6,016 research outputs found

    Learning to Rank based on Analogical Reasoning

    Full text link
    Object ranking or "learning to rank" is an important problem in the realm of preference learning. On the basis of training data in the form of a set of rankings of objects represented as feature vectors, the goal is to learn a ranking function that predicts a linear order of any new set of objects. In this paper, we propose a new approach to object ranking based on principles of analogical reasoning. More specifically, our inference pattern is formalized in terms of so-called analogical proportions and can be summarized as follows: Given objects A,B,C,DA,B,C,D, if object AA is known to be preferred to BB, and CC relates to DD as AA relates to BB, then CC is (supposedly) preferred to DD. Our method applies this pattern as a main building block and combines it with ideas and techniques from instance-based learning and rank aggregation. Based on first experimental results for data sets from various domains (sports, education, tourism, etc.), we conclude that our approach is highly competitive. It appears to be specifically interesting in situations in which the objects are coming from different subdomains, and which hence require a kind of knowledge transfer.Comment: Thirty-Second AAAI Conference on Artificial Intelligence (AAAI-18), 8 page

    Logic-Based Analogical Reasoning and Learning

    Full text link
    Analogy-making is at the core of human intelligence and creativity with applications to such diverse tasks as commonsense reasoning, learning, language acquisition, and story telling. This paper contributes to the foundations of artificial general intelligence by developing an abstract algebraic framework for logic-based analogical reasoning and learning in the setting of logic programming. The main idea is to define analogy in terms of modularity and to derive abstract forms of concrete programs from a `known' source domain which can then be instantiated in an `unknown' target domain to obtain analogous programs. To this end, we introduce algebraic operations for syntactic program composition and concatenation and illustrate, by giving numerous examples, that programs have nice decompositions. Moreover, we show how composition gives rise to a qualitative notion of syntactic program similarity. We then argue that reasoning and learning by analogy is the task of solving analogical proportions between logic programs. Interestingly, our work suggests a close relationship between modularity, generalization, and analogy which we believe should be explored further in the future. In a broader sense, this paper is a first step towards an algebraic and mainly syntactic theory of logic-based analogical reasoning and learning in knowledge representation and reasoning systems, with potential applications to fundamental AI-problems like commonsense reasoning and computational learning and creativity

    From Analogical Proportion to Logical Proportions

    Get PDF
    International audienceGiven a 4-tuple of Boolean variables (a, b, c, d), logical proportions are modeled by a pair of equivalences relating similarity indicators ( a∧b and a¯∧b¯), or dissimilarity indicators ( a∧b¯ and a¯∧b) pertaining to the pair (a, b), to the ones associated with the pair (c, d). There are 120 semantically distinct logical proportions. One of them models the analogical proportion which corresponds to a statement of the form “a is to b as c is to d”. The paper inventories the whole set of logical proportions by dividing it into five subfamilies according to what they express, and then identifies the proportions that satisfy noticeable properties such as full identity (the pair of equivalences defining the proportion hold as true for the 4-tuple (a, a, a, a)), symmetry (if the proportion holds for (a, b, c, d), it also holds for (c, d, a, b)), or code independency (if the proportion holds for (a, b, c, d), it also holds for their negations (a¯,b¯,c¯,d¯)). It appears that only four proportions (including analogical proportion) are homogeneous in the sense that they use only one type of indicator (either similarity or dissimilarity) in their definition. Due to their specific patterns, they have a particular cognitive appeal, and as such are studied in greater details. Finally, the paper provides a discussion of the other existing works on analogical proportions

    Ranking relations using analogies in biological and information networks

    Get PDF
    Analogical reasoning depends fundamentally on the ability to learn and generalize about relations between objects. We develop an approach to relational learning which, given a set of pairs of objects S={A(1):B(1),A(2):B(2),
,A(N):B(N)}\mathbf{S}=\{A^{(1)}:B^{(1)},A^{(2)}:B^{(2)},\ldots,A^{(N)}:B ^{(N)}\}, measures how well other pairs A:B fit in with the set S\mathbf{S}. Our work addresses the following question: is the relation between objects A and B analogous to those relations found in S\mathbf{S}? Such questions are particularly relevant in information retrieval, where an investigator might want to search for analogous pairs of objects that match the query set of interest. There are many ways in which objects can be related, making the task of measuring analogies very challenging. Our approach combines a similarity measure on function spaces with Bayesian analysis to produce a ranking. It requires data containing features of the objects of interest and a link matrix specifying which relationships exist; no further attributes of such relationships are necessary. We illustrate the potential of our method on text analysis and information networks. An application on discovering functional interactions between pairs of proteins is discussed in detail, where we show that our approach can work in practice even if a small set of protein pairs is provided.Comment: Published in at http://dx.doi.org/10.1214/09-AOAS321 the Annals of Applied Statistics (http://www.imstat.org/aoas/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Picking the one that does not fit - A matter of logical proportions

    Get PDF
    National audienceQuiz or tests about reasoning capabilities often pertain to the perception of similarity and dissimilarity between situations. Thus, one may be asked to complete a series of entities AA, BB, CC by an appropriate XX, or to pick the one that does not fit in a list. It has been shown that the first problem can receive a solution by solving analogical proportion equations between the representations of the entities in a logical setting, where we assume that XX should be such that AA is to BB as CC is to XX. In this paper, we focus on the second problem, and we show that it can be properly handled by means of heterogeneous proportions that are the logical dual of the homogeneous proportions involved in the modeling of analogical proportions and related proportions. Thus, the formal setting of logical proportions, to which homogeneous and heterogeneous proportions belong, provides an appropriate framework for handling the two problems in a coherent way. As it already exists for homogeneous proportions, a particular multiple-valued logic extension of heterogeneous proportions is discussed (indeed being an intruder in a group may be a matter of degree)

    Bilingual analogical proportions via hedges

    Full text link
    Analogical proportions are expressions of the form ``aa is to bb what cc is to dd'' at the core of analogical reasoning which itself is at the core of human and artificial intelligence. The author has recently introduced {\em from first principles} an abstract algebro-logical framework of analogical proportions within the general setting of universal algebra and first-order logic. In that framework, the source and target algebras have the {\em same} underlying language. The purpose of this paper is to generalize his unilingual framework to a bilingual one where the underlying languages may differ. This is achieved by using hedges in justifications of proportions. The outcome is a major generalization vastly extending the applicability of the underlying framework. In a broader sense, this paper is a further step towards a mathematical theory of analogical reasoning
    • 

    corecore