82 research outputs found

    Dual estimation: Constructing building energy models from data sampled at low rate

    Get PDF
    AbstractEstimation of energy models from data is an important part of advanced fault detection and diagnosis tools for smart energy purposes. Estimated energy models can be used for a large variety of management and control tasks, spanning from model predictive building control to estimation of energy consumption and user behavior. In practical implementation, problems to be considered are the fact that some measurements of relevance are missing and must be estimated, and the fact that other measurements, collected at low sampling rate to save memory, make discretization of physics-based models critical. These problems make classical estimation tools inadequate and call for appropriate dual estimation schemes where states and parameters of a system are estimated simultaneously. In this work we develop dual estimation schemes based on Extended Kalman Filtering (EKF) and Unscented Kalman Filtering (UKF) for constructing building energy models from data: in order to cope with the low sampling rate of data (with sampling time 15min), an implicit discretization (Euler backward method) is adopted to discretize the continuous-time heat transfer dynamics. It is shown that explicit discretization methods like the Euler forward method, combined with 15min sampling time, are ineffective for building reliable energy models (the discrete-time dynamics do not match the continuous-time ones): even explicit methods of higher order like the Runge–Kutta method fail to provide a good approximation of the continuous-time dynamics which such large sampling time. Either smaller time steps or alternative discretization methods are required. We verify that the implicit Euler backward method provides good approximation of the continuous-time dynamics and can be easily implemented for our dual estimation purposes. The applicability of the proposed method in terms of estimation of both states and parameters is demonstrated via simulations and using historical data from a real-life building

    Fault Detection for Systems with Multiple Unknown Modes and Similar Units

    Get PDF
    This dissertation considers fault detection for large-scale practical systems with many nearly identical units operating in a shared environment. A special class of hybrid system model is introduced to describe such multi-unit systems, and a general approach for estimation and change detection is proposed. A novel fault detection algorithm is developed based on estimating a common Gaussian-mixture distribution for unit parameters whereby observations are mapped into a common parameter-space and clusters are then identified corresponding to different modes of operation via the Expectation- Maximization algorithm. The estimated common distribution incorporates and generalizes information from all units and is utilized for fault detection in each individual unit. The proposed algorithm takes into account unit mode switching, parameter drift, and can handle sudden, incipient, and preexisting faults. It can be applied to fault detection in various industrial, chemical, or manufacturing processes, sensor networks, and others. Several illustrative examples are presented, and a discussion on the pros and cons of the proposed methodology is provided. The proposed algorithm is applied specifically to fault detection in Heating Ventilation and Air Conditioning (HVAC) systems. Reliable and timely fault detection is a significant (and still open) practical problem in the HVAC industry { commercial buildings waste an estimated 15% to 30% (20.8B−20.8B - 41.61B annually) of their energy due to degraded, improperly controlled, or poorly maintained equipment. Results are presented from an extensive performance study based on both Monte Carlo simulations as well as real data collected from three operational large HVAC systems. The results demonstrate the capabilities of the new methodology in a more realistic setting and provide insights that can facilitate the design and implementation of practical fault detection for systems of similar type in other industrial applications

    Practice and Innovations in Sustainable Transport

    Get PDF
    The book continues with an experimental analysis conducted to obtain accurate and complete information about electric vehicles in different traffic situations and road conditions. For the experimental analysis in this study, three different electric vehicles from the Edinburgh College leasing program were equipped and tracked to obtain over 50 GPS and energy consumption data for short distance journeys in the Edinburgh area and long-range tests between Edinburgh and Bristol. In the following section, an adaptive and robust square root cubature Kalman filter based on variational Bayesian approximation and Huber’s M-estimation is proposed to accurately estimate state of charge (SOC), which is vital for safe operation and efficient management of lithium-ion batteries. A coupled-inductor DC-DC converter with a high voltage gain is proposed in the following section to match the voltage of a fuel cell stack to a DC link bus. Finally, the book presents a review of the different approaches that have been proposed by various authors to mitigate the impact of electric buses and electric taxis on the future smart grid

    Optimal Control of Hybrid Systems and Renewable Energies

    Get PDF
    This book is a collection of papers covering various aspects of the optimal control of power and energy production from renewable resources (wind, PV, biomass, hydrogen, etc.). In particular, attention is focused both on the optimal control of new technologies and on their integration in buildings, microgrids, and energy markets. The examples presented in this book are among the most promising technologies for satisfying an increasing share of thermal and electrical demands with renewable sources: from solar cooling plants to offshore wind generation; hybrid plants, combining traditional and renewable sources, are also considered, as well as traditional and innovative storage systems. Innovative solutions for transportation systems are also explored for both railway infrastructures and advanced light rail vehicles. The optimization and control of new solutions for the power network are addressed in detail: specifically, special attention is paid to microgrids as new paradigms for distribution networks, but also in other applications (e.g., shipboards). Finally, optimization and simulation models within SCADA and energy management systems are considered. This book is intended for engineers, researchers, and practitioners that work in the field of energy, smart grid, renewable resources, and their optimization and control

    A Review on AI Control of Reactive Distillation for Various Applications

    Get PDF
    In this chapter, previous studies on reactive distillation process control including control using conventional as well as soft sensor control, membrane assisted reactive distillation design and simulation, estimation and control are discussed. The review of literature in different dimensions is carried out to explore the opportunities in the field of research work. The chapter is focused on dynamics and control of Reactive distillation, its control using Conventional Techniques, Model Predictive Control MPC), Reactive Distillation using Soft Sensors/Soft Controllers, Membrane assisted reactive distillation, Biodiesel in Reactive Divided Wall Column: Design and Control and Membrane reactive divided wall column. These control techniques are proposed and analyzed by many researchers. These techniques have potential use in process industries to have better soft sensor control of nonlinear processes

    On power system automation: a Digital Twin-centric framework for the next generation of energy management systems

    Get PDF
    The ubiquitous digital transformation also influences power system operation. Emerging real-time applications in information (IT) and operational technology (OT) provide new opportunities to address the increasingly demanding power system operation imposed by the progressing energy transition. This IT/OT convergence is epitomised by the novel Digital Twin (DT) concept. By integrating sensor data into analytical models and aligning the model states with the observed system, a power system DT can be created. As a result, a validated high-fidelity model is derived, which can be applied within the next generation of energy management systems (EMS) to support power system operation. By providing a consistent and maintainable data model, the modular DT-centric EMS proposed in this work addresses several key requirements of modern EMS architectures. It increases the situation awareness in the control room, enables the implementation of model maintenance routines, and facilitates automation approaches, while raising the confidence into operational decisions deduced from the validated model. This gain in trust contributes to the digital transformation and enables a higher degree of power system automation. By considering operational planning and power system operation processes, a direct link to practice is ensured. The feasibility of the concept is examined by numerical case studies.The electrical power system is in the process of an extensive transformation. Driven by the energy transition towards renewable energy resources, many conventional power plants in Germany have already been decommissioned or will be decommissioned within the next decade. Among other things, these changes lead to an increased utilisation of power transmission equipment, and an increasing number of complex dynamic phenomena. The resulting system operation closer to physical boundaries leads to an increased susceptibility to disturbances, and to a reduced time span to react to critical contingencies and perturbations. In consequence, the task to operate the power system will become increasingly demanding. As some reactions to disturbances may be required within timeframes that exceed human capabilities, these developments are intrinsic drivers to enable a higher degree of automation in power system operation. This thesis proposes a framework to create a modular Digital Twin-centric energy management system. It enables the provision of validated and trustworthy models built from knowledge about the power system derived from physical laws, and process data. As the interaction of information and operational technologies is combined in the concept of the Digital Twin, it can serve as a framework for future energy management systems including novel applications for power system monitoring and control, which consider power system dynamics. To provide a validated high-fidelity dynamic power system model, time-synchronised phasor measurements of high-resolution are applied for validation and parameter estimation. This increases the trust into the underlying power system model as well as the confidence into operational decisions derived from advanced analytic applications such as online dynamic security assessment. By providing an appropriate, consistent, and maintainable data model, the framework addresses several key requirements of modern energy management system architectures, while enabling the implementation of advanced automation routines and control approaches. Future energy management systems can provide an increased observability based on the proposed architecture, whereby the situational awareness of human operators in the control room can be improved. In further development stages, cognitive systems can be applied that are able to learn from the data provided, e.g., machine learning based analytical functions. Thus, the framework enables a higher degree of power system automation, as well as the deployment of assistance and decision support functions for power system operation pointing towards a higher degree of automation in power system operation. The framework represents a contribution to the digital transformation of power system operation and facilitates a successful energy transition. The feasibility of the concept is examined by case studies in form of numerical simulations to provide a proof of concept.Das elektrische Energiesystem befindet sich in einem umfangreichen Transformations-prozess. Durch die voranschreitende Energiewende und den zunehmenden Einsatz erneuerbarer EnergietrĂ€ger sind in Deutschland viele konventionelle Kraftwerke bereits stillgelegt worden oder werden in den nĂ€chsten Jahren stillgelegt. Diese VerĂ€nderungen fĂŒhren unter anderem zu einer erhöhten Betriebsmittelauslastung sowie zu einer verringerten SystemtrĂ€gheit und somit zu einer zunehmenden Anzahl komplexer dynamischer PhĂ€nomene im elektrischen Energiesystem. Der Betrieb des Systems nĂ€her an den physikalischen Grenzen fĂŒhrt des Weiteren zu einer erhöhten StöranfĂ€lligkeit und zu einer verkĂŒrzten Zeitspanne, um auf kritische Ereignisse und Störungen zu reagieren. Infolgedessen wird die Aufgabe, das Stromnetz zu betreiben anspruchsvoller. Insbesondere dort wo Reaktionszeiten erforderlich sind, welche die menschlichen FĂ€higkeiten ĂŒbersteigen sind die zuvor genannten VerĂ€nderungen intrinsische Treiber hin zu einem höheren Automatisierungsgrad in der Netzbetriebs- und SystemfĂŒhrung. Aufkommende Echtzeitanwendungen in den Informations- und Betriebstechnologien und eine zunehmende Menge an hochauflösenden Sensordaten ermöglichen neue AnsĂ€tze fĂŒr den Entwurf und den Betrieb von cyber-physikalischen Systemen. Ein vielversprechender Ansatz, der in jĂŒngster Zeit in diesem Zusammenhang diskutiert wurde, ist das Konzept des so genannten Digitalen Zwillings. Da das Zusammenspiel von Informations- und Betriebstechnologien im Konzept des Digitalen Zwillings vereint wird, kann es als Grundlage fĂŒr eine zukĂŒnftige Leitsystemarchitektur und neuartige Anwendungen der Leittechnik herangezogen werden. In der vorliegenden Arbeit wird ein Framework entwickelt, welches einen Digitalen Zwilling in einer neuartigen modularen Leitsystemarchitektur fĂŒr die Aufgabe der Überwachung und Steuerung zukĂŒnftiger Energiesysteme zweckdienlich einsetzbar macht. In ErgĂ€nzung zu den bereits vorhandenen Funktionen moderner NetzfĂŒhrungssysteme unterstĂŒtzt das Konzept die Abbildung der Netzdynamik auf Basis eines dynamischen Netzmodells. Um eine realitĂ€tsgetreue Abbildung der Netzdynamik zu ermöglichen, werden zeitsynchrone Raumzeigermessungen fĂŒr die Modellvalidierung und ModellparameterschĂ€tzung herangezogen. Dies erhöht die Aussagekraft von Sicherheitsanalysen, sowie das Vertrauen in die Modelle mit denen operative Entscheidungen generiert werden. Durch die Bereitstellung eines validierten, konsistenten und wartbaren Datenmodells auf der Grundlage von physikalischen GesetzmĂ€ĂŸigkeiten und wĂ€hrend des Betriebs gewonnener Prozessdaten, adressiert der vorgestellte Architekturentwurf mehrere SchlĂŒsselan-forderungen an moderne Netzleitsysteme. So ermöglicht das Framework einen höheren Automatisierungsgrad des Stromnetzbetriebs sowie den Einsatz von Entscheidungs-unterstĂŒtzungsfunktionen bis hin zu vertrauenswĂŒrdigen Assistenzsystemen auf Basis kognitiver Systeme. Diese Funktionen können die Betriebssicherheit erhöhen und stellen einen wichtigen Beitrag zur Umsetzung der digitalen Transformation des Stromnetzbetriebs, sowie zur erfolgreichen Umsetzung der Energiewende dar. Das vorgestellte Konzept wird auf der Grundlage numerischer Simulationen untersucht, wobei die grundsĂ€tzliche Machbarkeit anhand von Fallstudien nachgewiesen wird

    The importance of selecting the optimal number of principal components for fault detection using principal component analysis

    Get PDF
    Includes summary.Includes bibliographical references.Fault detection and isolation are the two fundamental building blocks of process monitoring. Accurate and efficient process monitoring increases plant availability and utilization. Principal component analysis is one of the statistical techniques that are used for fault detection. Determination of the number of PCs to be retained plays a big role in detecting a fault using the PCA technique. In this dissertation focus has been drawn on the methods of determining the number of PCs to be retained for accurate and effective fault detection in a laboratory thermal system. SNR method of determining number of PCs, which is a relatively recent method, has been compared to two commonly used methods for the same, the CPV and the scree test methods

    Integration of Large PV Power Plants and Batteries in the Electric Power System

    Get PDF
    The declining cost of renewables, the need for cleaner sources of energy, and environmental protection policies have led to the growing penetration of inverter-based resources such as solar photovoltaics (PV), wind, and battery energy storage systems (BESS) into the electric power system. The intermittent nature of these resources poses multiple challenges to the power grid and substantial changes in the conventional generation and electrical power delivery practices will be required to accommodate the large penetration of these renewable power plants. The impact of large solar PV penetration on both generation and transmission systems, and the use of BESS to mitigate some of the challenges due to solar PV penetration has been studied in this dissertation. One of the major challenges in evaluating the impact of inverter-based resources (IBR) such as solar PV systems is developing an equivalent model adequate to represent its operation. This work proposes a detailed solar PV model suitable for analyzing the configurations, design, and operation of multi-MW grid connected PV systems. This model which takes into account the contributions of the power electronics control and operation was used to evaluate the impact of transient changes in solar PV power on an example transmission system. The benefits of a battery system configuration connected to the grid through an independent inverter were analyzed and its operation during transient conditions was also evaluated. After developing a detailed solar PV and BESS modules for analyzing the effect of IBR on transmission systems, an innovative approach for evaluating the impact of solar PV plants on both generation and transmission system based on a practical minute-to-minute economic dispatch model was proposed. The study demonstrates that large solar PV penetration may lead to both over- and under-generation violations, and substantial changes to conventional generation dispatch and unit commitment will be required to accommodate the growing renewable solar PV penetration. The terminal voltage of a battery pack varies based on multiple parameters and cannot be modeled as a constant voltage source for a detailed analysis BESS operation. A novel approach for estimating the equivalent circuit parameters for utility-scale BESS using equipment typically available at the installation site was proposed in this dissertation. This approach can be employed by utilities for monitoring energy storage system operation, ensure safety and avoid lithium-ion battery thermal runaway . The new methods developed, configurations and modules proposed in this dissertation may be directly applicable or extended to a wide range of utility practices for evaluating the impact of renewable resources and estimating the maximum solar PV capacity a service area can accommodate without significant upgrades to existing infrastructures

    Fault detection for the Benfield process using a closed-loop subspace re-identification approach

    Get PDF
    Closed-loop system identification and fault detection and isolation are the two fundamental building blocks of process monitoring. Efficient and accurate process monitoring increases plant availability and utilisation. This dissertation investigates a subspace system identification and fault detection methodology for the Benfield process, used by Sasol, Synfuels in Secunda, South Africa, to remove CO2 from CO2-rich tail gas. Subspace identification methods originated between system theory, geometry and numerical linear algebra which makes it a computationally efficient tool to estimate system parameters. Subspace identification methods are classified as Black-Box identification techniques, where it does not rely on a-priori process information and estimates the process model structure and order automatically. Typical subspace identification algorithms use non-parsimonious model formulation, with extra terms in the model that appear to be non-causal (stochastic noise components). These extra terms are included to conveniently perform subspace projection, but are the cause for inflated variance in the estimates, and partially responsible for the loss of closed-loop identifiably. The subspace identification methodology proposed in this dissertation incorporates two successive LQ decompositions to remove stochastic components and obtain state-space models of the plant respectively. The stability of the identified plant is further guaranteed by using the shift invariant property of the extended observability matrix by appending the shifted extended observability matrix by a block of zeros. It is shown that the spectral radius of the identified system matrices all lies within a unit boundary, when the system matrices are derived from the newly appended extended observability matrix. The proposed subspace identification methodology is validated and verified by re-identifying the Benfield process operating in closed-loop, with an RMPCT controller, using measured closed-loop process data. Models that have been identified from data measured from the Benfield process operating in closed-loop with an RMPCT controller produced validation data fits of 65% and higher. From residual analysis results, it was concluded that the proposed subspace identification method produce models that are accurate in predicting future outputs and represent a wide variety of process inputs. A parametric fault detection methodology is proposed that monitors the estimated system parameters as identified from the subspace identification methodology. The fault detection methodology is based on the monitoring of parameter discrepancies, where sporadic parameter deviations will be detected as faults. Extended Kalman filter theory is implemented to estimate system parameters, instead of system states, as new process data becomes readily available. The extended Kalman filter needs accurate initial parameter estimates and is thus periodically updated by the subspace identification methodology, as a new set of more accurate parameters have been identified. The proposed fault detection methodology is validated and verified by monitoring process behaviour of the Benfield process. Faults that were monitored for, and detected include foaming, flooding and sensor faults. Initial process parameters as identified from the subspace method can be tracked efficiently by using an extended Kalman filter. This enables the fault detection methodology to identify process parameter deviations, with a process parameter deviation sensitivity of 2% or higher. This means that a 2% parameter deviation will be detected which greatly enhances the fault detection efficiency and sensitivity.Dissertation (MEng)--University of Pretoria, 2008.Electrical, Electronic and Computer Engineeringunrestricte

    Model-Based Enhanced Operation of Building Convective Heating Systems and Active Thermal Storage

    Get PDF
    This thesis presents an experimental and theoretical study of a reduced-order modelling methodology and dynamic response of convectively heated buildings and active thermal storage. A methodology was developed for the generation of control-oriented building models which can be used within model predictive control (MPC) or other model-based control strategies to satisfy occupant comfort and improve building-grid interaction. A methodology to identify and evaluate MPC strategies is presented to improve a building's energy flexibility. There is an emphasis on modelling building thermal mass and a dedicated thermal storage device. The two applications for reduced-order thermal modelling (buildings and dedicated active thermal energy storage devices) require different modelling approaches for control applications. Several case studies are introduced and are typical Quebec construction with convective-based heating systems: a detached low-mass house, a low-mass retail building, and a warehouse (with active thermal storage device). The residential building study outlined a methodology for multi-level control-oriented modelling with several zones and multiple floors. This multi-level approach allows the user to “zoom in and out” so that models at each control level remain manageable. In the second case study, implementation of MPC was presented for a conventional bank building to reduce the yearly utility bill and avoid the summer peak load penalty. A cost savings of 25% on the yearly electric utility bill and a peak power reduction of 38% were achieved. With the new optimized operation, the cost per square meter for the bank would decrease from 30.19/m2to30.19/m2 to 22.57/m2, or a yearly savings of $7.62/m2. The last case study comprises a 1650 m2 warehouse equipped with a dedicated active high-temperature thermal energy storage device. A methodology was presented for the development and analysis of control-oriented models for enhanced operation of the electric thermal storage device. The goal was to maximize the building energy flexibility the building could provide to the grid by evaluating the Building Energy Flexibility Index (BEFI). A BEFI of 55% to 100% was achieved. The average demand during the critical times was reduced between 36 kW and 65 kW and the utility cost to the customer can be reduced by 12-30%
    • 

    corecore