726 research outputs found

    Analog VLSI implementation for stereo correspondence between 2-D images

    Get PDF
    Many robotics and navigation systems utilizing stereopsis to determine depth have rigid size and power constraints and require direct physical implementation of the stereo algorithm. The main challenges lie in managing the communication between image sensor and image processor arrays, and in parallelizing the computation to determine stereo correspondence between image pixels in real-time. This paper describes the first comprehensive system level demonstration of a dedicated low-power analog VLSI (very large scale integration) architecture for stereo correspondence suitable for real-time implementation. The inputs to the implemented chip are the ordered pixels from a stereo image pair, and the output is a two-dimensional disparity map. The approach combines biologically inspired silicon modeling with the necessary interfacing options for a complete practical solution that can be built with currently available technology in a compact package. Furthermore, the strategy employed considers multiple factors that may degrade performance, including the spatial correlations in images and the inherent accuracy limitations of analog hardware, and augments the design with countermeasures

    Lie Group Model Neuromorphic Geometric Engine for Real-time Terrain Reconstruction from Stereoscopic Aerial Photos

    Get PDF
    In the 1980's, neurobiologist suggested a simple mechanism in primate visual cortex for maintaining a stable and invariant representation of a moving object: The receptive field of visual neurons has real-time transforms in response to motion, to maintain a stable representation. When the visual stimulus is changed due to motion, the geometric transform of the stimulus triggers a dual transform of the receptive field. This dual transform in the receptive fields compensates geometric variation in the stimulus. This process can be modelled using a Lie group method. The massive array of affine parameter sensing circuits will function as a smart sensor tightly coupled to the passive imaging sensor (retina) . Neural geometric engine is a neuromorphic computing device simulating our Lie group model of spatial perception of primate's primal visual cortex. We have developed the computer simulation and experimented on realistic and synthetic image data, and performed a preliminary research of using analog VLSI technology for implementation of the neural geometric engine. We have benchmark tested on DMA's terrain data with their result and have built an analog integrated circuit to verify the computational structure of the engine. When fully implemented on ANALOG VLSI chip, we will be able to accurately reconstruct 3-D terrain surface in real-time from stereoscopic imagery

    Phase-Based Binocular Perception of Motion in Depth: Cortical-Like Operators and Analog VLSI Architectures

    Get PDF
    We present a cortical-like strategy to obtain reliable estimates of the motions of objects in a scene toward/away from the observer (motion in depth), from local measurements of binocular parameters derived from direct comparison of the results of monocular spatiotemporal filtering operations performed on stereo image pairs. This approach is suitable for a hardware implementation, in which such parameters can be gained via a feedforward computation (i.e., collection, comparison, and punctual operations) on the outputs of the nodes of recurrent VLSI lattice networks, performing local computations. These networks act as efficient computational structures for embedded analog filtering operations in smart vision sensors. Extensive simulations on both synthetic and real-world image sequences prove the validity of the approach that allows to gain high-level information about the 3D structure of the scene, directly from sensorial data, without resorting to explicit scene reconstruction

    Event-based neuromorphic stereo vision

    Full text link

    Implementing Cepstral Filtering Technique using Gabor Filters

    Get PDF
    Cepstral filtering technique is applied on an interlaced image, the pattern similar to that which is found in layer IV of Primate Visual Cortex. Unless the signals from left and right eyes are placed simultaneously, the disparity cannot be detected. Therefore, it has a great significance in the sphere of stereo vision. It involves Power spectrum in computation, which is square of absolute of Fast Fourier Transform (FFT), is a complicated and hardware unfriendly. This paper shows the estimation of the Cepstral technique using a set of Gabor filters. The Ocular Dominance Column pattern analysis by the Gabor function is comparable to the perception in the human visual and makes the algorithm closer to biology. We propose an algorithm in which Gabor filters, instead of Power Spectrum, are applied to an interlaced image in the Cepstral algorithm. This scheme makes it hardware friendly as it gives the flexibility of working with modules which can be imitated in hardware. Building a FFT module is a tough task in analog circuit but determining Gabor Energy, an alternative to it, can be achieved by elementary circuits. The Phase, Energy Models and other methods use multi-lambda Gabor filters to compute disparity. The proposed method uses sum of absolute difference to choose a single Gabor filter of appropriate lambda that fits to find the disparity. The algorithm inherits the quality of both Gabor filter and Ocular Dominance Pattern and hence a biologically inspired and suitable for hardware realization. The proposed algorithm has been implemented on the test data image. A hardware scheme has also been proposed that can be used to estimate disparity and the idea can be extended in building complex modules that can perform real time - real image operations with a handful of resources as compared to employing complex digital FPGAs and CPLDs

    VLSI analogs of neuronal visual processing: a synthesis of form and function

    Get PDF
    This thesis describes the development and testing of a simple visual system fabricated using complementary metal-oxide-semiconductor (CMOS) very large scale integration (VLSI) technology. This visual system is composed of three subsystems. A silicon retina, fabricated on a single chip, transduces light and performs signal processing in a manner similar to a simple vertebrate retina. A stereocorrespondence chip uses bilateral retinal input to estimate the location of objects in depth. A silicon optic nerve allows communication between chips by a method that preserves the idiom of action potential transmission in the nervous system. Each of these subsystems illuminates various aspects of the relationship between VLSI analogs and their neurobiological counterparts. The overall synthetic visual system demonstrates that analog VLSI can capture a significant portion of the function of neural structures at a systems level, and concomitantly, that incorporating neural architectures leads to new engineering approaches to computation in VLSI. The relationship between neural systems and VLSI is rooted in the shared limitations imposed by computing in similar physical media. The systems discussed in this text support the belief that the physical limitations imposed by the computational medium significantly affect the evolving algorithm. Since circuits are essentially physical structures, I advocate the use of analog VLSI as powerful medium of abstraction, suitable for understanding and expressing the function of real neural systems. The working chip elevates the circuit description to a kind of synthetic formalism. The behaving physical circuit provides a formal test of theories of function that can be expressed in the language of circuits

    Algorithms for VLSI stereo vision circuits applied to autonomous robots

    Get PDF
    Since the inception of Robotics, visual information has been incorporated in order to allow the robots to perform tasks that require an interaction with their environment, particularly when it is a changing environment. Depth perception is a most useful information for a mobile robot to navigate in its environment and interact with its surroundings. Among the different methods capable of measuring the distance to the objects in the scene, stereo vision is the most advantageous for a small, mobile robot with limited energy and computational power. Stereoscopy implies a low power consumption because it uses passive sensors and it does not require the robot to move. Furthermore, it is more robust, because it does not require a complex optic system with moving elements. On the other hand, stereo vision is computationally intensive. Objects in the scene have to be detected and matched across images. Biological sensory systems are based on simple computational elements that process information in parallel and communicate among them. Analog VLSI chips are an ideal substrate to mimic the massive parallelism and collective computation present in biological nervous systems. For mobile robotics they have the added advantage of low power consumption and high computational power, thus freeing the CPU for other tasks. This dissertation discusses two stereoscopic methods that are based on simple, parallel cal- culations requiring communication only among neighboring processing units (local communication). Algorithms with these properties are easy to implement in analog VLSI and they are also very convenient for digital systems. The first algorithm is phase-based. Disparity, i.e., the spatial shift between left and right images, is recovered as a phase shift in the spatial-frequency domain. Gábor functions are used to recover the frequency spectrum of the image because of their optimum joint spatial and spatial-frequency properties. The Gábor-based algorithm is discussed and tested on a Khepera miniature mobile robot. Two further approximations are introduced to ease the analog VLSI and digital implementations. The second stereoscopic algorithm is difference-based. Disparity is recovered by a simple calculation using the image differences and their spatial derivatives. The algorithm is simulated on a digital system and an analog VLSI implementation is proposed and discussed. The thesis concludes with the description of some tools used in this research project. A stereo vision system has been developed for the Webots mobile robotics simulator, to simplify the testing of different stereo algorithms. Similarly, two stereo vision turrets have been built for the Khepera robot
    • …
    corecore