}λ ≈c {IdealS(1λ,A,SimS , (m0,m1))}λ,

where the distributions RealS and IdealS are described in Fig. A.2.

Figure A.2: Real and ideal world for sender security

RealS(1λ,A, (m0,m1))

1. Sample uniform random tapes r for the
receiver and s for the sender.

2. Send r to A.
3. A outputs the receiver input b.
4. Generate the message msg1 using the input

and the random tape sampled above.
5. Run A(msg1).
6. If A outputs a special symbol corrupt,

then send the random tape of the sender
to A and output the view of A. Otherwise,
proceed to the next step.

7. Generate the last round message msg2 as
the honest sender and send it to A.

8. Output the view of A.

IdealS(1λ,A,SimS , (m0,m1))

1. Sample uniform random tape of the re-
ceiver r.

2. Send r to A.
3. A outputs the receiver input b.
4. Use the random tape r and the input b to

generate msg1.
5. Run A(msg1).
6. If A outputs a special symbol corrupt, then

run the simulator on (m0,m1) to obtain
the random tape of the sender. Send this to
A and output its view. Otherwise, proceed
to the next step.

7. Generate the last round message msg2 us-
ing SimS(b, r,mb) and send it to A.

8. Output the view of A.

Now, using the OT protocol descried above, we are ready to present our protocol for the 3MULTPlus
functionality, which follows the template of [PS21].

Figure A.3: 3MULTPlus of [PS21]

Initialization: Each party Pi uses (xi, yi) for i ∈ [3] as its input in the protocol below.
Round 1:

– P1 computes (ot1, sk)← OT1(1λ, x1).
– P2 chooses random bits x2,0, x2,1 ← {0, 1} subject to x2 = x2,0+x2,1 and computes (ot0

1, sk0)←
OT1(1λ, x2,0) and (ot1

1, sk1)← OT1(1λ, x2,1).
– P3 computes (ot3

1, sk3)← OT1(1λ, x3).

88

– P1 broadcasts ot1, P2 broadcasts (ot0
1, ot1

1) and P3 broadcasts ot3
1.

– For every i ∈ [3], Pi chooses a random additive secret sharing of 0 given by (δi1, δi2, δi3) and
sends the share δij to party Pj for j ∈ [3] \ {i} via private channels. We note that we can
simulate a single round of private channel messages in two-rounds over public channels by
making use of a two-round oblivious transfer.

Round 2:
– P2 computes ot2 ← OT2(ot1, (x2,0, sk0), (x2,1, sk1)). It then chooses random bits x2,0,0, x2,0,1 ←
{0, 1} subject to x2,0 = x2,0,0 + x2,0,1. It computes ot3

2 ← OT2(ot3
1, x2,0,0, x2,0,1).

– P3 chooses random bits x3,0, x3,1 ← {0, 1} subject to x3 = x3,0 + x3,1. For each b ∈ {0, 1}, it
first computes otb2 ← OT2(otb1, x3,0, x3,1). It then computes ot2 ← OT2(ot1, ot0

2, ot1
2).

– P2 sends ot2 to P1 via private channel and ot3
2 to P3 via private channel. P3 sends ot2 to P1

via private channel.
Round 3:

– For each i ∈ [3], Pi computes δi =
∑
j∈[3] δ

j
i .

– P2 sets z2 := x2,0,0 + y2 + δ2.
– P3 computes x2,0,x3 := outOT(ot3

2, (x3, sk3)) and sets z3 := x2,0,x3 + x3,0 + y3 + δ3.
– P1 computes (x2,x1 , skx1) := outOT(ot1, (x1, sk)) and otx1

2 := outOT(ot2, (x1, sk)). It then com-
putes x3,x2,x1

:= outOT(otx1
2 , (x2,x1 , skx1)). It then sets z1 := x3,x2,x1

+ y1 + δ1.
– P1 broadcasts z1, P2 broadcasts z2 and P3 broadcasts z3.

Output: Every party outputs z1 + z2 + z3.

Theorem A.2. Assuming the existence of equivocal oblivious transfer (see Definition Section 2.5), then the
3MULTPlus protocol described in Figure A.3 satisfies Definition A.1.
Proof. To prove this theorem, we first describe a simulator in Figure A.4 below.

Figure A.4: Simualtor Sim of 3MULTPlus

Round 1:
– To generate the first round messages of the honest parties, Sim does the following:

1. If P1 ∈ H, then Sim computes (ot1, sk′0, sk
′
1)← SimEq

OT(1λ).
2. If P2 ∈ H, then for each b ∈ {0, 1}, Sim computes (otb1, sk

′
b,0, sk

′
b,1)← SimEq

OT(1λ).
3. If P3 ∈ H, then Sim computes (ot3

1, sk
′′
0 , sk

′′
1)← SimEq

OT(1λ).
4. It sends the above computed messages on behalf of the honest parties to the adversary.

Round 2: On receiving the first round messages from A, the distribution D, Sim proceeds as follows:
1. If P2 ∈ H, sample (x2, y2) ← D and compute ot2 ← OT2(ot1, (x2,0, sk0), (x2,1, sk1)) with
x2,0, x2,1 ← {0, 1} subject to x2 = x2,0 + x2,1 and sk0 = sk′0,x2,0

, sk1 = sk′1,x2,1
. Similarly,

compute ot3
2 ← OT2(ot3

1, x2,0,0, x2,0,1), where x2,0,0, x2,0,1 ← {0, 1} subject to x2,0 = x2,0,0 +
x2,0,1.

2. If P3 ∈ H, sample (x3, y3)← D and compute otb2 ← OT2(otb1, x3,0, x3,1) for each b ∈ {0, 1} with
x3,0, x3,1 ← {0, 1} subject to x3 = x3,0 + x3,1. Afterwards, compute ot2 ← OT2(ot1, ot0

2, ot1
2).

Send the computed messages to A along with inputs {(xi, yi)}i∈H .
Round 3: On receiving the second round messages inputs and random tapes {(xi, yi, ri)}i∈M from A

we distinguish between two cases:
(a) At least one of the messages is inconsistent w.r.t. the inputs and
random tapes provided by A:

– Act for the honest parties as follows:
If P1 ∈ H:

1. Sample (x1, y1)← D.
2. Compute δ1 =

∑
j∈[3] δ

j
1.

3. Set sk := sk′x1
.

89

4. Compute (x2,x1 , skx1) := outOT(ot1, (x1, sk)) and otx1
2 := outOT(ot2, (x1, sk)). After-

wards, compute x3,x2,x1
:= outOT(otx1

2 , (x2,x1 , skx1)) and set z1 := x3,x2,x1
+ y1 + δ1.

5. Broadcast z1.
If P2 ∈ H:

1. Compute δ2 =
∑
j∈[3] δ

j
2.

2. Set z2 := x2,0,0 + y2 + δ2.
3. Broadcast z2.

If P3 ∈ H:
1. Compute δ3 =

∑
j∈[3] δ

j
3.

2. Set sk3 := sk′′x3
.

3. Compute x2,0,x3 := outOT(ot3
2, (x3, sk3)) and set z3 := x2,0,x3 + x3,0 + y3 + δ3.

4. Broadcast z3.
(b) All the messages are consistent w.r.t. the inputs and random
tapes provided by A:

– In this case, Sim queries the ideal functionality using {(xi, yi)}i∈M to obtain z. Then Sim
computes {zi}i∈M using the transcript and the random tape of the adversary as follows:
If P1 ∈M :

1. Compute δ1 =
∑
j∈[3] δ

j
1.

2. Compute (x2,x1 , skx1) := outOT(ot1, (x1, sk1)) and otx1
2 := outOT(ot2, (x1, sk1)), where

sk1 can be derived from the random tape of the adversary. Afterwards, compute
x3,x2,x1

:= outOT(otx1
2 , (x2,x1 , skx1)) and set z1 := x3,x2,x1

+ y1 + δ1.
If P2 ∈M :

1. Compute δ2 =
∑
j∈[3] δ

j
2.

2. Set z2 := x2,0,0 + y2 + δ2.
If P3 ∈M :

1. Compute δ3 =
∑
j∈[3] δ

j
3.

2. Compute x2,0,x3 := outOT(ot3
2, (x3, sk3)) and set z3 := x2,0,x3 + x3,0 + y3 + δ3. Here,

sk3 is computed using the random tape of the adversary.
Afterwards, choose {zi}i∈H uniformly such that

⊕
i∈H zi = z⊕

⊕
i∈M zi and send {zi}i∈H

to A.

Running time of the simulator. Since this simulator does not perform any rewinds, it clearly runs in
polynomial time.

To prove the theorem and the indistinguihsability between the real and the ideal world, we proceed using
a few hybrids. These hybrids are only interesting in the case that the adversary is consistent. In the case that
the adversary is inconsistent there is nothing that we need to prove. Therefore, the following hybrids are used
to argue security in the cast that the adversary is consistent and no corrupt command was issued.

Hybrid H0: This hybrid corresponds to the real world.
Hybrid H1: If P1 /∈ H, then this hybrid is skipped. Otherwise, compute (ot1, sk′0, sk

′
1) ← SimEq

OT(1λ),
set sk = sk′x1

with (x1, y1) ← D and proceed as in the honest protocol execution. This hybrid is
computationally indistinguishable to the hybrid H0, which can be shown by relying on the equivocal
receiver security of the OT protocol. We prove this transition more formally in Lemma A.3.

Hybrid H2: If P3 /∈ H, then this hybrid is skipped. Otherwise, compute (ot3
1, sk

′
0, sk

′
1) ← SimEq

OT(1λ),
set sk3 = sk′x3

with (x3, y3) ← D and proceed as in the honest protocol execution. This hybrid is
computationally indistinguishable to the previous hybrid, which can be shown by relying on the equivocal
receiver security of the OT protocol. The proof of the hybrid transition here is similar to the proof of the
hybrid transition from H0 to H1, therefore, we refer to this proof (Lemma A.3) for further details.

Hybrid H3: If P2 /∈ H, then this hybrid is skipped. Otherwise, for each b ∈ {0, 1}, compute (sk′b,0, sk
′
b,1)←

SimEq
OT(1λ), set sk0 = sk′0,x2,0

and sk1 = sk′1,x2,1
with (x2, y2) ← D and x2,0, x2,1 ← {0, 1} such that

x2 = x2,0 + x2,1. Afterwards, proceed as in the protocol execution. This hybrid is computationally

90

indistinguishable to the previous hybrid, which can be shown by relying on the equivocal receiver security
of the OT protocol. The proof of the hybrid transition here is similar to the proof of the hybrid transition
from H1 to H2 and H0 to H1, therefore, we refer to the proof of the transition from H0 to H1 (Lemma A.3)
for further details.

After this hybrid, we distinguish between two cases: first, the messages are inconsistent w.r.t. the inputs
and random tapes provided by A and, second, the messages are consistent w.r.t. the inputs and random
tapes provided by A. In the first, case, we simply rely on the equivocality of the OT protocol and behave as
described in the description of the simulator (Figure A.4) for the honest parties. In more detail, we behave as
in the honest execution of the protocol for the remaining rounds. In this case, the proof concludes here. In
the second case, the next hybrids after receiving the first round from A run in exponential time to extract
the inputs and randomness used by the adversary in the first round. The hybrids are defined as follows:

Hybrid H4: If P2 ∈ M or P1 ∈ H, this hybrid is skipped. Otherwise, ot2 is generated as ot2 ← OT2(ot1,
(x2,x1 , skx1), (x2,x1 , skx1)) instead of ot2 ← OT2(ot1, (x2,0, sk0), (x2,1, sk1)). This hybrid is computationally
indistinguishable to the hybrid H3, which can be shown by relying on the weak adaptive sender security
of the OT protocol. We prove this transition more formally in Lemma A.4.

Hybrid H5: If P2 ∈ M or P3 ∈ H, this hybrid is skipped. Otherwise, ot3
2 is generated as ot3

2 ← OT2(ot3
1,

x2,0,x3 , x2,0,x3) instead of ot3
2 ← OT2(ot3

1, x2,0,0, x2,0,1). This hybrid is computationally indistinguishable
to the previous hybrid, which can be shown by relying on he weak adaptive sender security of the OT
protocol. The proof of the hybrid transition here is similar to the proof of the hybrid transition from H3
to H4, therefore, we refer to this proof (Lemma A.4) for further details.

Hybrid H6: If P3 ∈ M or P2 ∈ H, this hybrid is skipped. Otherwise, otb2 is generated as otb2 ← OT2(otb1,
x3,x2,b , x3,x2,b) instead of otb2 ← OT2(otb1, x3,0, x3,1) for each b ∈ {0, 1}. This hybrid is computationally
indistinguishable to the previous hybrid, which can be shown by relying on the the weak adaptive sender
security of the OT protocol. The proof of the hybrid transition here is similar to the proof of the hybrid
transition from H3 to H4, therefore, we refer to this proof (Lemma A.4) for further details.

Hybrid H7: If P3 ∈ M or P1 ∈ H, this hybrid is skipped. Otherwise, ot2 is generated as ot2 ← OT2(ot1,
otx1

2 , otx1
2) instead of ot2 ← OT2(ot1, ot0

2, ot1
2). This hybrid is computationally indistinguishable to the

previous hybrid, which can be shown by relying on the the weak adaptive sender security of the OT
protocol. The proof of the hybrid transition here is similar to the proof of the hybrid transition from H3
to H4, therefore, we refer to this proof (Lemma A.4) for further details.

Hybrid H8: Let i∗ be the smallest integer in H. In this hybrid, the simulator queries the ideal functionality
using the inputs of the malicious parties and obtains z as a reply from the ideal functionality. Afterwards,
it sets zi∗ := z −

∑
j∈[3]\{i∗} zj instead of computing it as in the previous hybrid. In the previous hybrid

zi∗ has been computed as described in the protocol or, equivalently, as described in the first case of the
third round of the simulator. To compute zj for j ∈ [3] \ {i∗}, we follow the description of the third
round of the simulator, where we simply need to distinguish between the cases Pj ∈ M and Pj ∈ H.
The indistinguishability between this and the previous hybrid follows from the indistinguishability of the
outputs generated in the real-world and the ideal-world. We argue this hybrid transition more formally
in Lemma A.5.

Hybrid H9: For every i ∈ H and i 6= i∗, choose zi uniformly at random and compute zi∗ as described in the
previous hybrid. This hybrid is identically distributed to the previous one since δ1, δ2, δ3 are randomly
sampled, i.e. the indistinguishability between this and the previous hybrid follows from security of the
one-time pad, with δ as the key, which we prove in Lemma A.6.

Hybrid H10: If P3 ∈ M or P1 ∈ H, this hybrid is skipped. Otherwise, ot2 is generated as ot2 ←
OT2(ot1, ot0

2, ot1
2) instead of ot2 ← OT2(ot1, otx1

2 , otx1
2). This hybrid is computationally indistinguish-

able to the previous hybrid, which can be shown by relying on the sender security of the OT protocol.
The proof of the hybrid transition here is similar to the proof of the hybrid transition from H3 to H4,
therefore, we refer to this proof (Lemma A.4) for further details.

Hybrid H11: If P3 ∈ M or P2 ∈ H, this hybrid is skipped. Otherwise, otb2 is generated as otb2 ←
OT2(otb1, x3,0, x3,1) instead of otb2 ← OT2(otb1, x3,x2,b , x3,x2,b) for each b ∈ {0, 1}. This hybrid is com-
putationally indistinguishable to the previous hybrid, which can be shown by relying on the sender

91

security of the OT protocol. The proof of the hybrid transition here is similar to the proof of the hybrid
transition from H3 to H4, therefore, we refer to this proof (Lemma A.4) for further details.

Hybrid H12: If P2 ∈ M or P3 ∈ H, this hybrid is skipped. Otherwise, ot3
2 is generated as ot3

2 ←
OT2(ot3

1, x2,0,0, x2,0,1) instead of ot3
2 ← OT2(ot3

1, x2,0,x3 , x2,0,x3). This hybrid is computationally indis-
tinguishable to the previous hybrid, which can be shown by relying on the sender security of the OT
protocol. The proof of the hybrid transition here is similar to the proof of the hybrid transition from H3
to H4, therefore, we refer to this proof (Lemma A.4) for further details.

Hybrid H13: If P2 ∈ M or P1 ∈ H, this hybrid is skipped. Otherwise, ot2 is generated as ot2 ←
OT2(ot1, (x2,0, sk0), (x2,1, sk1)) instead of ot2 ← OT2(ot1, (x2,x1 , skx1), (x2,x1 , skx1)). This hybrid is com-
putationally indistinguishable to the hybrid H3, which can be shown by relying on the weak adaptive
sender security of the OT protocol. We prove this transition more formally in Lemma A.4. Since this
hybrid is identically distributed to the simulated distribution, the theorem follows.

ut

Lemma A.3 (Transition from H0 to H1). Assuming the equivocal receiver security of the OT protocol
OT, the hybrids H0 and H1 are computationally indistinguishable.

Proof. We prove this lemma by contradiction, we assume that there exists an adversary A that manages
to distinguish between the hybrids H0 and H1 with non-negligible probability. We use this adversary to
construct an adversary B that breaks the equivocal receiver security of the OT protocol OT with non-negligible
probability. We assume that P1 ∈ H, if this is not the case, then this hybrid transition is skipped.

Now, we describe the behavior of the adversary B interacting with the challenger of the equivocal receiver
security of the OT protocol OT and the adversary A. In the first step, the adversary B samples (x1, y1)← D,
submits x1 to the underlying challenger and receives as reply the message ot1 and the key sk corresponding
to x1, i.e. skx1 . Now, we distinguish between three cases: P2 ∈ H and P3 ∈ M , P2 ∈ M and P3 ∈ H, and,
P2, P3 ∈ M . In the first and second case, the adversary B generates the messages of the party P2 or P3,
respectively, as described in the first round of the protocol in Figure A.3. In the third case, the adversary B
does not do anything on behalf of the parties P2 and P3 and simply broadcasts the message ot1 that it has
received from the underlying challenger. For the remaining rounds, the adversary B behaves as described in
the protocol in Figure A.3.

We observe that if the underlying challenger generates the first round of the OT honestly, i.e. (ot1, sk)←
OT1(1λ, x1), then the hybrid H0 is emulated and if the underlying challenger generates the first round of the
OT using the equivocator, i.e. (ot1, sk′0, sk

′
1) ← SimEq

OT(1λ) and sk := sk′x1
, then the hybrid H1 is emulated

towards A. This directly results in the fact that if A can distinguish the hybrids H0 and H1 with non-negligible
probability then B can also distinguish between an honest and equivocal generation of the first OT message.
This concludes the proof of the lemma. ut

Lemma A.4 (Transition from H3 to H4). Assuming the sender security of the OT protocol OT, the
hybrids H3 and H4 are computationally indistinguishable.

Proof. This hybrid transition only happens under the assumption that the adversary provides consistent
transcripts and that P2 ∈ H and P1 ∈M . Otherwise this hybrid is skipped. Furthermore, we assume that
the input x1 of P1 is provided to the reduction as an auxiliary input, given a fixed first round of the protocol.

We prove this lemma by contradiction, we assume that there exists an adversary A that manages to
distinguish between the hybrids H3 and H4 with non-negligible probability. We use this adversary to construct
an adversary B that breaks the weak adaptive semi-honest sender security of the OT protocol OT with
non-negligible probability.

Now, we describe the behavior of the adversary B, which behaves on behalf of P2, interacting with the
challenger of the weak adaptive semi-honest sender security of the OT protocol OT and the adversary A. In
the first step, the adversary B generates otb1 using the equivocator for both b ∈ {0, 1}, i.e., (otb1, sk

′
b,0, sk

′
b,1)←

SimEq
OT(1λ) which it outputs as its first round message. If P3 ∈ H, it also generates its first round message ot3

1
using the equivocator, i.e., (ot3

1, sk
′′
0 , sk

′′
1)← SimEq

OT(1λ). To generate the second round message on behalf of

92

P2, B samples (x2, y2)← D and x2,0, x2,1 ← {0, 1} with the restriction that x2 = x2,0 + x2,1. Afterwards, it
sends ((x2,0, sk0), (x2,1, sk1)) to its underlying challenger and receives as a reply ot2 which it forwards to the
adversary. For the remaining rounds, the adversary B behaves as described in the protocol in Figure A.3.

We observe that if the underlying challenger generates the second round of the OT using both inputs, i.e.
ot2 ← OT2(ot1, (x2,0, sk0), (x2,1, sk1)), then the hybrid H3 is emulated and if the underlying challenger gener-
ates the second round of the OT using only a single message, i.e. ot2 ← OT2(ot1, (x2,x1 , skx1), (x2,x1 , skx1)),
then the hybrid H4 is emulated towards A. This directly results in the fact that if A can distinguish the
hybrids H3 and H4 with non-negligible probability then B can also break the weak adaptive semi-honest
sender security with non-negligible probability. This concludes the proof of the lemma.

ut

Lemma A.5 (Transition from H7 to H8). The hybrids H7 and H8 are computationally indistinguishable.

Proof. This hybrid transition only happens under the assumption that the adversary provides consistent
transcripts. Otherwise, this hybrid is skipped. Furthermore, we assume that the inputs (xi, yi) of Pi for all
i ∈M is provided to the reduction as an auxiliary input, given a fixed first round of the protocol.

We prove this lemma by contradiction, we assume that there exists an adversary A that manages to
distinguish between the hybrids H7 and H8 with non-negligible probability. We use this adversary to construct
an adversary B that distinguishes between the distributions induced by the real-world and the ideal-world.

The adversary B behaves as described in H7 until it receives the values (xi, yi)i∈M from the adversary A
using its auxiliary input and forwards those values to the underlying challenger. The underlying challenger now
samples {(xi, yi)}i∈H and then either computes z by evaluating f((x1, y1), . . . , (xn, yn)) or by first generating
{(x′i, y′i)}i∈M ← Sout({xi, yi}i∈M), then computing z′ := f({(xi, yi), (x′j , y′j)}i∈H,j∈M) and obtaining z ←
Sout(z′). Then, the value z is output to the adversary B. The adversary then proceeds as described in the
description of hybrid H8 to compute zi∗ .

We observe that if the underlying challenger generates the output as described in the real-world, then the
hybrid H7 is emulated and if the underlying challenger generates the output as described in the ideal-world,
then the hybrid H8 is emulated towards A. This directly results in the fact that if A can distinguish the hybrids
H7 and H8 with non-negligible probability then B can also distinguish between the real- and ideal-world. This
concludes the proof of the lemma. ut

Lemma A.6 (Transition from H8 to H9). The hybrids H8 and H9 are perfectly indistinguishable.

Proof. This hybrid transition only happens under the assumption that the adversary provides consistent
transcripts. Otherwise, this hybrid is skipped. Furthermore, we assume that the input x1 of P1 is provided to
the reduction as an auxiliary input, given a fixed first round of the protocol.

To prove this lemma, we distinguish between the following cases:

P1 ∈ H: In this case, the values zi for all i ∈ [3] \ ({1} ∪H) are computed as described in round 3 of the
simulator (Figure A.4) for the malicious Pi. To compute the value for the parties Pi for i ∈ H \ {1} we
interact with a one-time pad challenger and submit the query (x2,0,0+y2, 0) if P2 ∈ H or (x2,0,x3 +x3, y3, 0)
if P3 ∈ H. The reply received from this query is either the value z2 or z3 respectively. Afterwards, the
value z1 is computed as z1 := z

⊕
i∈[3]\{1} zi and broadcast by P1. From the security of the one-time pad,

it follows that the value zi for i ∈ H \ {1} is independent of the input xi and yi.
P1 /∈ H and P2 ∈ H: In this case, the values zi for all i ∈ [3] \ ({2}∪H) are computed as described in round

3 of the simulator (Figure A.4) for the malicious Pi. To compute the value for the parties Pi for i ∈ H \{i}
we interact with a one-time challenger and submit the query (x2,0,x3 + x3, y3, 0) if P3 ∈ H. The reply
received from this query is the value z3. Afterwards, the value z2 is computed as z2 := z

⊕
i∈[3]\{2} zi and

broadcast by P2. From the security of the one-time pad, it follows that the value zi for i ∈ H \ {2} is
independent of the input xi and yi.

P1, P2 /∈ H and P3 ∈ H: In this case, no more changes are needed compared to the previous hybrid and the
lemma follows directly.

ut

93

A.3 From 3MULTPlus to General MPC Functionality

In this section we recap the transformation of [BGI+18,GIS18,ABG+20] and argue that extends to Definition
A.1. Let us start by observing that the Lemma 6.1 of [ABG+20] could also be proven in the case of Definition
A.1.

Following [ABG+20] we consider polynomials over mn input variables, where each party contributes m
inputs. We assume that the polynomial is over Z2 and it is the sum of monomials of degree exactly 3. Let
Dinp be the distribution of the parties’ input. Let D be the distribution that draws the constant term 0 and
then samples randomly from {0, 1}. Let D′ be the distribution that samples two elements one from Dinp and
one from the uniform distribution over {0, 1}. Let D3deg be the distribution that draws from D and D′.

Lemma A.7. Let g : {0, 1}mn → {0, 1} be a degree-3 functionality over Z2. That is, g((x1, . . . , xm), . . . ,
(xmn−m+1, . . . , xmn)) =

∑
ai1...i3xi1xi2xi3 . There exists a protocol Π3deg for computing g, satisfying Definition

A.1, where the protocol Π3deg makes black-box use of the protocol Π3MULTPlus (described in Figure A.3) for
distribution D3deg for 3MULTPlus functionality satisfying Definition A.1 for distributions D and D′.

Proof. The proof is adapted from [ABG+20]. For every 3-sized subset {i1, i2, i3} ∈ [mn], the parties Pbij/mc+1,
where j ∈ [3] do the following:

– Party Pbij/mc+1 chooses a random bit riji1,i2,i3 .
– If ai1...i3 = 0 party Pbij/mc+1 on input (0, riji1,i2,i3) execute Π3MULTPlus, for j ∈ [3].
– Else, party Pbij/mc+1 on input (xij , r

ij
i1,i2,i3

) execute Π3MULTPlus, for j ∈ [3].

The parties then sum up their chosen random bits, namely
∑m
j=1 r

ij
i1,i2,i3

, and send them to every other party.
To obtain the output, the parties sum up the outputs from the executions of Π3MULTPlus with the sum of all
the random bits obtained from every party.

The correctness follows from [ABG+20]. Regarding security, let M ⊆ [n] be the set of corrupted parties.
Let Sim be the simulator described in Figure A.4 for Π3MULTPlus. The simulator Sim′ for Π3deg follows the same
steps (for all the executions of Π3MULTPlus) of Sim for the first and second rounds. At the end of the second
round, Sim′ obtains adversarial inputs (x(i−1)m+1, . . . , xim) and random tapes, for i ∈M and distinguishes
two cases:

(a)A behaved inconsistently in the first two rounds Sim′ follows the strategies of Sim described in
Round 3 (a) (Figure A.4) for all executions of Π3MULTPlus.

(b)Otherwise Sim′ queries the ideal functionality obtaining the output g. For every 3-sized subset {i1, i2, i3}
such that for each j ∈ [3], bij/mc+ 1 ∈ M and ai1...i3 = 1, the simulator adds the corresponding
adversarial inputs to g. Let g′ be the resulting value. Let i∗ /∈M be an arbitrary element. For every i 6= i∗

and i /∈M Sim sends a random bit as the sum of Pi’s random bits. For every 3-sized subset {i1, i2, i3}
such that for exists j ∈ [3], bij/mc+ 1 /∈M Sim′ follows the steps of Sim w.r.t. a random output. For i∗,
the simulator outputs g′ plus the sum of all the random bits chosen as the sum of its random bits.

The set of hybrids to consider for the transition from real-world execution to the experiment where Sim′
is executed is similar to the one described for Theorem A.2. In more detail, the hybrid H0 is described as the
hybrid H0 of Theorem A.2. Then, let k the number of executions of Π3MULTPlus, then we consider a set of k
hybrids where Hj

i , described as the hybrid Hi of Theorem A.2 but w.r.t. the j-th executions of Π3MULTPlus
(where the output of Π3MULTPlus is a random bit), with j ∈ [k] and i ∈ [4]. The final hybrid sends a random
bit as the sum of Pi’s random bits (for all i /∈M) and adjusts the output of the honest parties as Sim′ does.

The indistinguishability between the hybrids is argued similarly to Theorem A.2. ut

We are now ready to argue that the transformation of [BGI+18,GIS18,ABG+20] extends to Definition A.1.
Let Dinp be the distribution of the parties’ input. Let D be the distribution that samples two elements from
the uniform distribution over {0, 1} one from Dinp and the constant terms 0, 1, 0. Let Df be the distribution
that draws from D and D3deg.

94

Theorem A.8 ([BGI+18,GIS18,ABG+20]). Let f be an n-party functionality. There exists a protocol
for securely computing f satisfying Definition 6.1 w.r.t. distributions Df , where Πf makes black-box use of
the PRG and the protocols: (a) the protocol Π3MULTPlus (described in Figure A.3) for 3MULTPlus functionality
satisfying Definition A.1 w.r.t. distributions D (b) the protocol Π3deg (Lemma A.8) for degree-3 functionality
satisfying Definition A.1 w.r.t. distributions D3deg.

Proof. The proof is adapted from [ABG+20] (which is adapted from [GIS18]). Assume that f is represented
by a circuit comprised entirely of NAND gates. We recall the semantics of a BMR garbled gate. The BMR
garbling for a NAND gate g that takes wires a and b as input and the output wire is c is a set of values
{G̃ir1,r2

}r1,r2∈{0,1},i∈[n] where:

G̃ir1,r2
=
(

n⊕
i=1

Fkia,r1
(g, i, r1, r2)⊕ Fki

b,r1
(g, i, r1, r2)

)
⊕ kic,0 ⊕ (Xr1,r2 ∧ (kic,1 ⊕ kic,0))

where Xr1,r2 = ((
⊕n

i=1 λi,a ⊕ r1) · (
⊕n

i=1 λi,b ⊕ r2)⊕ 1) ⊕ (
⊕n

i=1 λi,c). Here, F is a PRF, kix,r where
x ∈ {a, b, c} and r ∈ {0, 1} is a PRF key, λi,x for x ∈ {a, b, c} are bits. The PRF keys kix,r and the bits λi,x
are chosen by each party before the first round of the protocol.

Note that each output bit of {G̃ir1,r2
}r1,r2∈{0,1},i∈[n] is a degree-3 functionality.

The protocol Πf has the following description:

– For every wire w, which is the input wire of a party Pi the other parties Pj will set λj,w = 0. The party
Pi will compute αw = λj,w ⊕ xw, where xw is the w-th bit of Pi’s input xi.

– For every αw, the party Pj , the party P who owns w and a dummy party P ′ execute Π3MULTPlus on input
((kiw,0 ⊕ kiw,1, kiw,0)(αw, 0)(1, 0)). All the parties receive kiw,αw .

– For every NAND gate g in f , the parties uses Π3deg to compute {G̃ir1,r2
}r1,r2∈{0,1},i∈[n].

– Evaluate the BMR garbled circuit to obtain the output.

As noticed by [ABG+20] in {G̃ir1,r2
}r1,r2∈{0,1},i∈[n] together with {kiw,αw , αw}w∈inp, constitutes a compu-

tationally private randomized encoding [BMR90]. Let SimRE be the simulator of the randomized encoding.
Let Sim3MULTPlus, Sim3deg be the simulators, respectively, for Π3MULTPlus and Π3deg (Lemma A.8). Let M ⊆ [n]
be the set of corrupted parties.

The simulator Sim for Πf follows the same steps (for all the executions of Π3MULTPlus and of Π3deg) of
Sim3MULTPlus and of Sim3deg for the first and second rounds. At the end of the second round, Sim obtains
adversarial inputs {xi}i∈M and random tapes and distinguishes two cases:

A behaved inconsistently in the first two rounds Sim follows the strategies of Sim3MULTPlus described
in Round 3 (a) (Figure A.4) for all executions of Π3MULTPlus, and the strategies of Sim3deg described in
point (a) of Lemma A.8 for all executions of Π3deg.

Otherwise Sim queries the ideal functionality obtaining the output out. For every NAND gate g in f , Sim
follows the strategies of SimRE (executed on input out and {xi}i∈M) to compute the output of Π3MULTPlus
and Π3deg, then she follows the strategies Sim3MULTPlus and of Sim3deg to set those outputs as the output
of the protocols Π3MULTPlus and Π3deg.

The indistinguishability between the hybrids follows from similar arguments to the one exposed for
Lemma A.8 and from the fact that {G̃ir1,r2

}r1,r2∈{0,1},i∈[n] together with {kiw,αw , αw}w∈inp, constitutes a
computationally private randomized encoding.

ut

95

	Introduction
	Preliminaries
	Bounded-Rewind Secure List 2-party Computation
	Sender List Simulatable OT
	Sender List Simulatable and Rewind-Secure Receiver Private OT
	List Sender Simulatable and B-rewind Receiver Private k-out-of-n OT
	Two-Party Computation
	List Non-Malleable OT
	Four-Round Multiparty Computation
	Inner Protocol

