3,806 research outputs found

    Storage of phase-coded patterns via STDP in fully-connected and sparse network: a study of the network capacity

    Get PDF
    We study the storage and retrieval of phase-coded patterns as stable dynamical attractors in recurrent neural networks, for both an analog and a integrate-and-fire spiking model. The synaptic strength is determined by a learning rule based on spike-time-dependent plasticity, with an asymmetric time window depending on the relative timing between pre- and post-synaptic activity. We store multiple patterns and study the network capacity. For the analog model, we find that the network capacity scales linearly with the network size, and that both capacity and the oscillation frequency of the retrieval state depend on the asymmetry of the learning time window. In addition to fully-connected networks, we study sparse networks, where each neuron is connected only to a small number z << N of other neurons. Connections can be short range, between neighboring neurons placed on a regular lattice, or long range, between randomly chosen pairs of neurons. We find that a small fraction of long range connections is able to amplify the capacity of the network. This imply that a small-world-network topology is optimal, as a compromise between the cost of long range connections and the capacity increase. Also in the spiking integrate and fire model the crucial result of storing and retrieval of multiple phase-coded patterns is observed. The capacity of the fully-connected spiking network is investigated, together with the relation between oscillation frequency of retrieval state and window asymmetry

    The effect of heterogeneity on decorrelation mechanisms in spiking neural networks: a neuromorphic-hardware study

    Get PDF
    High-level brain function such as memory, classification or reasoning can be realized by means of recurrent networks of simplified model neurons. Analog neuromorphic hardware constitutes a fast and energy efficient substrate for the implementation of such neural computing architectures in technical applications and neuroscientific research. The functional performance of neural networks is often critically dependent on the level of correlations in the neural activity. In finite networks, correlations are typically inevitable due to shared presynaptic input. Recent theoretical studies have shown that inhibitory feedback, abundant in biological neural networks, can actively suppress these shared-input correlations and thereby enable neurons to fire nearly independently. For networks of spiking neurons, the decorrelating effect of inhibitory feedback has so far been explicitly demonstrated only for homogeneous networks of neurons with linear sub-threshold dynamics. Theory, however, suggests that the effect is a general phenomenon, present in any system with sufficient inhibitory feedback, irrespective of the details of the network structure or the neuronal and synaptic properties. Here, we investigate the effect of network heterogeneity on correlations in sparse, random networks of inhibitory neurons with non-linear, conductance-based synapses. Emulations of these networks on the analog neuromorphic hardware system Spikey allow us to test the efficiency of decorrelation by inhibitory feedback in the presence of hardware-specific heterogeneities. The configurability of the hardware substrate enables us to modulate the extent of heterogeneity in a systematic manner. We selectively study the effects of shared input and recurrent connections on correlations in membrane potentials and spike trains. Our results confirm ...Comment: 20 pages, 10 figures, supplement

    Multilayer Spiking Neural Network for Audio Samples Classification Using SpiNNaker

    Get PDF
    Audio classification has always been an interesting subject of research inside the neuromorphic engineering field. Tools like Nengo or Brian, and hardware platforms like the SpiNNaker board are rapidly increasing in popularity in the neuromorphic community due to the ease of modelling spiking neural networks with them. In this manuscript a multilayer spiking neural network for audio samples classification using SpiNNaker is presented. The network consists of different leaky integrate-and-fire neuron layers. The connections between them are trained using novel firing rate based algorithms and tested using sets of pure tones with frequencies that range from 130.813 to 1396.91 Hz. The hit rate percentage values are obtained after adding a random noise signal to the original pure tone signal. The results show very good classification results (above 85 % hit rate) for each class when the Signal-to-noise ratio is above 3 decibels, validating the robustness of the network configuration and the training step.Ministerio de Economía y Competitividad TEC2012-37868-C04-02Junta de Andalucía P12-TIC-130

    Musical notes classification with Neuromorphic Auditory System using FPGA and a Convolutional Spiking Network

    Get PDF
    In this paper, we explore the capabilities of a sound classification system that combines both a novel FPGA cochlear model implementation and a bio-inspired technique based on a trained convolutional spiking network. The neuromorphic auditory system that is used in this work produces a form of representation that is analogous to the spike outputs of the biological cochlea. The auditory system has been developed using a set of spike-based processing building blocks in the frequency domain. They form a set of band pass filters in the spike-domain that splits the audio information in 128 frequency channels, 64 for each of two audio sources. Address Event Representation (AER) is used to communicate the auditory system with the convolutional spiking network. A layer of convolutional spiking network is developed and trained on a computer with the ability to detect two kinds of sound: artificial pure tones in the presence of white noise and electronic musical notes. After the training process, the presented system is able to distinguish the different sounds in real-time, even in the presence of white noise.Ministerio de Economía y Competitividad TEC2012-37868-C04-0

    Adaptive Neural Coding Dependent on the Time-Varying Statistics of the Somatic Input Current

    Get PDF
    It is generally assumed that nerve cells optimize their performance to reflect the statistics of their input. Electronic circuit analogs of neurons require similar methods of self-optimization for stable and autonomous operation. We here describe and demonstrate a biologically plausible adaptive algorithm that enables a neuron to adapt the current threshold and the slope (or gain) of its current-frequency relationship to match the mean (or dc offset) and variance (or dynamic range or contrast) of the time-varying somatic input current. The adaptation algorithm estimates the somatic current signal from the spike train by way of the intracellular somatic calcium concentration, thereby continuously adjusting the neuronś firing dynamics. This principle is shown to work in an analog VLSI-designed silicon neuron

    An On-chip Trainable and Clock-less Spiking Neural Network with 1R Memristive Synapses

    Full text link
    Spiking neural networks (SNNs) are being explored in an attempt to mimic brain's capability to learn and recognize at low power. Crossbar architecture with highly scalable Resistive RAM or RRAM array serving as synaptic weights and neuronal drivers in the periphery is an attractive option for SNN. Recognition (akin to reading the synaptic weight) requires small amplitude bias applied across the RRAM to minimize conductance change. Learning (akin to writing or updating the synaptic weight) requires large amplitude bias pulses to produce a conductance change. The contradictory bias amplitude requirement to perform reading and writing simultaneously and asynchronously, akin to biology, is a major challenge. Solutions suggested in the literature rely on time-division-multiplexing of read and write operations based on clocks, or approximations ignoring the reading when coincidental with writing. In this work, we overcome this challenge and present a clock-less approach wherein reading and writing are performed in different frequency domains. This enables learning and recognition simultaneously on an SNN. We validate our scheme in SPICE circuit simulator by translating a two-layered feed-forward Iris classifying SNN to demonstrate software-equivalent performance. The system performance is not adversely affected by a voltage dependence of conductance in realistic RRAMs, despite departing from linearity. Overall, our approach enables direct implementation of biological SNN algorithms in hardware
    corecore