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ABSTRACT OF DISSERTATION

INTEGRATION OF LARGE PV POWER PLANTS AND BATTERIES IN THE

ELECTRIC POWER SYSTEM

The declining cost of renewables, the need for cleaner sources of energy, and

environmental protection policies have led to the growing penetration of inverter-

based resources such as solar photovoltaics (PV), wind, and battery energy storage

systems (BESS) into the electric power system. The intermittent nature of these

resources poses multiple challenges to the power grid and substantial changes in the

conventional generation and electrical power delivery practices will be required to

accommodate the large penetration of these renewable power plants. The impact of

large solar PV penetration on both generation and transmission systems, and the use

of BESS to mitigate some of the challenges due to solar PV penetration has been

studied in this dissertation.

One of the major challenges in evaluating the impact of inverter-based resources

(IBR) such as solar PV systems is developing an equivalent model adequate to rep-

resent its operation. This work proposes a detailed solar PV model suitable for

analyzing the configurations, design, and operation of multi-MW grid connected PV

systems. This model which takes into account the contributions of the power elec-

tronics control and operation was used to evaluate the impact of transient changes in

solar PV power on an example transmission system. The benefits of a battery system

configuration connected to the grid through an independent inverter were analyzed

and its operation during transient conditions was also evaluated.

After developing a detailed solar PV and BESS modules for analyzing the effect

of IBR on transmission systems, an innovative approach for evaluating the impact

of solar PV plants on both generation and transmission system based on a practical

minute-to-minute economic dispatch model was proposed. The study demonstrates

that large solar PV penetration may lead to both over- and under-generation viola-

tions, and substantial changes to conventional generation dispatch and unit commit-

ment will be required to accommodate the growing renewable solar PV penetration.



The terminal voltage of a battery pack varies based on multiple parameters and

cannot be modeled as a constant voltage source for a detailed analysis BESS oper-

ation. A novel approach for estimating the equivalent circuit parameters for utility-

scale BESS using equipment typically available at the installation site was proposed

in this dissertation. This approach can be employed by utilities for monitoring en-

ergy storage system operation, ensure safety and avoid lithium-ion battery “thermal

runaway”.

The new methods developed, configurations and modules proposed in this dis-

sertation may be directly applicable or extended to a wide range of utility practices

for evaluating the impact of renewable resources and estimating the maximum solar

PV capacity a service area can accommodate without significant upgrades to existing

infrastructures.

KEYWORDS: Solar PV, battery, hosting capacity, economic dispatch, PV penetra-

tion, parameter estimation
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Chapter 1

Introduction and Problem
Formulation

1.1 Background

Due to the rapid decline in cost, the need for clean alternative energy resources,

and favoring energy policies, the installed capacity of intermittent renewable energy

resources has been exponentially growing over the past two decades. Further growth is

expected with policy targets for renewable energy installations and decarbonization of

the world [1]. A significant portion of carbon and greenhouse gas emission is related

to electricity generation, therefore, the electric sector remains the main target for

renewable adoption.

The transition from conventional fossil-based electricity generation to renewable

sources poses a significant threat to the stability of the electric grid mainly due to

the intermittency of renewable sources. Hence, it is of timely interest to identify

the challenges related to high renewable systems penetration, propose alternatives

for maximizing energy from installed renewable systems, recommend approaches to

mitigate challenges related to intermittency, and estimate the maximum renewable
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hosting capacity for a specified network without significant upgrades to its existing

infrastructure.

Furthermore, significant changes in conventional generator operation and trans-

mission system planning will be required to accommodate increasing solar PV pen-

etration. Therefore, utilities and regulatory bodies need to evaluate the impact of

increasing solar PV penetration in their network while considering the responses of

conventional generators in order to estimate their system hosting capacity.

The impact of high renewable energy system penetration and the maximum inter-

mittent resources that can be connected to a transmission network will vary by circuit

and depend on multiple factors including the point of interconnection, thermal limit

of connecting transmission lines, and voltage violations. This makes it necessary to

exhaustively evaluate the impact of solar PV plant performance on a network circuit

and identify necessary upgrades required to ensure stable operation.

Battery energy storage systems (BESS) can in principle be integrated to mitigate

most of the challenges related to renewable sources intermittency. However, there

are substantial safety concerns in addition to the relatively high cost, preventing

global deployment of BESS. Hence, effective performance evaluation and monitoring

techniques will be required to ensure stable operation.

A detailed equivalent circuit model for battery energy storage systems can pro-

vide additional insight into its operation and evaluate its performance to ensure safe

utilization. Since utility-scale BESS typically include multiple cells with different

chemical composition connected in series and parallel, a straight-forward methodol-

ogy for estimation its equivalent circuit parameters using equipment readily available
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at the installation site is vital.

There are multiple configurations for integrating solar PV and BESS into the

power system. The selected configuration has multiple impacts on the system oper-

ation including the capacity factor, cost, efficiency, and overall stability. Also, the

characteristics of the battery system and its voltage variation range is required for

effective power electronics design.

This dissertation systematically evaluates the impact of integrating large solar

PV plant and BESS in the electric power system. One of the main contributions of

this dissertation is proposing a practical minute-to-minute economic dispatch model

capable of capturing the effect of solar PV intermittency and estimating the max-

imum capacity a generation portfolio can accommodate. Other example challenges

addressed in this study include the optimal sizing of a BESS for improving the PV

capacity factor and hosting capacity of a network and a novel technique for estimating

the equivalent circuit parameters for a utility-scale BESS.

1.2 Literature review

The integration of solar PV and other inverter-based resources (IBR) must respect

standards and grid codes enforced by the service area [2]. These standards provide

the technical specifications for testing, and validating the interoperability of utility-

scale and distributed renewable energy resources [3, 4]. However, these standards are

mostly focused on a single interconnection request and do not provide details related

to the combined impact of multiple inverter-based resources connection.

Until recently, inverter-based resources have been regulated to disconnected during
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transient disturbances or fault conditions that threaten the stability of the power

grid [5]. However, current studies have validated that IBR can contribute unique

functionalities that may improve the performance of the grid during transient and

steady-state conditions [6]. For systems with substantial inverter-based resources,

their disconnection from the grid during the transient period will not decrease the

disturbance but mostly likely intensify its impact on the grid [7].

Inverter based resources such as solar PV systems have been represented as con-

trollable current and power sources in average model simulation studies, which do not

require the evaluation of power electronics converter and control [8]. Since renewable

sources such as solar PV plants require adequate power electronics conversion system

to be connected to the ac grid, power electronic topologies with and without dc-dc

converter have been proposed for the design and simulation studies of solar PV sys-

tems [9]. Designs including wide band-gap devices, which increase the overall system

efficiency and in some cases eliminates the need for traditional transformer for grid

integration have been proposed [10, 11].

Battery energy storage systems (BESS) can in principle be integrated into the grid

to mitigate the challenges related to solar PV penetration [12]. These BESS can also

be configured to provide other grid ancillary services in addition to supporting the

solar PV operation [13]. Advanced BESS operation modes such as frequency-watt,

Volt-VAr, and Volt-Watt have demonstrated the benefits of these systems and further

emphasize their role in the future electric power system [14].
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There is a limit to the maximum amount of renewable sources that may be con-

nected to a network without a need for significant changes to the existing infrastruc-

ture and operation [15]. The maximum amount of renewable penetration on the power

system depends on the limits of the transmission and distribution circuits as well as

the physical limits of the connected generators [16, 17]. Recent literature has been

focused on either evaluating the impact of intermittent renewable sources on genera-

tion or transmission systems [18–21]. For the studies related to impact on generation,

hourly economic dispatch models have mostly been employed [22]. These models

assume changes in aggregated electrical demand are minimal and generation capac-

ity can always match demand [23]. Economic dispatch models may be employed to

analyze the impact of renewable penetrations as well as recommend additional gener-

ation resources that may be required to increase renewable energy sources penetration

[24, 25].

Furthermore, proposed frameworks for evaluating the impact of solar PV on trans-

mission systems have mostly adopted standard dispatch models, which follow a linear

generation capacity dispatch [26]. Transmission and distribution circuit parameters

such as voltage deviations, transmission line thermal limits, frequency variation, and

total harmonic distortion may be used to estimate the PV hosting capacity of a

network [27, 28].

A detailed model of the renewable system components is required to effectively

analyze their impact on the grid. Some literature exist on methods to develop equiv-

alent circuit models on PV and battery systems [29–31]. Dynamic electromagnetic

transient models for solar PV systems have been proposed in [32, 33]. This model is
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suitable for solar PV systems within a range limited by its configuration and com-

ponent specifications. An extensive effort and complex approach will be required for

detailed dynamic models whose capacity can vary over wide ranges.

The future grid may be able to take advantage of the predominantly Lithium-ion

based BESS at multiple power distribution levels. A detailed model of the BESS

will be required for monitoring its performance and recommending changes to en-

hance its operation. In addition to the detailed power electronics configuration and

control, an equivalent circuit model including multiple parameters will be required

for a BESS model. Battery system parameter estimation algorithms for single-cell

based on recursive least square methods [34, 35], augmented unscented Kalman filter,

and particle swarm optimization techniques have been proposed [36]. Furthermore,

approaches for scaling up the parameters of single cells to represent a battery system

with multiple cells have been evaluated [37].

Analyses have demonstrated that single-stage PV systems are cheaper, smaller in

size, and more efficient compared to dual-stage systems with dc-dc converters [38, 39].

Conventionally, configurations for integrating BESS into existing PV plants include

two dc-dc converters with substantial losses in the additional components [40]. In

[41], a battery pack was directly connected to the dc-link between the dc-dc and

ac-dc converter of a PV system. However, this configuration requires additional over-

voltage protection for the safe operation of the battery system.

Extensive literature review on more detailed aspects of the challenges and recom-

mendations for renewable integration is distributed throughout this dissertation and

included in each chapter. These include methodologies for mitigating the impact of
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large PV plants using BESS, the maximum PV hosting capacity for generation and

transmission systems based on economic dispatch models, the approaches for develop-

ing a detailed model of PV and battery system equivalent circuit, and configurations

for integrating BESS into existing PV plants to increase its capacity factor.

1.3 Research objectives, dissertation outline, and

original contributions

Research objectives - Statement of problem

Conventional generation planning and operation practices have to adapt to changes

in the generation mix, which mostly trends from the transition from the conventional

synchronous ac rotation machines to inverter-based resources in the form of PV, wind,

battery, and other systems. Due to the peculiar nature of these resources, a detailed

model capable of capturing the dynamics of their components and control is required

to evaluate their impact on the traditional power systems.

Solar PV plants can lose up to 90% of its output power in one minute. Hence,

traditional hourly dispatch models are incapable of evaluating the impact of solar PV

intermittency on the power system and identifying periods of generation imbalances

due to solar PV penetration. Furthermore, large inverter-based resources penetration

may have a significant impact on the transmission network operation and a detailed

evaluation of the system voltage response, branch power flow, and overall operation

during transient and steady-state operation is required to estimate the maximum PV

penetration the system can sustain without needing significant changes to existing
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infrastructure.

In order to evaluate the performance of BESS, ensure safety operation, and develop

accurate models for simulation studies, a detailed equivalent circuit model (ECM) of

the battery system is required. Conventional approaches for estimating the ECM of

battery cell requires subjecting it to charge/discharge cycles in a laboratory setup,

which will be complex and unsuitable for a utility-scale battery system which includes

thousands of cells connected in series and parallel.

It is of timely interest to propose and evaluate configurations for adequately inte-

grating BESS with existing solar PV systems to improve its capacity factor, mitigate

challenges related to its intermittency and support the overall operation of the power

system. Conventional configurations are expensive, require a new power converter

system and complex changes to the PV system operation.

Another issue specific to solar PV and BESS system integration is the preferred

power and energy capacity for the BESS and application to size it for. Parameters

such as the location of the PV system, its ac and dc capacities, and the regulation

limits for the service area are vital for estimating the BESS capacity for mitigating

the solar PV intermittency challenges and enhancing its operation. Therefore, the

optimal battery capacity becomes complicated due to the diverse application and

variation in solar PV irradiance based on geographical location.

Dissertation outline:

For the purpose of effectively evaluating the impact of intermittent renewable

energy sources and analyzing methodology for integrating BESS in the power system,

the following chapters have been included in this dissertation.
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Chapter 2 proposes an approach for developing electromagnetic models for utility-

scale PV and BESS. This model captures the contribution of inverter-based resources

power electronics and can be employed for analyzing their transient effect on the

traditional power system. Chapter 3 presents a framework, which includes a minute-

to-minute economic dispatch model that may be used to estimate the maximum

PV system a select network can sustain without significant upgrades to the existing

infrastructure. Chapter 4 introduces a novel framework for estimating the equivalent

circuit parameters of utility-scale BESS using equipment typically available at the

installation site. A new configuration for dc connected battery and PV systems that

may be adopted for significant increases in PV capacity factor, inverter utilization

factor, and array MPPT stability is presented in chapter 5. Conclusions and future

works are provided in chapter 6.

Original contributions:

The challenge of effectively evaluating the impact of inverter-based resources on

the power system becomes complex when the setup includes a considerable amount

of modular plants. In this dissertation, an approach for developing utility-scale elec-

tromagnetic transient models for IBR based on an operational 10MW PV plant and

a 1MW/2MWh BESS was proposed. The developed models take into account the

contributions of the power electronic converters, detailed controls, and their transient

impact on the conventional generation and transmission systems.

A framework for analyzing the impact of increasing PV penetration on generation

and transmission networks while considering the responses of conventional genera-

tors to changes in solar PV output power was proposed. Contrary to traditional
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approaches in which it is assumed that generation can always match demand, this

framework employs a detailed minute-to-minute (M-M) dispatch model capable of

capturing the impact of renewable intermittency and estimating the over- and under-

generation dispatch scenarios due to PV volatility and surplus generation.

A dynamic IBR resource module with a variable capacity that can be employed

for multiple systems including solar PV, wind, and battery system was proposed.

This module may be regarded as a hybrid system that combines the comprehensive

benefits of detailed IBR models with the reduced computational requirement of the

average models.

Opposed to the rapid pulse discharge cycles employed in traditional cell parame-

ter estimation approaches, a new charge/discharge cycle for identifying the equivalent

circuit parameters for utility-scale battery systems using equipment readily available

at installation sites without the need for laboratory setups is proposed. Further-

more, the performance of utility-scale equivalent circuit models developed at multiple

sub-component levels, i.e. at the rack, module, and cell levels were compared and

evaluated.

A solar PV and BESS configuration for recuperating PV energy that will oth-

erwise be curtailed or “clipped” was proposed. This configuration utilizes a single

dc-dc converter capable of simultaneously operating as a battery charge controller

and a maximum power point tracking device. In addition to improving the over-

all system capacity factor, increasing the conversion efficiencies, and ensuring MPPT

stability, the proposed configuration offers a simple solution for adding energy storage

to existing PV installations.
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Battery Energy Storage Systems into Multi-MW Grid Connected PV Systems”,
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(Oct 2018) [48]
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2018) [49]
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- under review

13



Chapter 2

Incorporating Battery Energy
Storage Systems into Multi-MW
Grid Connected PV Systems

2.1 Introduction

The focus on grid resilient has led to the increasing penetration of renewable

energy resources including solar photovoltaics (PV) and wind power plants. Among

these renewable sources, solar PV plants are the fastest growing and the easiest to

implement in small scale. Multi-MW solar PV farms pose multiple threats to the

operation of the traditional grid due to their intermittent nature. However, some of

the challenges could be in principle mitigated with the integration of battery energy

storage systems (BESS).

Some of the recent studies related to solar PV systems have been focused on their

operation and controls [52, 53]. The techniques for maximum power point tracking

(MPPT) algorithm were recently reviewed in [54, 55], and some of the recommended

power electronics topologies for PV systems integrated with BESS have been analyzed

in [56]. Battery energy storage system are typical sized based on the configuration
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for PV integration and application [57]. The methodology for sizing BESS connected

to the dc link of a PV system was proposed in [43]

Inverter based resources such as BESS have the ability to almost instantaneously

respond to electricity demand. Hence, in addition to supporting the PV operation,

BESS may also be employed for grid ancillary services including frequency response,

reactive power support, peak shaving and load shifting [58].

This study reviews the configurations for solar PV system incorporated with

BESS, evaluates the impact of large solar PV penetration on a transmission net-

work and propose a methodology for sizing batteries to make solar PV dispatchable.

This study is an expanded follow-up to the study in [51]. Additional contributions

include the review of dc-dc converter in PV systems, methodologies for the inverter

control and the systematic study to analyze the impact of PV and BESS on the power

system.

The following sections of this chapter is focused on the configurations for PV and

BESS and the analysis of the experimental system. The review of multiple controls

for grid connected inverters and evaluates the benefits of integrating dc-dc converters

in the PV systems for MPPT are also included in this chapter. A comparative study

evaluating the operation of both the simulated and field implemented PV systems

during periods of excess irradiance was presented. The solar PV transient responses

and BESS applications for supporting PV and grid operations are also presented.

Additionally, a systematic BESS sizing approach for a 10MW PV to be dispactable

is also included in this chapter.

15



Figure 2.1: Schematic of a practical field implementation for a multi-MW grid tied
solar PV system including several modular units connected in parallel. The BESS
comprises a battery unit and its associated inverter.

2.2 PV system configuration and control

Due to limited power rating of power electronics devices, multi-MW PV farms are

typically divided into multiple section with independent power conversion systems.

The field implemented solar PV setup employed in this study consist of ten operational

PV sections. Each section includes a PV array rated for 1.4MW and a 1MVA inverters

system. In other to mitigate some of the challenges of the PV system and improve

the overall grid performance, the setup also includes an ac connected 1MW/2MWh

battery energy storage system as illustrated in Fig. 2.2.

In order to analyze and evaluate the performance of the PV and BESS, representa-

tive electromagnetic transient (EMT) models were developed in PSCADTM/EMTDCTM ,
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Figure 2.2: Power circuit diagram in the PSCAD software for a module comprising
a PV array, a 2-level inverter, filter, and a transformer connected to the power grid.
Traditional PV systems typically include a dc-dc converter between the PV array and
the inverter and use this for MPPT control. In the current implementation, the real
power output of the inverter is directly controlled in order to achieve MPPT for the
PV array.

which is a software typically employed for transient studies. The PV cell in the soft-

ware is developed based on the Norton equivalent circuit model, which includes a

current source connected in parallel to a diode along with shunt and series resis-

tances. The output current of the PV cell, i, is expressed as:

i = ig − io
[
exp

(
V + iRsr

nKTc/q

)
− 1

]
−
(
V + iRsr

Rsh

)
, (2.1)

where, ig represents the component of cell current due to photons; io, the saturation

current; K, the Boltzmann constant (K = 1.38 × 10−23j/K); q, the electron charge

(q = 1.6x10−19C); V, the output voltage; Tc, the cell temperature; Rsh, the shunt

resistance and Rsr, the series resistance. The photo-current ig of a PV cell depends

on the amount of solar irradiance incident on the PV cell and its temperature. The
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photo-current relationship with solar irradiance and cell temperature is expressed as:

ig = iscR
G

GR

[1 + αT (Tc − TcR)] , (2.2)

where, iscR is the short circuit current at the reference solar radiation and tempera-

ture; GR, the reference solar radiation; TcR, the reference temperature; G, the solar

irradiance at which current is being calculated; αT , the temperature coefficient of

the photo-current, usually 0.0017A/K for Si solar cells and Tc, the cell temperature.

At standard test conditions, GR is 1000W/m2 and TcR, 25oC. Other standard test

conditions include the photovoltaic for utility scale application test condition (PTC)

with GR and TcR set at 1000W/m2 and 20oC respectively.

The saturation current, also known as the “dark-current”, is expressed as a func-

tion of the cell temperature,

io = ioR

(
T 3
c

T 3
cR

)
exp

[(
1

TcR
− 1

Tc

)
qeg
nk

]
, (2.3)

where, ioR is the saturation current at the reference temperature; eg, the band gap

energy of the solar cell material and n, the diode ideal factor, typically 1.3 for silicon

solar cells.

Power conditioning devices for PV systems are typically specified for a limited

voltage and current range. Hence, PV modules are typically connected in series and

parallel to meet power conditioning devices limitation. For the field implemented

system employed for the study, each section includes 19 modules connected in series

and 236 module strings in parallel. Each module was developed based on manufac-

turer specified data. For this PV array, the modules are rated for 46.75V open circuit
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Table 2.1: PV cell and array module specifications.
Parameters Value

Cell open circuit voltage(V) 1.17
Cell short circuit current (A) 4.01
Cell saturation current (kA) 1e-12
Temperature coefficient of ig 0.001
Series resistance per cell (Ω) 0.02
Shunt resistance per cell (Ω) 1000

Module open circuit voltage(V) 46.75
Module short circuit current(A) 9.02

Voltage at MPP (V) 37.40
Current at MPP (A) 8.50
Maximum power(W) 316.50

voltage and 9.02A short circuit current. The details of the simulated PV array and

field implemented system are presented in Table. 5.1.

The maximum power a PV array can deliver varies based on the available solar

irradiance and the cell temperature. The output power also varies based on the array

terminal voltage, hence, the need to integrate an algorithm to ensure the PV array

operates at the voltage corresponding to its maximum power, maximum power point

(MPP). There are multiple algorithms for estimating the voltage corresponding to

PV array MPP, including the commonly used incremental conductance (InC) and

pertub and observe (P&O) methods. For the P&O method, the terminal voltage

and current for the PV array is measured recorded at the initial state. In order

to estimate the voltage corresponding to the MPP reference, the PV array terminal

voltage is slightly disturbed and the changes in its output current is used to estimate

the direction for approach MPP voltage reference. This algorithm can approach its

MPP faster with larger perturbation. However, larger perturbations lead to reduced

algorithm accuracy and inefficient dynamic response.
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Additionally, the inability of the P&O to settle at the voltage corresponding to

the PV array MPP further introduces oscillations at steady state operation. The

alternative InC method which was developed to address the shortcomings of the

P&O continuously monitors the power-voltage characteristics of the PV array was

employed in this study. The algorithm introduces a reduced amount of oscillations to

the system in addition to improving the accuracy of the algorithm during transient

conditions [59].

2.3 Grid-connected inverters

The methodology for ensuring PV array operates at the voltage corresponding to

its MPP varies depending on the configuration of its system. Solar PV systems of

relatively lower capacities, MPPT may be performed at the module or string level

without significant cost implications. For increased reliability and lower cost, multi-

MW PV system typically perform MPPT at array levels.

In some cases, the PV arrays are connected through dc-dc converters and inverters

in order to make sure the array terminal voltage is regulated within the inverter oper-

ation range. In such two-level inverter configuration, the dc-dc converter is typically

employed for MPPT and to boost the terminal voltage of the PV array to a reference

value suitable for grid integration with the inverter. Also, two-stage solar PV systems

introduces an additional benefit for dc-coupled energy storage system integration and

ensures such storage systems may be integrated with minimal changes to the PV

operation [50].

The PV system developed in this study is based on the LG&E ad KU E.W. Brown
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system, which includes multiple inverters used for MPPT and power conversion. The

field implemented PV system features ten Freesun FS1050CU-24299T 2-level invert-

ers, each rated for 1MW with input voltage ranging between 700-1000V. The MPPT

voltage window for this inverter varies based on the operation condition, where the

inverter is capable of operation between 642V-820V at 50oC and 712V-820V at 25oC.

This inverter also includes the IEEE 1547 utility interconnect with interactive control

functions, has a full range power factor and the ability to curtail its output power at

0.1% steps.

This approach employs a decoupled voltage source inverter control in which the

direct and quadrature voltage and current components are regulated to vary its output

power. When the direct axis of the reference frame is aligned along the grid voltage,

the direct axis component is equal to the magnitude of the grid voltage and its

quadrature component is equal to zero. For the employed inverter, the reference

components are expressed as:

V ∗d = −V ′d + (Vgd + ωe Lg iq) , (2.4)

V ∗q = −V ′q + (Vgd + ωe Lg id) , (2.5)

where,

V ′d = Rg id + Lg
did
dt
, (2.6)

V ′q = Rg iq + Lg
diq
dt
. (2.7)
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Vgd and Vgq, the direct and quadratic components of the grid voltage and V∗d and V∗q

the corresponding references, id and iq are driven by the inverter direct and quadrature

voltages components and the Lg and Rg represent the grid resistance and inductance,

respectively.

The output power of the inverter are expressed as:

Pg =
3

2
Vgd id, (2.8)

Qg = −3

2
Vgq iq, (2.9)

where, Pg and Qg are the real and reactive powers respectively. The inverter varies

its direct axis current components in order to regulate its real power output and

ensures the PV array terminal voltage is maintained at its MPP reference value. In

this approach, the reactive current component, I∗q , is maintained at zero in this study

for unity power factor operation of the PV inverter, however, in principle, its value

can be derived from an outer reactive power controller, as shown in Fig. 2.3.

In order to maintain the currents at their set references and ensure grid synchro-

nization, grid voltage oriented control, illustrated in Fig. 2.4, is used. A phase locked

loop (PPL) block generates, from grid voltage measurements, the phase angle em-

ployed in reference frame transformations to decouple the 3-phase inverter currents

into direct and quadrature components, which can be independently tuned to control

real and reactive power flow into the grid, respectively.

Simulation studies were conducted on the system of Fig. 2.2, which employs

the inverter for both MPPT and dc-ac conversion. Its performance under different
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Figure 2.3: PV inverter controls for reference current components. Zero current
control for i∗q ensures unity power factor operation.

Figure 2.4: Inverter control in order to ensure decoupled regulation of active and
reactive power components. The grid voltage-oriented reference frame employed for
transformations uses the phase angle provided by instantaneous voltage measure-
ments.
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conditions and sudden changes of irradiance was compared with a 2-stage system,

which includes a dc-dc converter for MPPT and an inverter for grid interfacing. It

was observed that the power outputs of the two systems are very closely comparable

(Fig. 2.5).

Using the grid connected inverter for MPPT helps to eliminate the additional

cost of acquiring a dc-dc converter rated for the entire PV array power as well as the

loss within the converter. Since irradiance and temperature variations lead to little

change in the MPP, and thus the dc-bus voltage, normal operation of the inverter is

unaffected by varying conditions. Cases for which the inverter cannot be configured

in order to control its dc-link voltage, previously studied by the authors [50], or

alternatively, situations with the PV array terminal voltage below requirements, may

necessitate an intermediate dc-dc stage.

2.4 Constant power generation

Solar PV plants nameplate dc rating are typically not equal to the ac ratings for

multiple reasons including capacity factor requirements by regulatory bodies and the

utilization factor of the inverter. Solar PV power plant inverter load ratio, ILR, which

is the dc to ac ratio varies with the capacity and application. The example system

employed has a 1.4 ILR, where each section is rated for 1.4MWdc with 1MVA inverter

systems. Since the inverter cannot output power exceeding its rated capacity, during

periods of excess irradiance, the inverter will raise the operating voltage of the PV

array deviate it from its MPP reference towards an output corresponding to its rated

capacity.
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Figure 2.5: Variation of the power fed to the grid due to shading of the PV system
leading to a drop in irradiance from 1000W/m2 to 500W/m2. The output powers
from systems with and without a dc-dc converter between the PV array and inverter
are virtually the same, demonstrating that MPPT is possible for different conditions,
even if the dc-dc converter is absent.

In order to develop a representative electromagnetic transient (EMT) model for

the field implemented 10MWdc/14MWac system, irradiance data were retrieved from

the two weather stations distributed across the 45 acres field. This solar farm in-

cludes more that 40,000 fixed tilt solar panels and the average measured irradiance

(Iexp) from the two weather stations for an example clear was used to represent the

irradiance on the entire system in PSCAD. The operation of the developed model

and control was evaluated for the example day over a PSCAD accelerated time-scale,

such that 1s simulation time is equivalent to 24mins. The results show similar output

power variation for both experimental (Pexp) and simulated (Psim) models (Fig. 2.6).

A partial mismatch between the two models at later periods of the day, which may

be due to the cell temperature build up in the field implementation was observed.
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Figure 2.6: Experimental and simulated irradiance and PV system output power
during a sunny day with sporadic shading. The capacity of the PV plant is purposely
limited, i.e. “clipped”, to 0.71 p.u. The behavior of the system is simulated by
applying a linearly accelerated time frame in PSCAD.

The PV inverter was controlled to regulate PV array terminal voltage at its MPP

reference. In order to ensure the inverter operates within its rated capacity, I∗d is

limited to 2.1kA which in this case corresponds to the rated capacity of the inverter

(Fig. 2.7). Hence, during periods of surplus irradiance when the measured irradiance

exceeds approximately 0.7pu, as the inverter I∗d is reaches its saturation limits, the

PV array terminal voltage further deviates from its MPP reference and towards open-

circuit as illustrated in Fig. 2.8. An intermediate dc-dc converter may be employed

to ensure stable operation during curtailment [60]. The proposed model can be

used to evaluate the harmonics contribution of the solar PV plant. Harmonics intro-

duced due to circulating current from the multiple inverter sections and the power

electronic devices operation can isolated and analyzed. It is important to recognize
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Figure 2.7: Current components for the PV inverter. Constant power generation
at mid-day is achieved by imposing saturation limits on the outer dc-bus voltage
controllers providing the d-axis current reference.

Figure 2.8: PV array terminal voltage and its set point determined by the MPPT
controller. The inverter is operated in constant power mode at 0.71 p.u. when large
irradiance values would yield higher PV power output.
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that large filter are typically required for two-level inverters similar to the proposed

model and multi-level inverters may be employed to ensure more sinusoidal output

power components and reduced the filter size [61].

2.5 Battery energy storage systems applications

The intermittent behavior of renewable energy limits their large scale grid integra-

tion. The output power of a PV system varies with change in the level of irradiance,

which is generally not constant throughout the day. Batteries can be used to improve

power dispatchability by storing excess energy during peak irradiance and discharging

to the grid when the power from the solar energy source is small.

The 1MW/2MWh energy storage system at LG&E KU includes a Li-ion battery

bank stored in two 6.06x2.44x2.6m shipping containers. The battery modules include

28-cells, with 17-modules stacked per rack such that each container has 10-racks. In

order to maintain the battery temperature at the required value, the containers are

equipped with heating and cooling systems, which maybe energized from the battery.

Each of the LG Chem M48126P3b1 ESS battery modules has a nominal output

voltage of 51.8V and a capacity of 126Ah. These modules are connected in series

and parallel so that the terminal voltage from each container is about 950Vdc and it

is directly connected to the Dynapower CPS-1000 1MW inverter. This energy stor-

age inverter can be controlled to perform various functions some of which include;

the Autonomous Frequency-Watt Mode, where the system charges or discharges de-

pending on the difference between the measured and reference grid frequencies. The

inverter can also be controlled for power smoothing, which instructs the system on
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dynamically modifying the Watt input or output in response to fast changes in the

commanded power.

In the studied system, the BESS includes a battery and an inverter, which is con-

trolled using a grid voltage oriented reference frame, such that the d-axis component

of the current controls the active power, and the q-axis component, the reactive power.

The d-axis current component is derived from an outer power loop, as described in

the following,

i∗d = (P ∗ref − Ppv − Pbatt) ∗
(
Kp1 +

Ki1

s

)
, (2.10)

The controller regulates the battery power such that the sum of the battery and PV

powers follows a desired profile, determined, for example from a power smoothing

algorithm (Fig. 2.9). The reactive current is maintained at zero as the BESS system

operates in this study, at unity power factor, though in principle, non-zero values can

also be used.

2.5.1 PV power smoothing

Smoothing of PV power is generally accomplished by controlling the BESS to

track the difference between instantaneous and filtered PV powers for which moving

average (MA) or low pass filters are employed. With MA filters, the smoothed or

filtered power output variation is found as,

Po[i] = Ppv[i]−
1

n

n−1∑
j=0

Ppv[i+ j], (2.11)

where, Po is the net power to be supplied by the PV and BESS; i, the sampled point;

Ppv, the power of the PV system and n, the number of points in the average.
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Figure 2.9: Control strategy for the BESS ensuring that the PV and battery output
powers sum up to a predefined reference value, which is determined depending on
the net power to be supplied. The BESS inverter is controlled in order to supply the
commanded currents using a grid voltage-oriented reference frame and PWM (not
shown). The set power is supplied to the grid provided that the BESS state of charge
is within the prescribed limits.

The sum of the powers supplied by the battery and PV system is the smoothed

output. In other words, the battery absorbs and supplies the “power ripple”. The

power rating of the battery may be found as the maximum difference between the

PV and the net powers. The battery, net and PV powers for an irradiance variation

on a cloudy day in the LG& E and KU E.W. Brown facility are shown in Fig. 2.10.

It is observed that the battery needs to supply approximately 0.5 p.u. of the power,

but for very short times, indicating that the BESS is rated relatively high in terms of

power, although a relatively small energy rating may be sufficient for this purpose.

The performance of the PV and BESS system when connected to an IEEE-14

bus system, which represents a portion of the American electric power system in the

Midwestern US and is widely accepted by researchers to implement new ideas and

concepts in power system engineering related topics such as short circuit analysis,

load flow studies, and grid interconnection problems [62] is studied. This system

consists of 14 buses, 11 loads and 5 generators of which 3 are synchronous condensers

and one slack bus. The Manitoba HVDC research center model of the IEEE 14 bus

system in PSCADTM/EMTDCTM was adopted in this study [63].
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Figure 2.10: Power from the PV system using experimental data for a cloudy day.
The net power is smoothed using a moving average filter with the BESS controlled
in order to track the difference between the net and PV powers.

Figure 2.11: Modified IEEE 14 bus system with the PV system incorporating a BESS
supplying part of the power at Bus no. 2
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In the modified IEEE 14 bus system, the 3-phase voltage supply at bus no. 2 is

replaced with the designed 10MW PV system connected in parallel with a 100MVA

synchronous generator as shown in Fig. 2.11. With this configuration, the generator,

typically operated below its rating, steps up its output power when the PV system

integrated with BESS is unavailable due to shading and battery state of charge (SOC)

constraints. For the purpose of the study it is considered that the battery’s MW rating

is enough to provide all of the power, in case of shading of the PV system. Upto t =

4s, the PV system supplies the power, until it is shaded, when the battery takes over

as seen in Fig. 2.12. The battery can supply the deficit power only for a very short

duration of time. At 10s simulation time, the battery’s SOC falls below minimum,

and it stops supplying power, leading to a transient reduction in the bus frequency

before the adjacent synchronous generator steps up its real power output to supply

the power deficit from the PV (Fig. 2.13). In this case, the synchronous generator

can supply without significant effect on its operation, the power deficit since it is

rated for 100MVA while the PV system is rated for 10MW.

2.5.2 Frequency regulation

Power smoothing, and compensating for the effect of clouds include short term

power supply applications of energy storage systems. Another such application is

primary frequency regulation, which involves the supply of power for a short duration

of time, up to 30s [64, 65]. Power supply and load variations are leading causes of

frequency variations. An increase in irradiance or decrease in connected loads leads

to higher grid frequency and likewise, lower irradiance or peak load demands lead to
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Figure 2.12: Transient simulation for a case study in which at t = 4s the PV arrays
are completely shaded and its power output is completely compensated with very fast
response by the BESS.

Figure 2.13: Transient simulation for the case study illustrating the effect of power
loss from both the PV and the BESS t = 10s. Until this instance, power at bus
no. 2 was supplied by the combined solar power system with PV and BESS and
the synchronous generator. Following the reduction in battery SOC below its min-
imum value, the synchronous generator supplies the power deficit. Disturbances in
power and frequency are observed before the system returns to normal steady state
operation.
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(a)

(b)

Figure 2.14: The LG&E and KU 10MW universal solar facility on the E. W. Brown
power plant site, which also includes GW rated coal and natural gas fired generators
(a) Containers for the 1MW 2MWh battery demonstrator (one shown on the right
side of the figure with a second container obscured behind it), BESS inverter (center)
and 1MW controllable load (left). The research site also includes a SCADA facility,
which is not shown (b).
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Figure 2.15: Droop characteristics for BESS operation with changes in grid frequency.
The real power output is limited to the values corresponding to the rated power of
the BESS.

Figure 2.16: BESS control in frequency regulation mode. The active component of
the current, i∗d, is positive and hence the BESS supplies power when the frequency is
below the set point, and current reverses for frequency above this value. The BESS
output is maintained at zero when the frequency variation is within ± 0.005Hz.

a reduction in grid frequency. Battery energy storage systems can be used to regulate

utility frequency such that the battery charges from the grid when its frequency is

above the reference and discharges power to the grid when it is below the reference.

The relationship between the frequency change (∆f) and power variation (∆P ) is

given as,

∆P = Pref − β∆f. (2.12)

The amount of power required to restore the frequency of the grid to its reference

value depends on the area frequency characteristics (β). For this study, this value
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is assumed to be constant such that 1MW power is required for a 0.05Hz frequency

change, and these droop characteristics, seen in Fig. 2.15, can be used to determine

the amount of power required to restore grid frequency based on the frequency de-

viation. The control system for the BESS uses the difference between the reference

frequency (f ∗) and the actual frequency (f) to determine the reference real power

output (Fig 2.17). In this study, the maximum output of the controller is limited to

the power rating of the BESS. The performance of the BESS for frequency regulation

was compared with experimental data retrieved from the LG&E and KU E.W. Brown

Universal Solar Facility, pictured along with the 1 MW/2MWh battery energy storage

system in Fig. 2.14. An accelerated frequency variation similar to the experimental

data result was applied to the proposed system. It is observed that the BESS output

power is positive when the frequency drops below its reference, and it absorbs power

when the frequency exceeds 60 Hz as seen in Fig. 2.18, in line with experimental

measurements, which confirms the successful operation of the BESS for frequency

regulation.

2.6 Energy storage sizing for dispatchable PV

In principle, energy storage systems (ESS) may be sized in order to provide con-

stant, Pd, dispatchable power to the grid. This can be achieved by charging the ESS

when the instantaneous power from the PV system exceeds the set value and dis-

charged when required, as illustrated in Fig. 2.19. The dispatchable power can be
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Figure 2.17: Schematic diagram for the experimental setup. Two PV inverters
are connected to the grid via a single 3-winding 13,200V/390V transformer. All
communication data is synchronized with the local data before being uploaded on a
private server.
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Figure 2.18: (a) Example of grid frequency variation measured over a couple of hours
and simulated on a linearly accelerated PSCAD time frame and (b) BESS output
power.
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Figure 2.19: Schematic illustration of an energy storage sizing method for 24h con-
stant power, Pd, operation. The ESS charges when the power from the PV system
exceeds Pd and discharges otherwise.

defined as

Pd =
1

T

∫ T

0

Pacdt, (2.13)

where, T is the time period for dispatching, and Pac, the output power from the PV:

Pac =

{
Ppv if Ppv < Pr

Pr otherwise,
(2.14)

where Ppv is the maximum available PV power and Pr, the rated capacity of the PV

plant, which can be ”clipped” from the available PV power.

The battery power rating can be obtained as,

Pb = Pr − Pd, (2.15)

and the energy rating as,

Eb =

∫ T2

T1

(Pac − Pd) dt, (2.16)
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where T1 is the time corresponding to the positive zero crossing of Pac − Pd, and T2,

to the negative zero crossing.

A simple analysis indicates that the larger is the difference between the peak

available PV power and the PV plant capacity, the smaller would be the rating for

the ESS required to provide constant dispathcable power. Limiting the PV power fed

to the grid, an approach that “clips” the power to a constant rated value, could be

achieved through a combination of methods, including an MPPT control deviation, as

previously discussed, panel reorientation etc, such that the equivalent capcity factor

is increased, power fluctuations smoothed out and system reliability enhanced [66].

For the case study considered in this chapter with a rated power of 10MW and

a good capacity factor for a sunny day the average power for a 24h period, which

could be constantly dispatched would be 3.6MW. Using the simple analysis previ-

ously introduced, this would require an ESS with a rating of 6.5MW and 36MWh.

The relatively high ratio of energy to power, which is also available to a somewhat

lower extent in the 1MW 2MWh demonstrator previously mentioned, is a typical

requirement for renewable energy sources that have a relatively low capacity factor.

Large ESSS installations employing batteries, such as the 30MW 120MWh Escondido

project and the 7.5MW, 30MWh El Cajon development are currently considered in

California [67]. As the price of batteries is currently relatively large, BESS technology

deployment maybe limited and other ESS systems, such as the innovative pumped

hydro solution proposed by Gravity Power [68] may be more feasible.
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2.7 Summary

This chapter presents experimental and simulation studies for a 10MWac grid-

connected PV systems, which includes modular section with single-state inverters.

The performance of the evaluated configuration and the operation of its MPPT algo-

rithm were validated over multiple irradiance levels. The inverter control was demon-

strated to be capable of maintaining the PV array and maximum power point and

curtailed excess power during periods of excess irradiance. The study was also estab-

lish that a dc-dc converter is not required for effect MPPT, which in turn will lead

to substantial cost savings.

The BESS employed in this study was connected to the grid through an indepen-

dent inverter and transformer. A corresponding equivalent circuit was developed in

PSCADTM/EMTDCTM software environment. The application of the BESS for PV

support and other grid ancillary services were demonstrated through two case studies.

In order to evaluate the response of the solar PV system during transient shading and

to examine how BESS may be employed to mitigate some of the stability challenges

due to the solar PV penetration, the solar PV and BESS were connected to a mod-

ified IEEE 14 bus system. The results of the study indicate that the BESS when

adequately sized is capable of reducing voltage drop due to solar PV intermittency.

The operation of the simulated and field implemented BESS in autonomous fre-

quency response mode was also evaluated. In this mode, the BESS were regulated to

absorb real power from the grid when its frequency exceed the reference value and
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vice versa. Similar output power response from both 1MW 2MWh battery demon-

strator models were recorded when subjected to identical frequency variations. This

chapter also proposes a systematic sizing approach to develop a dispatchable solar

PV plant with constant power throughout the day. The outcome of the study further

emphasize that a relatively high BESS will be required to ensure constant power from

a PV plant.
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Chapter 3

Study of Renewable Energy
Penetration on Generation and
Transmission System

3.1 Introduction

Renewable energy resources are rapidly becoming an integral part of electricity

generation portfolios around the world due to declining costs, government subsidies,

and corporate sustainability goals. Large renewable installations on a transmission

network may have potential impacts on the delivered power quality and reliability,

including voltage and frequency variations, increased system losses, and higher wear of

protection equipment [1]. Estimating the maximum hosting capacity of a transmission

network may be used to determine the highest renewable penetration the system can

handle without significant violations to the quality of the power delivered and the

reliability of the grid.

Most recent literature has been focused on analyzing the impact of intermittent

renewables on either generation or transmission systems only [69–72]. In [73], a
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methodology for estimating the solar PV hosting capacity based on steady-state cir-

cuit violations, without a detailed economic dispatch model was proposed. Typical

dispatch models in literature assume generation can always match load or set opti-

mization constraints that are only acceptable for hourly dispatch models with rela-

tively low load variations [74–76]. These hourly dispatch models may not be suitable

for capturing the impact of PV systems for practical generation service areas, which

record generation imbalance violations over duration as low as 15-minutes.

Furthermore, a substantial portion of literature has been focused on estimating

the maximum PV hosting capacity for distributions systems and proposing network

configurations that do not consider the contributions of conventional generators [77?

–79]. However, more than 60% of PV installations in the US are utility-scale se-

tups typically connected to the transmission network [80]. Steady-state and transient

analysis of transmission networks were presented in [73, 81], but none of the works

considered the variability of the connected loads or present a detailed economic dis-

patch to capture the responses of the conventional generators.

This research presents a framework for analyzing the impact of increasing PV

penetration on both generation and transmission systems. Contrary to conventional

approaches dispatching units with substantial intermittent renewable resources with

hourly-based dispatch models[82, 83], this approach employs an M-M dispatch model

capable of capturing the impact of large solar PV penetration and identifying minute-

based periods of generation imbalance due to PV volatility and surplus power. The

presented technique is also capable of analyzing the impact of increasing PV system
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Table 3.1: Specifications for the generating units in the modified IEEE 12 bus test
case studied

Bus Type Rating Min gen Ramp Heat rate co-eff. Fuel Aux
no [MW] [MW] [MW/min] a[10−3] b c [$/MMBtu] [$/MWh]

9 NGCC 750 368 10 0.3 7.7 630 176 1.2
10 Coal 640 288 7 4.0 6.4 996 196 1.9
11 NGCT 384 203 9 20.7 2.7 753 176 35.7
12 Hydro 474 - - - - - - -

penetration have on transmission circuits while considering the responses of conven-

tional generators to changes in solar PV power.

The impact of increasing solar PV penetration was analyzed on a modified IEEE

12 bus system [84] with generators, including coal, natural gas combustion turbine

(NGCT), natural gas combined cycle (NGCC), and a hydropower plant with practical

unit specifications. This study uses generator models developed on data provided

by LG&E and KU on operational units to simulate the responses of conventional

generators to increasing solar PV penetration (Fig. 3.1). Publicly available one-

minute irradiance data for the 10MW PV farm located at the utility’s facility was

used to model typical variation in solar irradiance [85]. The PV hosting capacity of

the example generation and transmission network systems analyzed was estimated

based on voltage, thermal, and generator dispatch violations.

3.2 Proposed minute-to-minute economic dispatch

model

The real-time changes in load from minute to minute are relatively minimal due

to aggregation. However, the volatility of the net demand on conventional thermal
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Figure 3.1: The aerial view of the E.W. Brown generating station, which includes
Kentucky’s largest solar farm, hydropower plant, natural gas units, and coal fired
power plants.

generators rises significantly with the increase in intermittent renewable energy pen-

etration. While it is nearly impossible to always match generation with demand for

a service area, utilities are penalized by regulators for generation imbalances lasting

longer than acceptable minutes [86, 87]. Hence, conventional hourly dispatch mod-

els are not suitable to identify the generation imbalances and effectively capture the

effect of solar PV intermittency on evaluated service area.

This approach employs a minute-based dispatch since the solar PV power vari-

ability due to cloud cover is expected to reduce as the plant capacity and footprint

increases. The proposed minute-to-minute dispatch model in this study was devel-

oped for the IEEE 12 bus test system illustrated in Fig. 3.2. The system which

consists of four generating units was modified based on the specifications presented
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Figure 3.2: Single line diagram for the modified benchmark network with PV plant
connected to bus 2 and values corresponding to approximately 65% (1450MW) load
level. The transmission circuit was completely assessed for PV connection at any of
its buses.
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Figure 3.3: Example heat rate curve for natural gas combustion turbine (NGCT),
coal, and natural gas combined cycle (NGCC) thermal generators considered in this
study.

in Table 3.1 and subjected to realistic load variations for an example day in the Fall

season. The efficiency of thermal generating units in terms of their heat rate vary with

percentage output for different types of units (Fig. 3.3). In this approach, the heat

rates for the thermal units are restricted by the maximum and minimum operation

limits is described as follows:



QR
1 (P1)

QR
2 (P2)

QR
3 (P3)

...

QR
G(PG)


=



Qin
1 /P1

Qin
2 /P2

Qin
3 /P3

...

Qin
G /PG


≈



a1 b1 c1

a2 b2 c2

a3 b3 c3

...
...

...

aG bG cG


·


P 2

1 P 2
2 P 2

3 . . . P 2
G

P1 P2 P3 . . . PG

1 1 1 . . . 1

 (3.1)

where, QR
g (Pg) represents the heat rate for unit g with output power Pg; Q

in
g the heat

requirement; and ag, bg, cg are the heat rate co-efficient of the generator. Therefore,
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Figure 3.4: The operation cost including the fuel and auxiliary costs for the thermal
units considered

the operating cost for each unit may be expressed as:
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F2 Z2

F3 Z3

...
...

FG ZG


·

[
QR

1 QR
2 QR

3 . . . QR
G

1 1 1 . . . 1

]
(3.2)

where, Cg is the running cost for generator g; Fg, the fuel cost and Zg, the fixed

cost constant, which includes maintenance and emission reduction costs. Therefore,

the proposed M-M dispatch model is capable of estimating the running cost of the

thermal units for specified output level (Fig. 3.4). The running cost can also be

multiplied by the MW output to form a monotonically increasing convex function,

which may be further analyzed to calculate the incremental cost curve of each unit.

For a practical economic dispatch problem, the objective is to minimize cost and

generation imbalance such that the cheapest combination of generators are regulated

to meet demand. Therefore, the economic dispatch model objective can be expressed
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as:

min


CT =

∑G
g=1 Cg(Pg)

ε = |PT − Lc|

, (3.3)

where,

PT = P1 + P2 + ...+ PG, (3.4)

CT , represents the total operating cost for all units considered; PT , combined genera-

tor output; Lc, the combined service area load; and G the total number of operational

units including the PV plant. Following theoretical developments in [88], the mini-

mum CT for each instance without considering generator constraints and transmission

losses occurs when the total differential cost is zero and may be described as follows:

∂CT =
∂CT
∂P1

dP1 +
∂CT
∂P2

dP2 + ...+
∂CT
∂PG

dPG = 0. (3.5)

However, due to generator constraints including ramp-rate limitation of units the

result from (3.5) may fall outside operation range. In this approach, the constraints

for the thermal units are as follows:


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(3.7)
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

Pmax
1 (t)

Pmax
2 (t)

Pmax
2 (t)

...

Pmax
G (t)


= min





P1

P2

P2

...

PG


,



P1(t−∆t)−∆t ·Rup
1

P2(t−∆t)−∆t ·Rup
2

P3(t−∆t)−∆t ·Rup
3

...

PG(t−∆t)−∆t ·Rup
G


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(3.8)

where, Pmax
g (t) and Pmin

g (t) are the maximum and minimum output power for unit g,

respectively; Pg and Pg are the specified maximum and minimum generator operation

limits; Rup
g and Rdown

g , the generator rising and falling ramp rates, respectively.

This study is focused on the impact of increasing PV penetration on an example

system with five generators. The proposed framework economic dispatch model em-

ploys a multi-objective genetic algorithm (GA) to minimize CT and ε for the three

thermal units in the system and the “non-dispatchable” units (PV and hydro) output

are set based on reference values from practical modules. Depending on the location

of a hydro power plant and regulations preventing flooding, hydro power plant is

typically the fastest ramping generator whose output can be in principle be varied to

manage generation imbalance. Due to the inability to quantify water backlog that

may lead to flooding, the output power for the hydro plant employed in this study was

calculated based on an operational system. The solar plant reference power module

was developed based on measured irradiance data retrieved from an operational solar

PV farm. The PV output power is expressed as follows:

Ppv =
γ

1000
× η × Ppv, (3.9)

where Ppv is the PV plant power, γ is solar irradiance; η is the inverter efficiency,

and Ppv is the rated capacity. The algorithm goes through multiple combinations
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Figure 3.5: The multi-objective optimization Pareto front for example minute. The
selected design is the one with the minimum imbalance for every case.

of generator set points limited by Pmin
g (t) and Pmax

g (t) for each unit to establish a

Pareto front. Since the primary objective of the utilities is to meet demand, the

design with the least amount of imbalance is selected for the simulation time-step

(Fig. 3.5). In order to identify periods of over- and under-generation, the proposed

M-M dispatch model assumes the generators in the transmission circuit are solely

responsible for meeting demand for the concerned service area without need for off

system sales and electricity power trading. Factors such as units commitment and

outage are beyond the scope of this study. Therefore, all units are assumed to be

available and committed throughout the example day.

52



(a)

(b)

(c)

Figure 3.6: Minute-to-minute (M-M) unit economic dispatch highlighting the impact
of increasing PV penetration on an example generation portfolio. The results indicate
that large PV penetrations may lead to both over- and under-generation scenarios
where combined power from units cannot match demand. The presented analysis
include (a) no PV, (b) 250MW PV, and (c) 500MW PV penetration case studies.
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3.3 Conventional generators response to increas-

ing PV penetration

Increasing solar penetration can make it more challenging for grid operators to

balance generation with load in real-time, since generating units are committed based

on load forecast and level of uncertainty. In this study, the integrated PV farms are

operated in “must-take” modes, in which thermal units are turned down to accom-

modate solar PV penetration. The relatively high power variation of the PV plant for

the example day considered leads to significant generation imbalance during periods

when the operating units cannot ramp up or down fast enough for meet demand.

Due to the minimum generation limit of the available thermal unit, a significant

level of over-generation may be observed at hours between 9:00 and 13:00, when the

generators could not ramp down further to accommodate the increasing PV pene-

tration (Fig. 3.6). In addition to the rest time required to restart thermal units, a

significant amount of time, up to 24 hours for some coal units is required to restart

start them which makes it extremely challenging to turn off the units at midday and

restart them for evening peak [89].

The current solar PV regulatory standards may not be sufficient for managing

high intermittent renewable sources penetration and new standards will be required

to ensure grid stability in a future grid [90, 91]. Furthermore, the penetration of

distributed renewable sources such as rooftop solar will lead to substantial changes

in the apparent load on the transmission network that may call for additional regula-

tions. In this study, a generation violation or imbalance count is recorded when the
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area control error, ACE, exceeds ±20MW for defined consecutive minutes. The ACE

is expressed as:

ACE = (Tm − Ts) + βf (f − fs), (3.10)

where, Tm and Tt are the measured and scheduled tie line lows, f and fs, the measured

and scheduled frequency, and βf the frequency bias constant for the area. Frequency

variation due to generation imbalance is beyond the scope of this study, therefore it

was assumed that f = fs, and Ts is always equal to zero. Hence, for this analysis

(3.10) can be re-written as:

ACE = Tm = PT − Lc. (3.11)

The over- and under-generation imbalance count for the example day was eval-

uated for increasing PV penetration. A significant level of over-generation can be

observed at solar PV penetration levels exceeding 400MW (Fig. 3.7). This is mainly

due to the inability of the available units to operate at values below their minimum

generation limits during periods of surplus solar generation. For the example day

analyzed, there was no under-generation violation lasting more that 15 consecutive

minutes (Fig. 3.8). However, significant under-generation violation counts for 5

and 10 consecutive minutes, which was relatively constant for PV penetration above

350MW was recorded. These violations are primarily due to the intermittent behav-

ior of the PV systems and generating units not being able to ramp fast enough to

supply deficit power due to sudden shading of the solar panels.

Solar power curtailment can be an effective tool for managing over-generation,

in which the solar PV plant output may be held back when there is insufficient
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Figure 3.7: Example day over-generation violation count. In this approach a vio-
lation count is recorded when the dispatch imbalance exceeds 20MW over defined
consecutive minutes (5, 10 and 15).

Figure 3.8: Under-generation violation count at increasing PV penetration rate.
Under-generation occurs when PV becomes suddenly shaded and thermal units can-
not ramp up fast enough to supply deficit power.

56



Figure 3.9: Curtailed energy solar energy for example day. In order to limit over-
generation, an exponential increase in the total solar PV power curtailed can be
observed.

demand to consume production. This study examined how much curtailment will be

required to address solar over-generation for the presented generator portfolio over the

example day (Fig. 3.9). An exponential increase in the curtailed PV energy in order

to avoid over-generation violations was recorded, with rapid increase in curtailment

for PV capacity above 400MW. Due to the substantial PV energy curtailed, over

2% reduction in PV capacity factor was reported at 500MW penetration level (Fig.

3.10). Increase in solar PV penetration is expected to lead to significant reduction

in running cost without considering the capital cost for the PV system. It is however

important to recognize that, PV penetration may lead to more aggressive usage of

fast ramping units such as NGCTs, which are typically the most expensive units

in generation portfolios. This study evaluated the cost savings for the example day

due to increase in PV penetration. A somewhat steady increase in cost savings
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Figure 3.10: PV plant capacity factor based on penetration. Capacity factor can be
observed to reduce with increase in curtailed power.

was reported for solar PV penetration above 80MW (Fig. 3.11). However, due to

generator commitment and increased operation of the NGCT unit for managing the

solar PV variation over the example day, no cost savings was recorded for solar PV

penetration below 80MW.

3.4 Modified benchmark transmission network

The modified benchmark transmission system analyzed in this work represents a

small islanded power system network with 12 buses and four generating units (Fig.

3.2). This modified transmission network is based on the generic 12-bus test system

developed for wind power integration studies presented in [84]. The transmission

network base case was developed in PSSE with a single transmission line connecting

buses 3 and 4, as opposed to the parallel cables in the initial setup.

At steady-state without renewable integration, the transmission network total
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Figure 3.11: Operation cost saving due to increase in PV penetration. For the example
day considered, an increase in operation cost was observed for PV penetrations below
500MW due to operation of inefficient units to meet demand.

system load is approximately 65% of the total generation capacity. The bus voltage

voltages vary between 0.98pu to 1.03pu. In this example, each of the transmission lines

is rated for a maximum of 250MVA power flow with the exception of the transmission

lines connecting buses 7 to 8 and 3 to 4, which are rated to 500MVA. At 65% load

level without renewable integration, the maximum loading for any of the transmission

lines is 71%, which is the power flow between buses 6 and 4.

Solar PV penetration have the maximum impact on generation during periods

when load is relatively low. For transmission networks, maximum PV impact is

observed during peak periods, when load is rather high and transmission lines are near

saturation. In this approach, the transmission network was evaluated for the analyzed

example day peak demand and the generating units were dispatched according with

respect to minimum operating cost and solar PV penetration.
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The benchmark model was further modified to enable renewable system integra-

tion, such that a solar PV farm may be connected to either of its 12 buses. In order

to connect the PV plant to a selected bus, an additional transformer is introduced to

connect the PV plant terminal to the corresponding bus. Based on typical regulatory

requirements, the PV plant is configured to be capable of operating at 0.95 power

factor to support scheduled grid voltage at the point of interconnection (POI) [92].

3.5 Proposed framework for network PV hosting

capacity

The PV hosting capacity for a transmission network is defined as the maximum so-

lar PV capacity that may be connected to the system without significant upgrades to

its circuit to ensure steady operation. The maximum hosting capacity of a transmis-

sion circuit depends on multiple factors including the bus voltage variation, thermal

limits of the transmission lines, frequency variation, fault currents as well as regulated

factors such as total harmonic distortion and grid codes. This study focuses on the

maximum PV capacity that may be connected to any one of the buses in the example

transmission network without violating the bus voltages or the thermal limits of the

circuit branches.

The proposed framework established as a combination of modules developed in

Python and transmission case studies in PSSE, may be employed to estimate the

hosting capacity for a defined transmission network. Opposed to conventional ap-

proaches, this framework employs a practical and detailed economic dispatch model,
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which defines the output power of all available generating units based on combined

running cost. This dispatch model also respects generator minimum power limit and

ensures units are set to values within their operation limits. Hence, the combination

of units that meet load at the least cost are dispatched for each case study analyzed.

The framework allows the user to define the potential buses for PV connections,

the range and maximum PV capacity to be analyzed, and the load levels to be con-

sidered. The simulation study is initialized with for the based case without solar PV

penetration and the case study is evaluated. The combined load for the analyzed

instance is then distributed to all the load buses at a ratio and power factor identical

to the base case. The transmission network is then modified such that the minimum

PV capacity to be evaluated is connected to the first candidate bus to be analyzed.

All the available generators are re-dispatched to accommodate the increase in PV

penetration.

The modified circuit is solved in PSSE, and the connected PV rating is increased

if the solution converges. The framework keeps increasing the connected PV rating

at predefined steps until solution failure or maximum PV rating to be analyzed, after

which it resets to a minimum PV rating for the next bus or load level. The simulation

comes to an end after the combinations of all PV ratings, connection buses and load

levels have been exhaustively tested and results extracted (Fig. 3.12). Based on the

criteria defined for the system circuit, the collected results are therefore analyzed to

determine the system’s maximum hosting capacity.
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Figure 3.12: Operational flow chart for the proposed framework for estimating the
hosting capacity on a transmission network. The steady state impact for increas-
ing solar PV capacity at different POI was evaluated to estimate the maximum PV
hosting capacity for the network.
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Figure 3.13: The maximum and minimum bus voltage variation for increasing PV
capacity over multiple points of interconnection (POI). A PV capacity is undesirable
if it leads to bus voltage variation above 1.1 or below 0.9pu.

3.6 Transmission network response to increasing

PV capacity

The proposed framework was employed to estimate the PV hosting capacity for

the modified IEEE 12 transmission network. The PV hosting capacity was evalu-

ated based on the bus voltage responses of the network, thermal loading and circuit

solution convergence. The network was evaluated at 1450MW combined load level,

which represents the peak demand for the example day analyzed. Up to 500MW PV

penetration level was analyzed for the defined POI and the operational conventional

generators were re-dispatch for each case to ensure the combination generator output

power with the least cost is selected. the defined POI and the operational conven-

tional generators were re-dispatch for each case to ensure the combination generator

output power with the least cost is selected.
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Contrary to conventional assumptions, increasing PV penetration does not only

lead to increase in bus voltage. This capability for increasing solar PV capacity to

lead to both increase and decrease in bus voltages was demonstrated in this study.

Variations in bus voltage in some cases are due to substantial changes in power flow,

hence significant changes in the voltage drop across the transmission lines. Utilities

are typically regulated to maintain their bus voltages within certain limits, and this

study assumes a violation when any of the bus voltages exceeds 1.1 or below 0.9pu.

Due to multiple factors including substantial circuit violations, networks solutions for

PV capacity beyond certain values do not converge and such cases are only evaluated

based on available solutions. The maximum and minimum bus voltages for the net-

work varies based on the PV POI as illustrated in Fig. 3.13. Hence, up to 320MW

PV capacity can be connected to any of the transmission circuit buses without any

voltage violation.

The maximum and minimum bus voltage in a transmission network is significantly

influenced by the scheduled voltages of the connected generator units. Hence, a mea-

sure of the maximum and minimum bus voltages alone may not be able to capture

the impact of increasing solar PV penetration. In addition to the maximum and

minimum bus voltage limits, utilities are typically required to maintain bus voltage

variation within certain values. This maximum voltage deviation can also be an indi-

cator of the expected voltage variations due to the PV intermittency. For this study,

a PV capacity that leads to bus voltage deviation that exceeds 0.08pu is undesirable.

The maximum voltage deviation varies based on PV capacity and POI as illustrated

in Fig. 3.14. Based on this analysis, up to 140MW PV may be connected to any of
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Figure 3.14: Maximum bus voltage deviation for defined PV capacity. A violation is
recorded if the maximum voltage deviation exceeds 0.08pu. The maximum voltage
deviation is also an indicator of the expected voltage variation due PV intermittency.

the circuit buses with bus voltage deviations exceeding 0.08pu.

Transmission line power flow are typically limited to restrict the temperature

attained by energized conductors and the resulting sag and loss of tensile strength.

This study focuses on the maximum PV penetration the network can sustain at steady

state of a substantial period of time. Hence, the percentage loading for on all the

transmission lines were evaluated for defined solar PV capacity. A thermal violation

is recorded when the maximum transmission line loading exceeds 100% of its rated

capacity. For the example network considered, buses 10, 11 and 12 are the least

desirable for PV connection without over loading any of the transmission lines (Fig.

3.15). Based on this analysis, up to 110MW PV may be connected to any of the

buses without any thermal violation.

For this example study, a PV capacity is acceptable if all the bus voltages are
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Figure 3.15: Maximum transmission line loading. Depending on the POI, PV inte-
gration may lead to substantial reduction in transmission line loading.

Figure 3.16: Maximum PV hosting capacity with respect to the circuit solution con-
vergence(Conv), voltage violation and thermal limits at peak load level.
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within 0.9-1.1pu, voltage differences with and without PV do not exceed 0.08pu for

any bus, and the thermal loading for any of the transmission lines is below 100%.

Study is primarily focused on PV penetrations without significant changes to existing

infrastructure, therefore, supplementary devices such as voltage regulators, capacitor

banks, and other complementary tools were not considered. This study demonstrates

that the maximum PV capacity without any network violation depends on the PV

POI (Fig. 3.16). Based on the maximum PV capacity for the analyzed cases without

voltage or thermal violations, the preferred PV POI for the analyzed network are

buses 1,7 and 9 which are close to the largest operating generator.

3.7 Battery energy storage system impact on trans-

mission networks with large solar PV penetra-

tion

The desire for cleaner sources of energy is significantly increasing the penetration

of inverter-based resources (IBR) such as solar PV, wind and BESS. These IBR

pose multiple challenges to the traditional grid operation and substantial modeling

and simulation efforts will be required to effectively capture their impact on both

generation and transmission systems [1]. This study evaluates the impact of large

solar PV and BESS impact on an example transmission network.

Recent studies have been focused on the steady state simulation and analysis of

large solar PV and BESS [93, 94]. Energy storage systems when appropriately size

is in principle are capable of mitigating most of the challenges related to solar PV
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Figure 3.17: Single line diagram for the modified IEEE 12 bus system developed
in PSCAD/EMTDC with solar PV plant and BESS connected to Bus 2. The BESS
system may be configured to charge or discharge to mitigate the impact of PV system
intermittency and regulate its reactive power output to support its terminal voltage.
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integration. Multiple energy storage system applications including, frequency regula-

tions and voltage support through Volt-VAr mode have been presented in literature

[95].

This study evaluates through computer simulations the impact of BESS on trans-

mission networks with relatively high solar PV penetration. In this approach, the

IEEE 12 bus model proposed in [96] was modified to include a 100MW PV and BESS

connected to Bus 2 (Fig. 3.17). Opposed to conventional approaches, where IBR

module are either represented by average models which do not effectively capture the

contributions of high frequency power electronics devices [97, 98], or detailed models

which require significant computation power to simulate large solar PV farms [99],

this study proposes a dynamic IBR module suitable for the comprehensive evaluation

of its impact on the grid.

The proposed IBR module was modified to represent a BESS and solar PV plant

connected to the example transmission network. The modules performance and re-

sponse to changes in solar irradiance and transient fault conditions were evaluate

through two PSCAD/EMTDC simulation case studies. The results from the sim-

ulation studies demonstrates how BESS may be used to supply deficit power from

PV system and support the transmission system voltage. Furthermore, the results

validated that adequately sized BESS when operated in Volt-VAr mode is capable of

preventing substantial voltage drop during transient fault conditions.
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Figure 3.18: Proposed dynamic model for solar PV system. This module combines
the benefits of both detailed and average models. The model can also be employed
for other IBR such as BESS and wind.

3.8 Dynamic PV and battery module in

PSCAD/EMTDC

Inverter-based resources such as PV systems have been traditional represented as

controllable current sources whose output is mainly regulated by solar irradiance. The

inverters from these models generate balances sinusoidal currents without harmonics

at a fixed frequency and are not suitable for unbalanced fault studies such as single

line-to-ground or line-to-line-to-ground. Detailed models including power electronic

switches have been presented in literature. However, these models become complex

and required significant computational power when simulating the performance of

utility-scale systems which typically required multiple inverter modules.

This study proposes a dynamic IBR resource module with variable capacity which

can be employed for multiple systems including solar PV, wind and battery system.
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The proposed module may be regarded as hybrid system that combines the compre-

hensive benefits of detailed IBR models with the reduce computational requirement of

the average models. Hence, simulations with the proposed IBR module have a limited

number of electrical nodes when compared to the detailed models. In this approach,

the output of a three-phase controllable current source is proportional to the output

current of a representative detailed IBR model, which includes high frequency power

electronic models and control as illustrated in Fig. 3.18.

The proposed dynamic model for the PV system in this study includes a detailed

1MW solar PV plant developed based on [44] and connected to a controllable voltage

source, whose magnitude, phase and frequency is identical to the dynamic module

point of interconnection. The output current of the detailed model is then used to

regulate the output current of the three-phase current source used to represent the

dynamic model.

For this example PV module in this study, the inverter control is used to maintain

the PV array at maximum power point such that:

iα∗d = (V α
mt − V α

pv)×
(
Kp +

Ki

s

)
, (3.12)

iα∗q = (Qα
ref −Qα)×

(
Kp +

Ki

s

)
, (3.13)

where, iαdref and iαqref represent the d and q current components of the detailed PV

systems, respectively; Vα
mt and Vα

pv, the MPP reference voltage and the PV array

voltage, respectively; Kp and Ki, the PI controller proportional and integral constants,

respectively; and Qα
ref and Qα, the detailed PV system reference reactive power and
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actual reactive powers, respectively. Since the terminal voltage of the detailed PV

module is identical to the average system point of interconnection potential and the

average IBR module output current is proportional to the detailed PV module current,

the proposed IBR module real and reactive powers may be expressed as:

P β =
2

3
×
(
vαd i

β
q + vαq i

β
d + 2vα0 i

β
0

)
= Pα × Sβ

Sα
, (3.14)

Qβ =
2

3
×
(
vαq i

β
d − v

α
d i
β
q

)
= Qα × Sβ

Sα
, (3.15)

where, Pα, Pβ, Qα, and Qβ represent the average and detailed module real and reactive

powers, respectively; vαd and vαq , the d and q voltage components of the detailed PV

systems; and Sα, and Sβ, the MVA capacity for the detailed and average modules,

respectively. The solar PV array of the presented dynamic IBR module may be

replaced with a dc voltage source to represent a BESS.

3.9 PV and battery energy storage system tran-

sient response

Large solar PV penetration posses multiple threats to the stability of the tradi-

tional power system due to the high variation of its output power and the inability to

accurately forecast its generation. Battery energy storage systems in principle may

be employed to mitigate some of these challenges. The impact of transient irradiance

variation on the solar PV plant operation and the response the BESS system was

simulated and analyzed for the example transmission circuit presented in Fig. 3.17.

In this case, the solar PV array irradiance suddenly falls from 1000W/m2 to 200W/m2
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Figure 3.19: PV array terminal voltage (Vα
pv) and maximum power point reference

(Vα
mt) for the representative detailed model. The inverter control system varies its

real power output in order to maintain Vα
pv at reference value during PV shading from

2-4s simulation time.

for 2s at 2s simulation time. The detailed PV module the regulates its real power

output in order to maintain the PV array voltage at its reference value (Fig. 3.19).

The sudden loss of power from solar PV systems due to its intermittency can lead

to substantial power system challenges including voltage and frequency violations

that may eventually extend to widespread outages [100]. For this study, the BESS

was sized to be comparable with the PV systems and configured to supply deficit

power during shading. Hence, the BESS real power output increases in response

to the sudden PV shading to ensure the summation of the PV and BESS power is

maintained at the system capacity (Fig. 3.20). The voltage for any bus within a

transmission network is typically limit between 0.9-1.1pu and performance exceeding

these limits may be recorded as a violation. For the modified IEEE 12 bus system

employed, the voltage variation for Bus 2, which is the closest to the PV system
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Figure 3.20: The real power output from the dynamic PV module, Ppv, and the BESS,
Pbs. The BESS supplies the solar PV system deficit power in order to improve grid
performance during PV transient conditions.

was evaluated for cases with and without the BESS. Based on the simulation results,

by supplying the deficit power from the PV system, the BESS was able to mitigate

approximately 0.07pu transient voltage drop at Bus 2 (Fig. 3.21).

3.10 Battery energy storage system Volt-VAr op-

eration

Battery energy storage systems may be employed to regulate bus voltages during

steady-state and transient conditions in order to accommodate increasing solar PV

penetration without significantly impacting power quality and reliability of a trans-

mission network. Hence, the BESS is configured to absorb reactive power when the

bus voltage exceeds the tolerance setting and vice-versa. In this example study, the
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Figure 3.21: The voltage variation for Bus 2 with and without the BESS. For this
example case study, the BESS was able to mitigate approximately 0.07pu drop in
transient voltage drop.

Figure 3.22: Detailed PV array terminal voltage and corresponding MPP reference
during transient fault condition at 3s simulation time.
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Figure 3.23: The PV and BESS response during transient fault for 0.05s duration.
The BESS was regulated to supply or absorb reactive power in response to its terminal
voltage variation.

BESS reactive power support is inactive when its terminal voltage is within 0.995-

1.005pu and supplies or absorbs 50% of its reactive power capacity when its terminal

voltage is below 0.9pu or above 1.1pu, respectively. The reactive power is linearly

interpolated for voltage within 0.9 - 0.995pu and 1.005-1.1pu accordingly.

Furthermore, the response of the BESS connected to Bus 2 on the modified IEEE

12 bus was evaluated for a three-phase fault on line T2 5 at 3s simulation time, which

lasted for 0.05s. The fault condition in addition to the PV terminal transient voltage

reduction led to a sudden drop in the system dc-link voltage before the inverter

controller moves to maintain the PV array voltage at its MPP (Fig. 3.22). During

the fault condition, the BESS increased its reactive power output in order to support

the grid operation and minimize the voltage drop at its POI (Fig. 3.23). The results

of the simulation indicate that the BESS was able to significantly reduce the voltage
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Figure 3.24: The voltage response for Bus 2 during fault condition. The reactive
power response from the BESS led to substantial reduction in the bus voltage drop
during fault.

drop due to the fault condition compared to the case studies with and without the

PV (Fig. 3.24).

3.11 Summary

This chapter proposes an analytical framework, which includes a minute-to-minute

economic dispatch model and a transmission network analyzing module for the eval-

uation of large solar PV impacts on both the generation and transmission systems.

This framework can be employed for multiple applications including studies for esti-

mating the maximum solar PV capacity a service area can support, the generation

violations due to solar PV penetrations, the preferred location to connect solar PV

plants, and the power system violations on the transmission network due to solar

PV penetration. Furthermore, the proposed framework may be adopted for other
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intermittent sources such as the wind power plants, and evaluate their effect on both

the generation and transmission network system.

The detailed technical benefits for the proposed framework were demonstrated

through the evaluation of the impact of increasing solar PV penetration on both the

generation and transmission network for a modified IEEE 12 bus system with four con-

ventional generators. Contrary to conventional approaches based on hourly dispatch

models, the proposed technique employs a detailed minute-to-minute economic dis-

patch model to capture the impact of increasing PV penetration and identify periods

of generation imbalance suitable for regulatory practices. Additionally, the frame-

work was used to estimate the maximum PV hosting capacity for the transmission

network with regards to the bus voltage and transmission line violations.

This chapter also presents a dynamic IBR module that may be used to analyze the

performance and impact of large solar PV and BESS integration into the power system

grid. The proposed dynamic IBR module may be employed for multiple applications

including network performance assessments, solar PV hosting capacity estimation

and new IBR regulations evaluation. Contrary to conventional approaches, this study

presents a dynamic module that captures the impact of IBR power electronics and

combines the benefit of corresponding detailed and average IBR modules.

The detailed technical benefits of the proposed module with respect to PV and

BESS penetration impact on a modified IEEE 12 bus system was demonstrated

through two case studies for BESS real and reactive power support. The simula-

tion results demonstrate that BESS may be used to improve transmission network
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PV hosting capacity and regulate the bus voltage variations due to solar PV inter-

mittency and transmission line fault conditions.

Based on the results for the example transmission circuit and generators responses

for the day evaluated, the maximum capacity of the solar PV plant a service area can

sustain without needing significant upgrades to the existing infrastructure depends on,

the available units specifications, the PV point of interconnections, and the voltage

and thermal limits of the transmission network buses and lines, respectively. The

results from the example 2,248 MW system evaluated indicate that up to 120MW PV

plant can be connected to any of the buses in the transmission network without any

voltage or thermal violation at peak load. The hosting capacity of the transmission

network considering solar PV plants at multiple POI and the integration of battery

energy storage systems to improve the acceptable PV capacity on the circuit are

subjects of ongoing studies.
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Chapter 4

Parameter Identification for Cells,
Modules, Racks, and Battery for
Utility-Scale Energy Storage
Systems

4.1 Introduction

According to the EIA, utility-scale BESS in the U.S. account for more than 75% of

the total energy storage capacity installed in 2018 [101]. The future electric grid may

be able to take advantage of these predominantly Lithium-ion (Li-ion) based BESSs at

the distribution, transmission and generation levels for multiple applications includ-

ing voltage and frequency support, load leveling and peak power shaving, spinning

reserve, and other ancillary services [102]. However, recent developments surrounding

Li-ion based battery safety and thermal runaway have further emphasized the need

for advanced battery monitoring systems to ensure safe operation[103, 104].

The terminal voltage of Li-ion battery energy storage varies with multiple param-

eters including state of charge (SOC) and mode of operation. Hence, utility-scale
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Figure 4.1: An example battery energy storage system (BESS) setup including a
1MVA bidirectional inverter, 2MWh battery system distributed in two containers(one
obscured by the other), and an advanced SCADA facility, which is not shown. The
2MWh battery system incorporates 4,760 cells (20 racks or 340 modules) connected
in series and parallel to meet power conditioning devices requirements.

BESS may see variations over 200V in their dc terminal voltage during regular oper-

ation [47]. Battery systems in some cases have been represented as constant voltage

sources [105–107], or modeled as a controlled voltage source [108]. Furthermore, re-

cent studies have focused on small-scale battery modeling with greater emphasis on

single cell operations [109–111]. Other researchers have worked towards developing

standardized procedures for the estimation of the parameters of a single cell. [112–

115].

Contrary to conventional approaches, in which equivalent circuit parameters for

battery cells were only extracted from laboratory setups and scaled to represent the

parameters of a utility-scale battery system with multiple cells and BMS [116–118],

the proposed approach accounts for the contributions of the BMS in cell voltage

balancing and acknowledges the differences in the parameter of cells from the same

manufacturer.

This chapter presents an approach for estimating the equivalent circuit parameters
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of a utility-scale battery system and its sub-components using equipment typically

available at installation sites. Additionally, the work emphasizes how the difference

in parameters of cells within a battery system can lead to significant variations in

terminal voltages and defines a metric for comparing the voltage performance of

utility-scale battery models developed using select cell, module, or rack parameters.

Furthermore, this study introduces a multi-hour operation cycle that ensures bat-

tery voltage equilibrium for each charge or discharge procedure as opposed to the

conventional quick pulse discharge cycles used for battery equivalent circuit parame-

ter estimation [119, 120]. The proposed procedure benefits from measurements of the

type recommended by the new Electric Power Research Institute (EPRI) BESS test

manual [121], and may also serve as a possible extension to the initiative. This work

builds upon the studies conducted in [46]. Additional contributions include sensitiv-

ity analyses to establish the impact of each parameter on the system performance,

and comparison of the voltage variation of the battery system to equivalent circuit

models from the parameters identified from specified racks, modules, and cells.

The technical details of the 1MW/2MWh battery system employed for this anal-

ysis are presented in this chapter. The battery operation cycles employed for the

battery parameter identification and approach for validation are introduced. Also,

the proposed test procedures adopted for the cell, modules, rack, and the battery

system equivalent circuit parameter identification are also presented. The sensitiv-

ity analyses of the battery equivalent circuit components and the validation of the

identified parameters are included in this chapter.
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4.2 Field implementation setup

This study employs a utility-scale BESS, which includes a 2MWh battery system,

a 1MVA bidirectional power conversion system (PCS), a 13.2kV/480V step-up trans-

former, and a 1MVA programmable load bank (Fig. 4.1). At the time of installation,

this field system was one of the largest BESS testing facility in the US, whose capa-

bilities have been highlighted through complex tests described in [121]. This unique

setup includes advanced measurement devices capable of capturing voltage, current

and power measurements at the dc-link, inverter ac terminal, and the point of com-

mon coupling, that are synchronized with the local time and logged at one-second

intervals by the SCADA system.

In order to meet the ratings of the power conditioning device, the experimental

battery system includes 20 racks, which are equally distributed between two identical

containers. A rack includes 17 LG Chem M48126P3B1 battery modules, each with

14 Li-ion cells and rated for 126Ah at 51.8V nominal voltage. This battery system

also employs a BMS, whose function includes the supervision of cell performance

and balancing the SOC across all cells. The BMS provides additional details on the

battery system and sub-component state including; the measured terminal voltage of

all the cells, modules, and racks; the terminal current for each rack; and the calculated

SOC of individual modules, racks, and entire battery system.

The PCS is a 1MVA Dynapower bidirectional two-level converter, which may be

operated at 740-1150V dc-link voltage while maintaining a constant 480V three-phase

voltage on the ac side. For the purpose of carrying out multiple discharge tests with
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reduced grid disturbance and enable BESS operation in the isolated mode, the sys-

tem is equipped with a 1MVA, 480V three-phase Simplex programmable large size

load bank, which is capable of absorbing up to 1MW resistive power and sourc-

ing/absorbing reactive power up to 600kVAr at 5kVA load steps (Fig. 4.1).

4.3 Review of EPRI battery test procedures

The Electric Power Research Institute (EPRI) recently released an energy storage

test manual aimed to support improved understanding of large scale energy storage

system technical characteristics relevant to utility requirements [121]. This manual

defines consistent procedures and metrics to objectively compare and track the per-

formance of a BESS. This study reviews the important tests described by the EPRI

test manual for BESS, with detailed implementation of the prioritized procedures.

The BESS may be divided into two major sections; the energy storage unit and

the power conditioning system. The energy storage unit consists of the battery unit,

which is a connection of multiple cells in series and parallel; the battery management

system, which includes the HVAC for temperature regulation and fire suppression sys-

tem. The power conditioning device includes the bidirectional dc/ac converter, utility

power transformer, ac and dc circuit breakers and the overall system management.

The energy storage integration council (ESIC) at EPRI proposed multiple charge

and discharge test cycles for characterizing utility scale BESS. These cycles may be use

to define the functionalities, performance and verify manufacturer specifications such

as available energy, charge/discharge duration, round trip efficiency and self-discharge

rate. For the purpose of improving accuracy during tests, it is recommended that the
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Figure 4.2: An example battery energy storage system (BESS) setup with the battery
unit directly connected to the dc-link of the bidirectional converter. The BESS may
be isolated from the utility grid and connected to the available programmable load
bank during the discharge tests

BESS environmental enclosure is maintained at 23◦C or manufacturer’s recommended

operating temperature and a minimum of 10 minutes rest time is allowed between

charge and discharge cycles.

In this approach, the BESS may be disconnected from the grid during battery

tests and directly coupled to a variable load bank capable of absorbing up to 1MVA

energy at 5kVA steps. This configuration with an optional load bank allows effective

testing of the BESS without disrupting the operation of the power grid.

4.3.1 Available BESS energy

The amount of energy a BESS can provide or absorb is dependent on the energy

rating of the battery unit and each component of the system for adequate operation.

For the purpose of defining the available energy for large BESS, the EPRI test manual

recommends charging and discharging it between the maximum and minimum SOC

limits at different power ratings, while ensuring a maximum of one complete test cycle

85



Figure 4.3: The schematic representation of the BESS real power duty cycle for
determining operational and performance characteristics recommended by the EPRI
test manual for large BESS. The BESS was charged/discharged at 100%, 75%, 50%,
and 25% of its rated power in other to verify manufacturer specifications.

per day (Fig. 4.3). The available charge/discharge energy may be computed as:

Echg(dchg) =
1

n

n∑
1

(ECn(Dn) ± EACn(ADn)), (4.1)

where, Echg and Edchg, are the available charge and discharge energy, respectively;

n is the number of complete cycles considered; EDn and ECn, is the energy at the

point of common coupling (PCC) calculated as an integral of the metered power for

n discharge and charge cycle, excluding energy for auxiliary loads, respectively; EADn

and EACn, is the summation of energy from all auxiliary devices required to maintain

BESS operation during n discharge and charge cycles, respectively.
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Figure 4.4: The schematic representation for an example SOC variation due to self
discharge based on concept described in the EPRI test manual. The self discharge
rate is highest at the first 24h after full charge and then tapers off to a lower somewhat
constant rate.

4.3.2 Charge/discharge duration

The rated continuous charge duration for large BESS described by the EPRI test

manual is the amount of time required to charge it from minimum SOC to maximum

at rated power and vice versa for discharge duration. The real power schematic in

Fig. 4.3 at unity power factor may be used to determine the battery charge duration,

considering only the duration, where the charge/discharge power is within ±2% of

the rated power.

4.3.3 BESS round trip efficiency

The round trip efficiency (RTE) of an energy storage is the fraction of the en-

ergy used to charge the BESS that is available for dispatch. Apart from providing

information concerning the energy available, knowledge of the RTE can also be used

87



to monitor the performance of the BESS as well as its individual components. The

percentage RTE may be computed as:

RTE(%) =
1

n

n∑
1

EDn − EADn
ECn + EACn

· 100. (4.2)

When calculating the system RTE at the dc bus, EACn and EADn should be

represented as the summation of energy from all auxiliary devices on the battery unit

alone required for effective BESS operation during charge and discharge, respectively.

4.3.4 Self-discharge rate

The phenomenon, where the internal chemical reactions within a battery unit

causes a reduction in its stored charge without any connection between its terminals

is know as self-discharge. The knowledge of the self-discharge rate (SDR) for large

scale BESS will provide the utility companies information regarding the amount of

charge energy available in the battery and the ability to schedule charge/discharge

cycle for maximum RTE.

The SDR for large BESS may be classified into transient (SDRt) and long-term

(SDRLT ) SDRs. In order to estimate these values, the EPRI test manual recommends

charging the BESS to maximum SOC and leaving it in shutdown mode for at least 7

days while monitoring its SOC (Fig. 4.4). The transient period refers to the partly

exponential decay period in the battery SOC at the beginning of the test, where

the SDR is maximum. The BESS SDR may also be computed by discharging it to

its minimum SOC after the transient and long-term SDR period and recording the

Watt-hour (Wh) discharge at the dc link. The expression for the transient SDR using
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the both methods is given as:

SDRt =
SOCi − SOCt

tt − ti
=
Whi −Wht
Whi ∗ tt

, (4.3)

where ti and tt, are the test start time and intermediate transient time, respectively;

SOCi and SOCt, are the battery SOC corresponding to times ti and tt, respectively;

Whi and Wht, represent the watt-hours discharge before the test and after the tran-

sient discharge, respectively. The value for SDRLT is computed over the tt and the

end of analysis time, tf . It is recommended to repeat the test for variations of SOCi

for the battery full characterization.

4.4 Proposed test procedures and measurements

for the battery system

The parameters of a battery cell vary with different factors including, temperature,

state of health, state of life, depth of discharge, and SOC. Cells within a large battery

system have unique characteristics and parameters even if they are identical models

from the same manufacturer. Furthermore, in large multi-MW BESS, the cells are

subjected to different operational conditions and load due to the presence of the

BMS, which is employed for protection, monitoring, and SOC balance across all

the cells. Hence, for the purpose of modeling a large battery, simply scaling the

equivalent circuit parameters of a single cell may not be sufficient to represent the

system accurately.
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Figure 4.5: Flowchart for the experimental procedures employed in the proposed
parameter extraction. The battery system is open-circuited or kept in the ”float
mode” in between tests in order to ensure voltage and chemical equilibrium among
all cells.
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The experimental setup includes multiple advanced measuring and protection de-

vices capable of capturing and recording high-resolution voltage, current, and SOC

measurements from each cell, module, rack, and the entire BESS. This approach as-

sumes the battery system and its components can be subjected to similar charge and

discharge cycles to estimate their individual equivalent circuit parameters.

The sequence of testing begins with the initialization of the battery system at its

manufacturer recommended maximum SOC, and afterward open-circuited for a long

period to ensure chemical and voltage equilibrium (Fig. 4.5). The experimental BESS

setup was subjected to multiple charge and discharge cycles and its responses includ-

ing the measured battery system and sub-component terminal voltage and current,

the BMS computed SOC, and the PCS real and reactive power were recorded. The

battery system enclosed chamber was regulated at 23◦C throughout all tests to ensure

minimum temperature variation between system cycles and battery sub-components.

For this example utility-scale battery system, the recommended minimum and

maximum SOC limits from the manufacturer are 5% and 95%, respectively. At the

time of this research, the standard time for a utility-scale battery system to reach

equilibrium had not been described. Hence, a rest period of 8h before tests and

2h after each pulse operation is proposed for the battery system based on voltage

response observations. The BESS operation and voltage response were analyzed and

validated over three charge/discharge cycles described as follows.

Cycle A: This cycle is used for the main parameter extraction and validation.

From the system reported maximum SOC, the BESS was continuously discharged at

rated power through 10% SOC and operated in the float mode for 2 hours in order
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to allow the battery system to approach equilibrium [121]. The float mode operation

enables the battery system to approach chemical equilibrium while maintaining it at

reference SOC by trickle charging at a rate equal to its self-discharge. This pulse

discharge procedure was repeated until the system SOC reached the minimum. Con-

ventional approaches require pulse discharging the battery cell at constant current.

The proposed procedure is adapted to the equipment typically available at a utility-

scale BESS, and therefore, the PCS is controlled for pulse discharging the battery

based on a power command. In this approach, Cycles B and C are proposed for

validation of the parameters identified through Cycle A.

Cycle B: This cycle is based on the exemplary performance and functionality

test cycle described in [121] for characterizing the energy storage system. In this

cycle, the BESS was initialized to the manufacturer recommended maximum SOC

and left in the float mode till the battery system is presumed to have reached chem-

ical and voltage equilibrium. The battery is then continuously discharged at rated

power till minimum SOC, and promptly charged back to maximum SOC before being

discharged once again at rated power till 50% SOC. The BESS is then left in float

mode for approximately 2 hours before the next cycle at 75% capacity of rated power.

The procedure is repeated for 50% rated power and all relevant system component

parameters were measured and recorded.

Cycle C: The field implemented BESS setup is co-located with multiple gener-

ation resources including solar, natural gas combustion turbines, hydropower plants,

and coal-fired units with over 1GW of combined net-generation capacity. In this

cycle, the BESS is operated in the autonomous frequency response mode, in which
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Figure 4.6: Equivalent circuit model for the battery system and its sub-components
(racks, modules and cells) used for the study. Each parameter corresponds to the
combination of cells connected in series and parallel.

the battery charges when the frequency exceeds the reference value and discharges

otherwise. Due to the reduced frequency variation near the grid-connected BESS, the

response sensitivity was increased such that the battery addresses deviations greater

than 0.005Hz and supports the grid at rated power for deviations above 0.05Hz based

on the specified droop control.

4.5 Battery system, racks modules and cells pa-

rameter extraction

A battery cell may be represented as a controllable voltage source (voc) connected

in series to a resistance (R0) and multiple RC branches (R1, R2, C1 and C2). In this ap-

proach, it is assumed that the same type of equivalent circuit can be used to represent

the battery system, rack, module, and cell, with the parameters modified accordingly

(Fig. 4.13). The impact of parameters such as the number of charge/discharge cy-

cles, depth of discharge, state of health, and temperature are beyond the scope of this

study. Hence, the voltage response of the battery system and its sub-components are
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Figure 4.7: Battery system open circuit voltage. The BESS was pulse discharged
(Cycle A), and the maximum dc terminal voltage (vb) for defined SOC ranges when
the output current approaches zero were used to estimate its open-circuit voltage
(voc).

represented as functions of SOC. It may be noted that the parameter value has been

demonstrated to be minimally impacted by the SOC when the battery is operated

between 5-95% [122–124].

The battery system terminal voltage, vb during discharge may be described as:

vb(t) = voc − ibR0 + ibR1 e
− ∆t
R1C1 + ibR2 e

− ∆t
R2C2 . (4.4)

vb(t) = voc − ibR0 − v1(t)− v2(t), (4.5)

where, voc, is the battery open-circuit voltage; ib, the battery dc output current; v1

and v2 , the voltages across the RC branches 1 and 2, respectively and t, the dis-

charge duration. The voltage response of the battery system and its sub-components

during BESS pulse discharge operation (Cycle A) were analyzed and used to estimate
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(a)

(b)

(c)

Figure 4.8: The variation of the equivalent circuit parameters for the battery systems
component extracted through measurements for all (a) 20 racks, (b) 340 modules, and
(c) 4,760 cells. The results illustrate typical variations within battery system sub-
components from the same manufacturer.
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the corresponding equivalent circuit parameters. From (4.15), the battery terminal

voltage approaches its open-circuit value as the output current tends to zero and is

expressed as:

voc(t) = lim
ib→0

∆t→∞

vb(t). (4.6)

In this approach, the battery and sub-components dc terminal voltages, vb, when

the current is nearly zero during Cycle A were isolated and divided into 20 SOC

class intervals of the same range. Due to the influence of external parameters such as

self-discharge rate and battery trickle charge, terminal voltage reduction may also be

observed during open-circuit conditions. The maximum dc voltage for each bin when

the output current is zero is identified as the open-circuit voltage for the reported

SOC and termed as:

voc(ψi) = max
ib=0

[vb(ψl), vb(ψu)], ψl ≤ ψi ≤ ψu (4.7)

where, ψi represents the SOC corresponding to the reported class interval maximum

voltage, ψl and ψu the lower and upper boundary of the select class interval, respec-

tively. For Cycle A evaluation, only bins where the battery output current is zero

were analyzed. The defined points were fit to establish the battery system open-

circuit voltage relationship with SOC and a similar procedure was employed for all

its racks, modules, and cells (Fig. 4.7).

This approach employs an artificial computation intelligence program to estimate

the best values of the resistance and capacitance that can be applied to (4.13) for an

accurate estimation of the battery terminal voltage. The fitness function is defined

as the absolute value of the difference between the reported battery terminal voltage
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and the corresponding calculated value at each data point of Cycle A. Hence, the

particle swarm optimization problem is formulated as follows:

min
x
F (x) = min

x

M∑
k=1

|v∗b (k)− vb(k)| x ∈ X (4.8)

x = (R0, R1, R2, C1, C2) (4.9)

where F (x) is the objective function extracted from (4.13); k, the index of the data

sample; v∗b (k), the measured battery voltage at the kth data sample; vb(k), the calcu-

lated battery voltage at the kth data sample; M , the number of data samples; x, is

the vector with all the battery parameters; and X, is the space of solutions.

A satisfactory average voltage error less than one-percent was reported for Cycle

A when the battery models developed using a combination of the established open-

circuit voltage and SOC relationship with parameters retrieved from the optimization

process for the battery system all its sub-components were compared to the reported

values. Even though all the cells that make up individual modules, racks, and the

entire battery system are from the same manufacturer, a significant disparity can be

observed in their estimated parameters (Fig. 4.8).

4.6 Parameters sensitivity analysis

In order to identify the most influential parameters affecting the accuracy of the

battery equivalent circuit model presented in Fig. 4.13, a sensitivity analysis was

conducted. A regression model was employed to relate the identified battery system
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Figure 4.9: Voltage response for multiple battery system models developed as a scaled
version of each individual cell.

parameters. The 2nd order polynomial function used is expressed as follows:

Y = β0 +
dν∑
i=1

βiXCi +
dν∑
i=1

βiiX
2
Ci+

dν∑
i=1

dν∑
j=i+1

βijXCiXCj ,

(4.10)

XCi =
xi − (xi,max + xi,min)/2

(xi,max − xi,min)/2
; i = 1, 2, ..., dν , (4.11)

where Y is the response parameter; β, the regression coefficient; dν , the number

of factors, xi, the ith input factor; and XCi, the normalized (coded) value of the

ith factor. Factors may be normalized as shown in (4.10). XCi = 0 represents the

specified values of the factors with the reference response, and β0 is a representation

of response parameter in this reference situation. βii and βij illustrate second order

effects and interaction between the factors.

In this approach, the voltage responses of 15,625 equivalent circuit models for the
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Table 4.1: Sensitivity analysis regression co-coefficients

Parameters Average Error [pu] Max Error [pu]
×10−3 ×10−2

R0 -0.09 1.10
R1 0.07 -0.02
R2 -0.04 -0.08
C1 0.02 0.02
C2 0.01 -0.36
voc 3.85 4.46

battery system with each parameter varying between ±10% of the extracted value

were analyzed over Cycle A. The results of the sensitivity analysis with regards to

the average and peak voltage error of the battery system are presented in Table 4.1.

The main takeaways from the study are as follows:

1) The open-circuit voltage of the battery is the main parameter that influences

the voltage response of the system

2) Depending on the cycle analyzed the RC branch parameters are the least sig-

nificant

3) The battery series resistance, R0 has an observable effect on the maximum

voltage error recorded.

4.7 Battery system parameter validation and com-

parison

The sequence of validation was initiated with a comparison of the multiple bat-

tery system models developed as a scaled version of all 4,760 cells in the considered

1MW/2MWh setup. For validation purposes, this approach assumes that battery
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(a) (b)

(c) (d)

Figure 4.10: The BESS during rated power pulse discharge from maximum to min-
imum SOC showing: (a) The experimental and simulated battery system terminal
voltage variation for the system and sub-components, (b) the percentage voltage error,
(c) the discharge current, (d) and the SOC variation. The battery discharge current
increases to maintain constant pulse discharge power as voltage decreases with SOC.
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(a) (b)

(c) (d)

Figure 4.11: The BESS during dynamic charge and discharge between multiple SOC
levels at 100%, 75% and 50% power rating (CycleB) showing: (a) The experimental
and simulated battery system terminal voltage variation, (b) the percentage voltage
error, (c) the discharge current, (d) and the SOC variation. The average error for the
system and selected sub-components were considered to be within acceptable limits
and the maximum percentage error was reported for the representative cell.
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(a) (b)

(c) (d)

Figure 4.12: The BESS during automated grid frequency response, showing: (a) The
experimental and simulated battery system terminal voltage variation for the bat-
tery system and sub-components, (b) the percentage voltage error, (c) the discharge
current(ib) and grid frequency deviation (∆f), (d) and the SOC variation. The BESS
sensitivity was modified such that the system responds to frequency deviations about
5mHz.
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sub-components contribute equal currents and voltages to represent the entire bat-

tery system. Hence, each sub-component current is defined as a fraction of the total

battery system current and the total amount of component strings in parallel, while

the corresponding sub-component voltage represents a fraction of the total number of

components in series per string(Table 4.2). The analysis showed that for the example

setup considered, the average voltage error of a battery system modeled can vary up

to 10V depending on the reference cell selected (Fig. 4.9). Also, the performance

evaluation reported higher disparities in the simulated voltages at SOC greater than

50%.

The accuracy of a battery equivalent circuit for utility-scale systems does not

only depend on the reference member of the sub-component but also the sub-level

analyzed. In order to demonstrate this, the battery terminal voltage was derived using

three scaling approaches: scaling the voltage from a) the cell; b) the module, and c)

the rack levels, and compared with the terminal voltage predicted by the proposed

method based on tests conducted at the battery level.

The terminal voltage predicted by the battery models developed using scaled

parameters of the select combination of cell, module, and rack sub-components with

the highest average error was evaluated through Cycle A (Fig. 4.10 ). It can be

observed that the simulated voltage responses of these models developed using sub-

component parameters were within acceptable limits, which may be attributed to

the presence of the BMS ensuring that all measured cell voltages are typically within
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3mV variation. In this approach, the percentage voltage error was calculated as:

% Error =
|Vexp − Vsim|

Vexp
× 100 (4.12)

where Vexp and Vsim represent the measured and simulated battery system voltage

responses, respectively. It can be observed that the recorded voltage variation of the

battery system model developed from scaling the cell parameters has lower accuracy

compared to the system alternative, which had less than 0.1% average error for the

cycle (Table 4.3).

The performance of the developed battery models is validated for steady-state

operation, as well as grid frequency regulation. For the steady-state case, the simu-

lated voltage variations of the battery sub-component models were compared with the

measured BESS dc-link terminal voltage when subjected to Cycle B power variation

(Fig. 4.11). In this operation cycle, the influence of the RC branch parameters is

minimal, and the recorded voltage error is primarily due to the open-circuit voltage

and resistances. For this validation cycle, the equivalent circuit model developed as

a function of the system parameters has the minimum mean voltage error.

Battery energy storage systems may be employed for grid frequency regulation,

during which active power is provided in response to changes in frequency. The

variations in terminal voltage predictions for the developed equivalent circuit models

were further evaluated through the frequency response operation described in Cycle

C. The fast charge and discharge operations through this cycle resulted in minimal

SOC variation and increased voltage error for the system and rack models, which can

be observed at SOC ranges between 53-54% (Fig. 4.12). It is however important
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Table 4.2: Sub-components configuration for field implemented 1MW/2MWh battery
system

Sub-components Springs in parallel String length

Cells 20 238
Modules 20 17
Racks 20 1

Table 4.3: The battery system percentage voltage errors using equivalent circuit
parameters at different sub-component levels.

Mean [%] Max [%]

C
y
cl

e
A

System 0.06 0.55
Rack 0.09 0.58
Module 0.18 0.87
Cells 0.49 1.28

C
y
cl

e
B

System 0.16 0.98
Rack 0.17 1.11
Module 0.25 1.53
Cells 0.60 1.71

C
y
cl

e
C

System 0.14 0.51
Rack 0.12 0.52
Module 0.18 0.45
Cells 0.31 0.61

to recognize that average voltage error for the system equivalent model and sub-

components are all less than 0.4% and within an acceptable range.

4.8 Battery bank model in PSCAD/EMTDC

A battery cell is generally modeled as a controllable voltage source connected in

series with a variable resistor and multiple RC branches (Fig. 4.13). The characteris-

tics of a battery vary with its chemical and physical parameters such as temperature,

state of charge (SOC), state of health and the number of cycles. For simplicity, only

the variation due to the battery SOC is being considered in this approach. The
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battery SOC may be represented as:

γ(%) = γi(%)− 100

CAh · 3600

∫ t

0

ibdt, (4.13)

where γ and γi represents the percentage final and initial battery SOC, respectively;

CAh, the battery rated capacity in Ampere-hour; ib, battery output current and t is

the time. CAh is multiplied by 3600 in order to convert it to Ampere-second. The

terminal voltage of the battery bank may be represented as:

vb(t) = voc − ib(t)R0 − vRC1(t)− vRC2(t), (4.14)

and the RC branch voltages, vRC1(t) and vRC2(t) may be found from their first deriva-

tives, ˙vRC1(t) and ˙vRC2(t) from the following,

˙vRCn(t) =
1

Cn

(
ib(t)−

vRCn(t)

Rn

)
, for n = 1 and 2, (4.15)

where vb represents the battery terminal voltage; Voc, the battery open-circuit voltage;

R0, the series resistance, and Rn and Cn, the resistances and capacitances for the nth

battery RC branch.

An equivalent battery bank model was developed in PSCAD/EMTDC based on

(4.13)-(4.15). This model mathematically calculates the voltage across R0 and the

RC branches, which is then subtracted from open-circuit voltage to obtain the battery

terminal voltage. The terminal voltage is used to regulate a controllable dc source, in

order to model the voltage response of the battery and capture its dynamic behavior

(Fig. 4.14). The estimated single-variable functions for each of the battery equivalent
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Figure 4.13: An equivalent circuit diagram for a single battery cell. In this approach,
for simplicity, parameters such as cell temperature, number of charge and discharge
cycles, self-discharge and cell state of health are neglected.

Figure 4.14: The developed runtime equivalent circuit for a utility scale 1MW/2MWh
battery bank in PSCAD/EMTDC software.
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circuit parameters were thus retrieved from the experimental test and described as:

voc(γ) = 10.16 · exp−3.389·γ 0.002081 · γ3 − 0.02149 · γ2 + 1.918 · γ + 814.5, (4.16)

R0(γ) = 0.00584 · exp−0.088·γ +0.00558, (4.17)

R1(γ) = 30.9068 · exp−1.72223·γ +0.003434, (4.18)

C1(γ) = 8.66× 107 · exp−0.2416·γ +1.007× 106, (4.19)

R2(γ) = −4.23731 · exp−1.4753·γ +0.0015, (4.20)

C2(γ) = −6.68× 105 · exp−0.8311·γ +30379. (4.21)

The Param Calc block in Fig. 4.14 is used to calculate the open-circuit voltage,

resistor and capacitor values of the battery bank as a function of the SOC. This

subsystem is modeled in PSCAD/EMTDC environment using arithmetic blocks that

describes the mathematical relations presented in (4.16)-(4.21) (Fig 4.15).

In order to verify the proposed model, it was tested under the same conditions

as the experimental measurements. The model is fed from a current source, whose

output is identical to the measured dc current of the experimental unit. For the

purpose of reducing the simulation time, the battery model was simulated on an
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Figure 4.15: The estimation of equivalent circuit parameters in the PSCAD/EMTDC
software. Best fit models relating the electric equivalent circuit parameters to the
battery SOC were derived from experimental measurements on the LG&E and KU
battery.
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Figure 4.16: The battery terminal voltage variation during pulse discharge.

Figure 4.17: The variation of percentage error between the estimated and measured
battery terminal voltages with the SOC. Based on the defined parameters, up to 99%
accuracy in the estimated voltage is achievable.
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Figure 4.18: Schematic representation of battery energy storage system in
PSCAD/EMTDC software. The system includes a 1MW/2MWh battery bank con-
nected to the grid through a bidirectional power conditioning system and a 1MVA
transformer.

accelerated time scale, α. Hence, the RC branch voltage expressions in (4.15) may

be rewritten as:

vRCn(α) =
1

KCn

∫ (
ib(α)− vRCn(α)

Rn

)
· dα, for n = 1 and 2, (4.22)

where α = Kt, is the accelerated time, which is a multiple of the experimental time.

For this approach, K was selected to be equal to 0.001. Also, (4.13) and (4.14) may

be rewritten in terms of α. The terminal voltage of the equivalent battery bank model

in PSCAD/EMTDC was compared with the experimental result for a pulse discharge

of the battery from the maximum to minimum SOC, and an agreement between the

results was established (Fig. 4.16). The developed battery bank model demonstrated

an accuracy up to 99%, with the maximum error occurring around 50% SOC (Fig.

4.17).
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Figure 4.19: An example inverter control scheme, allowing independent control over
the active and reactive power. P∗ref and Q∗ref represent the real and reactive reference
powers, respectively.

4.9 Power electronics control

The BESS is modeled in PSCAD/EMTDC as the proposed equivalent battery con-

nected to a two level bidirectional inverter. The BESS is connected to the grid, which

is represented as a 13.2kV three-phase voltage source, via a wye-delta 480V/13.2kV

transformer (Fig. 4.18). For this inverter, a decoupled scheme identical to [125], which

allows the independent control of real and reactive powers is employed (Fig. 4.19).

The dq− rotating reference frame is aligned with the grid voltage using the transfor-

mation angle, φ, obtained from a phase locked loop. The inverter active (P ∗ref ) and

reactive (Q∗ref ) power references, may be set at the desired values, depending upon

the operating mode, for example, frequency regulation, power smoothing and voltage

compensation. These are used find the dq− current commands using the following,

i∗d =
2

3

P ∗ref
vd

, i∗q =
2

3

Q∗ref
vq

, (4.23)
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Figure 4.20: An example BESS droop characteristic for frequency response. The
BESS is inactive when the frequency deviation is within the dead-band(± BW) and
charges or discharges at rated power, Pr at frequencies exceeding the lower and upper
frequency deviation control bounds (∆fL and ∆fU), respectively.

where vd, vq and i∗d, i
∗
q, are d-q reference frame voltage and currents, respectively.

In the case of the frequency response operation studied here, the reference active

power is derived from the frequency variation, while the reactive power reference is

maintained at zero.

4.10 Autonomous frequency response

In the conventional grid dominated by synchronous generators, an imbalance be-

tween the generation and demand may lead to deviation in the system frequency. The

grid frequency tends to increase when the generation is in surplus, and falls when the

load exceeds the generation. In this regard, typically, utilities install additional high-

ramping generators in the form of spinning reserves which respond to maintain system
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Figure 4.21: The experimental grid frequency variation. Imbalance between electric
power generation and consumption typically leads frequency variation. Hence, utili-
ties typically take measures to limit frequency variations by instantaneously meeting
load demands.

frequency. These are expensive and also have power gradient limitations. In princi-

ple, BESS with extremely high ramping capabilities may be explored for frequency

regulation by charging when the system frequency is above the desired value and

discharging when it is low. It may be noted that this a function that requires the

BESS to supply short bursts of power, and is therefore dependent on its power rating,

rather than energy capacity.

In order to test and validate the developed BESS model and its controls under dif-

ferent operating conditions, its response to frequency variation was analyzed through

a PSCAD - based study. In this analysis, the battery bank, connected to a bidi-

rectional PCS is interfaced with the 13.2kV grid via a two winding 480V/13.2kV

transformer. The BESS was then operated in its autonomous frequency mode, where

it charges/discharges with respect to the observed frequency variation. For this study,
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a droop control described in Fig. 4.20 was adopted for both experimental and sim-

ulation setups. The BESS is inactive when the frequency variation, ∆f is within

± 0.005Hz, and discharges/charges at 1MW rated power when the ∆f exceeds ±

0.05Hz.

PSCAD simulations as well as experiments were conducted with similar grid fre-

quency variations as described in Fig. 4.21, and the output power and battery termi-

nal voltage variations were compared. The simulated BESS output power closely fol-

lows the reference BESS real power calculated based on droop control, which demon-

strates the efficacy of the control scheme. Furthermore, experimental measurements

of real power output from the BESS are comparable with the simulation results (Fig.

5.3). The simulated battery terminal voltage variation under this operating mode

also has close agreement with the measured value (Fig. 4.23). It may be noticed

that the simulation results contain high switching frequency components, absent in

the experimental results due to the smaller sampling frequency employed during mea-

surement. The agreement between the simulation and experimental under different

operating conditions results attests to the accuracy and versatility of the developed

model.

4.11 Summary

This chapter reports on the variation in the equivalent circuit parameters for the

racks, modules, and cells for a utility-scale battery system and presents an approach

for identifying battery level parameters using equipment typically available at instal-

lation sites. A multi-hour discharge cycle for the BESS that can identify its equivalent
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Figure 4.22: The BESS real power output. A reduction in grid frequency indicates
insufficient electric generation, hence, the BESS supplies power to the grid to com-
pensate for the deficit.

Figure 4.23: Battery terminal voltage during autonomous frequency response. High
frequency variation is observed in the simulation battery voltage due to the switching
of the power electronics devices, and a small sampling time.
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circuit parameters while ensuring that the battery system terminal voltage stabilizes

after transient discharge operations is proposed. A comparison of the performance

of the equivalent circuit models derived from this approach with those obtained scal-

ing up the parameters for battery sub-components (i.e. cells, modules, and racks) is

performed, and it is found that the scaling approach can be used to represent the

entire system provided that the BMS is operational. The BESS operator can adopt

these models to monitor the operation of the BMS in addition to other safety and

simulation applications.

The accuracy of the developed model was verified from simulation and experimen-

tal measurements conducted under similar conditions. Both simulated and experi-

mental battery system were operated in autonomous grid frequency response mode,

and the obtained battery output power and terminal voltage were found to be com-

parable. The results show that for the examples considered, up to 99% accuracy in

the estimated battery voltage accuracy is achievable.

In order to validate the performances of the scaled equivalent circuit models

and the effectiveness of the proposed approach, the simulated voltage responses of

the battery system models were compared with experimental data retrieved from a

1MW/2MWh BESS, and satisfactory accuracy was observed. This work also demon-

strates that the accuracy of the battery system models increases with the number of

cells considered. For the example field implementation considered, average and peak

voltage errors as low as 0.06% and 1.71% , respectively, were calculated with the

model developed from scaling up the parameters of a single cell. This indicates that

while modeling a multi-MW battery at the sub-component level may be sufficient for
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all practical purposes, the accuracy of models can be improved when the parameters

at the battery level are determined
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Chapter 5

The Design and Analysis of Large
Solar PV Farm Configurations with
DC Connected Battery Systems

5.1 Introduction

The photovoltaic (PV) energy installations are fast-growing both for residential

applications, as well as for utility-sized power plants [126]. Solar PV generation is

intermittent in nature, and much of the associated research focuses on employing

battery energy storage systems (BESS) in order to mitigate this inherent limitation.

Power electronic devices play major roles in PV and BESS integration, fulfilling mul-

tiple functions including ac-dc transformation, PV maximum power point tracking

(MPPT), and battery charge control[1].

Analyses have shown substantial benefits of single-stage grid-connected PV sys-

tems over two-stage PV systems, some of which include: lower cost, smaller system

size, and higher efficiency [38, 39, 127]. Configurations with PV systems incorpo-

rating BESS typically introduce two additional dc-dc converters, with losses in the

supplementary components [40, 50, 128, 129]. Compared to hybrid PV and battery
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systems presented in [130–132], the proposed configuration, which requires only one

dc-dc converter in addition to the grid connected inverter, constitutes a simple and

potentially cost effective solution for integrating BESS with conventional PV systems.

Other configurations for battery integrated PV systems using a single dc-dc con-

verter have been presented in literature. In [41], the battery is directly connected to

the dc-link of a two-stage converter, which ensures simplicity, but leads to additional

losses in the dc-dc converter when the battery is not operational, further affecting

the battery over-voltage protection and the effectiveness of the control for the battery

charge and discharge operations.

This chapter introduces a configuration for integrating BESS with multi-MW grid-

connected PV systems, in which the battery is connected to the dc-link of the PV

inverter via a dc-dc converter, which simultaneously serves as a charge controller

and MPPT device. An approach for determining the ratings of a BESS connected

to the dc-bus of an experimental PV system is proposed. This work build upon

the study presented in [49]. Additional contributions include detailed calculations of

curtailed solar energy due to inverter rating limitations, the development of a sizing

approach for the battery to maximize solar energy utilization based on annual solar

PV generation data from the LG&E and KU site.

The proposed configuration is compared with other established setups including

the LG&E and KU E.W. Brown universal solar facility system, wherein the PV array

and BESS are connected to the grid through individual inverters, as described in

the later sections of this chapter. The modeling of a simplified BESS integrated PV

system and a general approach for battery sizing is also presented in this chapter.
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The proposed system components and control in addition to a comprehensive exam-

ination of the proposed configuration and controls for variable power generation and

PV output power smoothing, which was simulated on a sped-up timescale using the

PSCADTM/EMTDCTM software are included in this chapter.

5.2 Battery integrated PV systems

Battery energy storage systems may be connected to either the ac or dc terminals

of a grid-tied PV system. The ac connected battery units, which require their inverter,

introduce the possibility of having an independent operation of the BESS and PV

systems as well as the ease of integrating BESS into an existing PV system [133, 134].

However, the configuration is less efficient, since power needs to flow through two

converters when charging the battery with the PV power.

The dc rating for utility-scale PV is typically higher than its ac-rated capacity for

multiple reasons including, meeting the minimum inverter dc-bus voltage for MPPT

when irradiance is limited, and to maximize the inverter utilization factor as well as

system capacity factor. Hence, power is curtailed during periods of surplus irradiance,

resulting in poor solar utilization and substantial energy loss, especially in sites with

high solar potential [135].

The conventional PV system integrated with a dc-connected BESS includes a PV

array connected to a dc-ac inverter via a dc-dc converter for maximum power point

tracking (MPPT) and a battery unit connected to the inverter dc-bus via another

dc-dc converter operating as a charge controller [136–138] (Fig. 5.1a). Alternatively,

the E.W. Brown solar demonstration site by LG&E and KU houses multiple PV array
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(a) (b)

(c)

Figure 5.1: Example configurations of multi-MW PV system with BESS: (a) Conven-
tional system with multiple dc-dc converters for MPPT and charge control, (b) field
implemented system with BESS connected to the grid via independent inverter, (c)
proposed system with single dc-dc converter for MPPT and charge control. These
systems may also be connected to the grid without a transformer.
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sections, each connected to the grid via individual dc-ac converters and a battery unit

connected to the grid via an independent bidirectional dc-ac converter (Fig. 5.1b).

This experimental facility PV system is divided into 10 sections with each rated for

1MW with a 1.4:1 dc to ac ratio, hence, totally, up to 4MW of power is curtailed at

rated irradiance.

The multi-MW PV system configuration proposed in this chapter is divided into

multiple modular sections, where each includes a PV array, battery unit, bidirectional

dc-dc converter, two-level grid-connected inverter and transformer (Fig. 5.1c). The

dc-dc converter operates simultaneously as a charge and as an MPPT controller by

varying the charge/discharge power of the battery bank to maintain the PV array at

the voltage corresponding to its MPP. This configuration allows the battery integrated

PV system to operate as a single-stage PV system during periods when the battery is

not operational. Also, the proposed configuration can be used to improve the overall

system stability of the PV system by constantly maintaining the PV array at its MPP

reference voltage during periods of excess irradiance.

5.3 Methodology for sizing the BESS

The PV system dc output power is represented as a function of its irradiance and

cell temperature. The calculated dc power is expressed as

PdcS =
( γ

1000
· Pr1

)
×
(
−0.41

100
Tcell + 1.1025

)
, (5.1)
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where PdcS, represents the available PV array dc power; Pr1, the rated PV array

dc power; γ, the system irradiance calculated as the average plane of array (POA)

irradiance from two weather stations located on the PV farm; Tcell, the cell temper-

ature estimated as the average temperature from 40 thermometers located at back

of selected PV modules distributed across the PV farm (Fig. 5.2). The expression

for PdcS also accounts for the PV modules -0.41%/oC maximum power temperature

coefficient.

The amount of power supplied to the grid from the PV system is limited by the

ac rating of its inverter. Hence, the power supplied to the grid (PgS) is expressed as:

PgS =

PdcS PdcS < Pr2

Pr2 otherwise
, (5.2)

where Pr2 is the inverter rated power. In contrast, for systems with dc connected

BESS, additional power from the PV array that will otherwise be curtailed during

periods of excess irradiance due to inverter ac specifications may be stored in the

BESS. A simplified expression for the power flow in the BESS is described as

PbattS =


Pr2 − PdcS 0 < Pr2 − PdcS < Prb

Prb Pr2 − PdcS ≥ Prb

0 otherwise

, (5.3)

where, PbattS, is the battery output power and Prb, is the BESS rated power. It may

be noted that (3) only describes battery charging operations. The PV system ac

output power retrieved from the 10MWac experimental facility (PgE) was compared

with the calculated PgS for two consecutive sample days with and without excess

irradiance, respectively (Fig. 5.3). The battery is controlled to stop charging when

its state of charge (SOC) reaches the maximum specified value. For simplicity, factors
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Figure 5.2: PV system irradiance and cell temperature retrieved from the experimen-
tal facility for two example consecutive days. The cell temperature is measured as
the average from the back of 40 solar modules distributed across the 45acres PV farm
and the irradiance is measured as the average from two weather stations.

such as power electronics and battery round trip efficiency are not considered in this

study.

The amount of PV energy curtailed daily varies with different seasons of the year.

The daily curtailed PV energy in the absence of dc connected storage is calculated

as:

λf =

∫ t1

t0

(PdcS − PgS)dt, (5.4)

where, λf , is the PV energy curtailed on day f ; t, is time; t0 and t1, are PV curtail-

ment start and end times of the day, respectively. λf was evaluated for the example

year with the experimental data retrieved from the LG&E and KU 10MWac PV sys-

tem and the peak curtailed PV energy was observed during the spring period between

April and May (Fig. 5.4). The distribution of the daily PV system energy curtailed

was evaluated, in order to establish the size and need for energy storage connected

to its dc-bus. It was observed that on most days, the curtailed energy was less than
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Figure 5.3: Experimental (PgE) and simulated (PgS) PV system output power for two
example days validating the simplified PV system model and estimating the curtailed
power. PdcS represents the available dc power and PbattS represents the power available
for storage. A negative sign indicates power flow into the battery.

2MWh (Fig. 5.5). This indicates that the PV curtailed energy can be reduced sig-

nificantly by using a relatively small scale BESS rated for 2MWh.

Battery energy storage systems are typically sized in terms of power rating and

energy storage capacity. A large battery would lead to a reduction in curtailed en-

ergy, but become prohibitively expensive. Therefore the minimum battery size which

reduces annual curtailed energy is determined. For simplicity, it is assumed that the

battery was discharged to its minimum state of charge (SOC) at the start of each day

and charges during periods of excess irradiance provided that its cumulative stored

energy is less than the rated energy capacity and the SOC is below the specified

maximum limit. The annual PV energy curtailed is computed as:

Cyr =
365∑
f=1

(λf − Ebf ), where Ebf ≤ Erb, (5.5)

Cyr, represents the annual curtailed energy; Ebf , the total energy stored in the battery
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Figure 5.4: Daily curtailed energy comparison over one year. The solar panels are ori-
ented to peak over the summer, hence, the maximum curtailed energy occurs between
April and May.

Figure 5.5: Daily curtailed power distribution over one year. The daily curtailed
energy is less than 2MWh for most of the year and greater than 8MWh for less than
40 days.
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on day f ; and Erb, the battery energy capacity. The value of Cyr was computed for

multiple Prb and Erb combinations at 20kW and 60kWh intervals, respectively, and

the results are plotted (Fig. 5.6).

For the analyzed example year and case study considered, it can be observed

that the desired energy curtailment can be achieved with different battery rating

combinations and approximately 1:3 BESS power to energy ratio is the minimum

rating combination for a specified Cyr. Also, it is observed that increasing the BESS

size above 2MW/6MWh, does not lead to a significant reduction in the amount of

energy curtailed (Fig. 5.6).

In the case of the field implemented 14MWdc/10MWac PV system and example

year considered, up to 360MWh of energy curtailed may be retrieved if a 1MW BESS

capable of storing up to 2MWh were connected and distributed across the dc-buses of

all PV sections. Since BESS typically have a limited SOC operation range, the rec-

ommended battery energy capacity may need to be oversized accordingly. Although,

the BESS is primarily sized to reduce the annual curtailed PV energy, it should be

noted that its rating is still sufficient for satisfactory grid ancillary services such as,

PV power smoothing, frequency regulation, constant power production, and energy

arbitrage, some of which are demonstrated in the subsequent sections.

5.4 System configuration and components

Battery energy storage system(s) are expected to play a significant role in the

integration of renewable energy sources into the future electric grid. Typical field im-

plementation of Multi-MW PV systems exists as single-stage systems, which includes
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Table 5.1: Main specification for 10MW PV power plant
Experimental Proposed

AC rated power (MW) 10.00 10.00
Clear day capacity factor (%) 38.91 44.50
Clear day PV energy (MWh/section) 9.34 10.68
PV smoothing Battery usage (MWh/section) 0.40 -0.74
Annual energy output (GWh) 19.32 20.32
Annual capacity factor (%) 22.05 23.19
Max. PV array dc power inverter rating PV rating
Battery charge efficiency ηinv × ηinv ηdcdc

Figure 5.6: Annual PV energy curtailed for multiple dc connected battery power and
energy ratings. For the example considered, up to 1GWh energy may be curtailed
without a dc connected battery.
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Figure 5.7: The LG&E and KU E.W. Brown universal solar facility, which houses a
14MWdc 10MWac PV system. The PV system is divided into ten sections with each
rated 1MWac.

multiple sections of PV arrays interfaced with the grid via a dc-ac converter capable

of performing MPPT. The proposed configuration may be used to enhance the oper-

ation of these existing systems by connecting a battery pack via a bidirectional dc-dc

converter to the existing inverter dc link. Depending on the power and energy rating

of the integrated BESS, the proposed system may be used to perform operations such

as PV output power smoothing, PV constant power production, and peak shifting.

The field implemented PV system consist of ten PV arrays, each made up of 19

Jinko JKM315P-72 PV modules connected in series and an average of 236 module

strings in parallel. An equivalent PV array was modeled in PSCADTM/EMTDCTM

with each 315W PV panel rated at 46.75V open circuit voltage and 9.02A short circuit
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(a)

(b)

Figure 5.8: The battery energy storage system (BESS) setup at E.W Brown LG&E
KU facility rated 1MW/2MWh. (a) Two parallel battery container units are con-
nected to the grid through a bidirectional dc-ac converter, (b) SCADA room for high
resolution data management and system control. The experimental facility may be
operated in the islanded mode with a 1MVA load bank connected to the secondary
side of the transformer.
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Figure 5.9: Proposed system schematic and configuration control scheme. The BESS
controller charges when P ∗ref is lower than the PV output power (ipv × vpv). The
BESS control is disabled or discharge based on the BESS converter control so that
battery supplies or absorbs the amount of power required to maintain the PV array
voltage (Vpv) at the voltage corresponding to its MPP (VMPPT ).

current. The equivalent circuit of the PV cell was modeled based on

i = ig − io
[
exp

(
v + iRsr

nKTc/q

)
− 1

]
−
(
v + iRsr

Rsh

)
, (5.6)

where, i represents the cell output current; ig, the component of cell current due to

photons; io, the saturation current; K, the Boltzmann constant (K = 1.38x10−23j/K);

q, the electron charge (q = 1.6x10−19C); v, the output voltage; Tc, the cell tempera-

ture; Rsh, the shunt resistance and Rsr, the series resistance.

The field implemented energy storage site consists of two shipping containers (Fig.

5.8) with multiple Li-ion LG Chem battery modules, each rated for 51.8V/126Ah

connected in series and parallel to make up a 1MW/2MWh battery pack connected to

the grid through an independent inverter. This approach assumes an active battery

management system for balancing voltage and SOC across series and parallel cell

combinations is included in the battery pack. Hence, a representative cell is scaled

to represent a battery pack with 0.35kV nominal voltage.
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Figure 5.10: The battery unit connected to the PV array and inverter dc-link through
a bidirectional converter, where switch S1 and S2 are used to regulate the battery
charge and discharge current, respectively.

5.5 Power electronics and controls

The proposed system requires a dc-dc converter for the battery power flow control

in addition to the inverter which interfaces the PV system with the ac grid. In

this study, a bidirectional Buck/Boost converter topology (Fig. 5.9), which typically

includes two switches, inductor, and capacitors is employed as a charge controller

capable of regulating power flow with the battery. The PV system is connected to

the grid through a two-level inverter, a widely available technology that is relatively

low-priced with well-established controls and has been demonstrated to be reliable

for small inverters below 1MW [139]. The BESS and dc-dc converter offer a means

for capturing PV energy that would otherwise be curtailed. This stored energy can

be used potentially for PV smoothing and grid ancillary functions.

The system is capable of operating in different modes, which are based on the

battery power flow direction or its availability. Also, the proposed configuration

allows the power sources to operate effectively and independently of one another. The

inverter employs a voltage oriented control scheme in which its active and reactive
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current components are calculated as a function of P ∗ref and the reference reactive

power of the system (Q∗ref ) as follows:

i∗d =
2

3

P ∗ref
vd

, i∗q =
2

3

Q∗ref
vq

, (5.7)

where, vd, vq and i∗d, i
∗
q, are d-q reference frame voltage and currents, respectively.

Mode I : This is the preferred mode of operation, in which the battery charges

with the surplus available power. In this operation mode, the ac set power, P ∗ref may

be calculated as a function of the available PV energy, in which the PV system is

expected to operate at its MPP at all times. During periods of excess irradiance

or conditions when the ac system rating is less than the available PV power, the

battery dc-dc converter is operated in Buck (charging) mode, where it ensures MPPT

stability by maintaining the PV array terminal voltage at its MPPT reference. In

buck mode, pulses to switch S1 are modulated to charge the battery with the excess

power required to maintain the PV array terminal voltage at MPP when greater than

the MPP reference. Hence, the converter current during charge is given as:

ib(c) =
(ipv − idc)

(VMPPT − Vpv)
(
Kps + Kis

s

) , (5.8)

where ib(c) is the battery charging current; VMPPT , the reference MPP voltage; Vpv,

PV array terminal voltage; idc, inverter dc current P ∗ref ; Kps and Kis, PI controller

constants. The battery may also be operated in this mode during period of PV

unavailability, in which P ∗ref is calculated as the amount of ac power from the grid

and the dc-dc charges with corresponding current required to regulate the dc-link

voltage at specified value.

Mode II : During periods when P ∗ref is greater than the available PV power, due
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to shading for example, the battery can be used to supply the power deficit. In this

case, the dc-dc converter is operated in boost mode, and the duty cycle for switch S2

is regulated to ensure the PV array is operating at MPP, while the battery supplies

the deficit power. The dc-dc converter current during discharge is expressed as:

ib(d) =
(idc − ipv)[

1− (VMPPT − Vpv)
(
Kps + Kis

s

)] , (5.9)

where, ib(d) is the battery discharge current.

The battery may also be operated as an independent BESS storage system capable

of directly interacting with the grid. During discharge, while the battery is above its

minimum SOC, the dc-dc converter switches to constant voltage mode, in which it

discharges in order to maintain the dc-link voltage at its reference value (V ∗dc). The

reference dc-link voltage should be greater than the peak ac voltage during discharge

and expressed as:

V ∗dc >
√
V 2
d + V 2

q . (5.10)

Hence, the battery discharges when the dc-link voltage is less than V ∗dc and switch

modes to charge when otherwise.

Mode III : The system operates in this mode when the battery SOC is beyond

operation range or unavailable. The setup is operated as a single stage PV system,

in which the BESS is disconnected from the dc-link and the inverter maintains the

PV array at its MPP reference as long as the available PV power is smaller than the

ac rating. In this mode, P ∗ref is expressed as:

P ∗ref = (VMPPT − Vpv)
(
Kpi +

Kii

s

)
, (5.11)
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and the inverter reference active current components as:

i∗d =
2

3

(VMPPT − Vpv)
vd

(
Kpi +

Kii

s

)
, (5.12)

where, Kpi and Kii are the PI controller constants for the dc-ac converter. It may be

noted that in this case, as the inverter capacity is less than the PV dc rating, excess

power, otherwise stored in the battery, will need be curtailed during periods of excess

irradiance.

Detailed calculations on the filter inductor, and capacitor sizing for this config-

uration are beyond the scope of this study. Hence, the capacitors connected across

the battery terminal and the inverter dc-link, and the dc-dc inductors were sized to

be large enough to absorb the ripple currents and ensure minimum voltage variation

based on a simplified systematic analysis.

Typical Multi-MW inverters are divided into identical modular power blocks,

which are cascaded and connected in parallel to the ac grid. The field implemented

system includes central inverters, which are based on automatic redundant modular

multi-master systems, where each module is rated for 200kVA to 240kVA [140]. While

switch selection is not the focus of this research, the proposed configuration may be

developed with IGBT switches rated for power less than 1MVA. This configuration

leads to an increase in system efficiency when charging the battery with PV power,

compared to the conventional approach with losses in two dc-dc converters and the

experimental setup with losses in the PV and BESS inverters. When operated in

mode 2, there is a slight reduction in the proposed system battery round trip effi-

ciency due to the losses in the dc-dc converter, compared to the experimental setup,
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Figure 5.11: The power circuit diagram in the PSCADTM/EMTDCTM software en-
vironment for a single unit of the proposed system in Fig. 5.1c, where a constant
voltage source is used to represent the grid.

where the PV and BESS have independent inverters. Generally, due to the reduced

amount of switching devices, dc-dc converters have higher efficiencies when compared

to dc-ac converters [141].

5.6 Validation of proposed system

The performance of the proposed and field implemented systems were compared

via simulation studies, where the irradiance data used was calculated as the average

of the data from two weather stations on the LG&E and KU 10MW universal solar

facility on a clear day. The PV cell temperature was estimated as a function of the

measured ambient temperature. The field implemented system PV array is rated

14MWdc with 10MWac inverters which are operated for maximum power transfer

from the PV array. However, during periods of surplus irradiance, when the inverter

power rating is insufficient to transmit the available PV power, the system switches

to the constant power mode, where excess power is curtailed For the example day

considered, the field implemented system switches from the MPPT mode to constant
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Figure 5.12: PV array dc output power for the proposed (PdcS) and field implemented
(PdcE) setups. Due to BESS unavailability at approximately 13h, the proposed system
also curtails excess power during periods of surplus irradiance. Pbase=1.4MW.

Figure 5.13: The PV array terminal voltages and MPPT references. The field imple-
mented setup deviates from its MPPT reference during periods of excess irradiance,
while the proposed setup switches to power curtailment mode only at 13h due to
BESS unavailability. Where, VpvE, VMPPTE, VpvS, and VMPPTS represents the PV ar-
ray voltage and MPPT reference for the experimental and proposed setup at Vbase=
0.89kV, respectively.
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Figure 5.14: The system ac output power and experimental irradiance data (irrad)
for the proposed (PgS) and field implemented systems (PgE). At approximately 19h
when PV power is unavailable, the BESS discharges independently to the grid. The
irradbase=1000W/m2, Pbase= 1.4MW.

power operation at approximately 10h, forcing the PV array voltage to deviate to-

wards open circuit and away from its MPP reference, leading potentially to unstable

operating points [142].

A single section of the multi-MW PV system is simulated in PSCAD/EMTDC

under multiple operation modes for the same example day, in order to evaluate the

expected transients during transitions and validate the model operation(Fig. 5.11).

The P ∗ref was calculated to illustrate diverse operation modes of the proposed system.

Also, the BESS was set to be unavailable between 13h-19.5h to validate the system

performance and transient stability (Fig. 5.12) . The PSCAD/EMTDC simulation

was accelerated such that the 1s PSCAD time represents 24min real-time.

The reference active power was controlled for constant power with a ramp rate of

10%/min. In order to maintain the PV array at the MPP, the BESS charges during
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Figure 5.15: Battery net power flow and state of charge (SOC). The BESS charges
and discharges in other to maintain the system ac output at the reference value. The
BESS was unavailable between 13h and 19.5h, and later discharges to the grid till
20% SOC.

the periods when P ∗ref is less than the available PV power and discharges otherwise,

such that the inverter output corresponds to its reference.

At approximately 13h, the BESS system is fully charged, and therefore considered

to become unavailable, and the system transitions into a different operation mode,

where the dc-dc converter is inactive and the inverter switches to MPPT mode. Simi-

lar to the field implemented system, the simulated system operates at constant power

mode during periods of excess irradiance, in which it curtails the additional power

that would otherwise be stored in the BESS. Therefore, the PV array terminal voltage

can be observed to deviate from its MPP reference during periods of surplus power

availability and returns when the irradiance is below 714W/m2 (fig. 5.13. It may be

noted that the fully charged BESS can be used to supply the power deficit when the

power available from the PV system is lower than the inverter ac rating.
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During the late hours of the day when the irradiance is nearly zero and BESS is

available, the system was operated to discharge independently, and reference active

power calculated for the BESS to provide grid ancillary services (Fig. 5.14). Close

to 19.5h, the BESS was operated to supply power to the grid to support the evening

peak power demand. For simplicity, during this period, the battery dc-dc converter

was regulated to maintain the dc-link voltage at 0.65kV, while the inverter maintained

the real power output at the reference value (Fig. 5.15).

As an example, following the experimental study previously presented, the avail-

able 1MW/2MWh battery unit with a larger PV array of 1.54MW per section for the

best weather condition is capable of producing 11.75MWh with the 1MW inverter,

hence increasing the system capacity factor by 20.4%. It may be noted that the in-

crease in the system capacity factor may vary from site to site, and is expected to be

higher for areas with high natural solar resources.

5.7 PV power smoothing

Battery energy storage systems may be employed on a cloudy day, to smooth the

PV output power variation, in order to improve the delivered power quality, meet

grid ramp rate limitations and limit potential frequency deviations. In the case of

multi-MW PV systems, sudden changes in the output power due to cloud movement

can potentially induce severe voltage fluctuations leading to grid stability issues [142].

Utility companies with high renewable energy penetration often limit their maximum

allowable ramp rate to 10% per minute, based on the system’s rated capacity [143].

Different methods of curtailing the PV system real power output ramp rate through
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Figure 5.16: PV output power smoothing over a cloudy day; Per unit ac output
power and experimental irradiance data (irrad) for the proposed (PgS) and field
implemented systems (PgE), where PbattS represents the battery dc output power.
irradbase=1000W/m2 and Pbase=1.4MW.

Figure 5.17: A zoomed-in representation of cloudy day power variation for experi-
mental and simulated results. Battery charges and discharge at high frequency in
order to reduce PV ramp rate while maintaining PV array voltage at MPP reference.
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modified MPPT algorithms have been proposed [144, 145]. These methods lead to

increased computational burdens, reduction in energy produced by the PV system and

also require accurate weather forecasting devices. For this approach, the reference real

power output of the PV inverter (PMA
ref ) is computed using a moving average (MA)

technique to determine the sample mean of the saturated PV output estimated as:

PMA
ref (t) =

PdcE(t) + PdcE(t− 1) + ...+ PdcE(t−∆ + 1)

∆
, (5.13)

where, PMA
ref is the smooth PV power output; PdcE, the PV system dc output power; t,

the time and ∆, the number of considered points. For this study, the proposed system

operation over a cloudy day was analyzed using irradiance data retrieved from two

weather stations on the LG&E and KU 10MW universal solar facility and simulated

on a PSCADTM/EMTDCTM accelerated time scale. The moving average sample data

was computed over 1000s, which reduced the maximum PV system ramp rate from

56.31%/min to 4.15%/min maximum (Fig. 5.16).

The BESS is controlled to supply the power difference between the available PV

power and the computed moving average power of the PV system (Fig. 5.17). The

field implemented 1MW/2MWh BESS requires 0.40MWh energy in order to smooth

the output power of the PV system while the proposed configuration smooths the PV

output power, maintains the PV array at its MPP and provides additional storage

energy of 0.74MWh to the battery which may be supplied to the grid at later hours.
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5.8 Summary

The detailed technical benefits of the proposed configuration with respect to

PV output power smoothing and variable power generation were illustrated through

PSCADTM/EMTDCTM simulations of two case studies with irradiance variation for

a clear and cloudy day. Furthermore, the performance and steady operation of the

proposed dc-dc converter and transition into multiple operation modes was verified.

In order to validate the capabilities and effectiveness of the proposed system and con-

trols, its simulated performance was compared with computed and experimental data

from the LG&E and KU E.W. Brown universal solar facility, which houses a 10MW

PV farm and a 1MW/2MWh BESS. The results show that for PV installations in an

area with good solar PV resources and a lot of clear days, an increase in the annual

capacity factor of up to 20% is possible with a dc-bus connected battery. At the other

end, a negligible increase in the capacity factor for areas with limited solar availability

is expected.
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Chapter 6

Conclusions

6.1 Summary

In this dissertation, several frameworks and simulation efforts for evaluating the

impact of integrating large solar PV plants and approaches for using battery energy

storage systems (BESS) to mitigate some of its adverse effects were proposed. In

chapter 2, a detailed utility-scale solar PV plant with 10 modular sections and ac

connected with a BESS was developed. It was demonstrated that the output power of

PV systems with and without dc-dc converters for maximum power point controller is

virtually the same and maximum power point tracking is achievable for all irradiance

levels without a dc-dc converter. In the same chapter, multiple applications of BESS

for addressing the impact of solar PV penetration and improving the overall grid

performance were presented. An electromagnetic transient simulation study analyzing

the effect of these inverter-based resources operation on conventional generators and

example transmission network was presented.

In chapter 3, a framework for estimating the maximum solar PV penetration a gen-

eration and transmission system can sustain without significant upgrades to existing
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infrastructure was proposed. The approach envisions a system with large amounts of

variable renewable penetration and includes information required for the system plan-

ner to reliably operate the generation portfolio in a least-cost manner in both present

and future scenarios. This framework also includes a detailed minute-to-minute (M-

M) economic dispatch model capable of capturing the intermittent impact of solar PV

plants and identifying the minute-based periods of generation imbalanced required for

performance regulations. The minute-to-minute economic dispatch model was also

employed for evaluating the impact of PV penetration on an example transmission

system and used to estimated the maximum PV power plant that can be connected

to any of its buses without violating its bus voltage and branch thermal limits.

A dynamic module for inverter-based resources such as solar PV, wind, and BESS

was also proposed in Chapter 3. Opposed to conventional approaches, where dy-

namic IBRs were modeled as controllable current sources generating sinusoidal cur-

rents without harmonics and incapable of modeling unbalanced fault conditions. This

study includes a dynamic IBR module which may be regarded as a hybrid system

that combines the comprehensive benefits of detailed the IBR models with the re-

duced computational requirement of the average models. The results from the study

indicate that the maximum PV system that may be connected to a transmission net-

work depends on multiple factors including its point of interconnection, transmission

system voltage and thermal limits, and the combination of generators operating on

the system.

One of the main contributions of this dissertation is included in Chapter 4, which

proposes new procedure and software framework for estimating the equivalent circuit
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model (ECM) parameters for utility-scale BESS. Contrary to the rapid pulse discharge

cycles employed in conventional cell parameter estimation approaches, the study pro-

poses a new charge/discharge cycle for identifying the equivalent circuit parameters

for utility-scale battery systems using equipment readily available at installation sites

without the need for laboratory setups. The results of this study demonstrate that

the ECM for a reference cell, module, or rack of a BESS can be scaled to represent

the entire battery system provided that the battery management system is active and

functional.

A mathematical runtime equivalent circuit model suitable for electromagnetic

transient studies over an accelerated time scale was also proposed in Chapter 4. The

performance of the developed module was compared with an operational BESS with

identical specification over multiple working methods including the autonomous fre-

quency response mode. The results show that for the examples considered, up to 99%

accuracy in the estimated battery voltage accuracy is achievable with the proposed

model.

A method for integrating battery storage into multi-MW grid-connected PV sys-

tems through the use of a dc-dc converter, capable of simultaneously operating as a

charge controller and MPPT device is proposed in Chapter 5. Advantages of such

configuration were explored and a general approach for sizing dc-bus connected bat-

teries to reduce the annual curtailed energy from utility-scale PV farms is developed.

This approach evaluates the minimum battery size which can achieve substantial re-

ductions in the annual solar energy curtailed. It was found that at the LG&E and KU

site, a BESS power to energy capacity ratio of approximately 1:3 leads to substantial
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savings.

6.2 Original contributions

The main contributions of this dissertation can best be summarized as follows:

1. The impact of utility-scale solar PV and BESS represented by several detailed

modular units connected in parallel on the operation of traditional generation

and transmission systems. It was demonstrated that the integration of ade-

quately sized BESS can mitigate a significant amount of challenges related to

solar PV intermittency. A sizing exercise for dispatchable solar PV and BESS

was proposed. (Chapter 2)

2. A framework for estimating the PV penetration a service area can sustain with-

out needing significant upgrades to its existing infrastructure. The framework

analyzes the impact of increasing PV penetration on generation and trans-

mission networks while considering the responses of conventional generators to

changes in solar PV output power (Chapter 3)

3. A detailed minute-to-minute (M-M) economic dispatch model capable of cap-

turing the impact of renewable intermittency and estimating the over- and

under-generation dispatch scenarios due to PV volatility and surplus genera-

tion. (Chapter 3)

4. A dynamic IBR resource module with a variable capacity that can be em-

ployed for multiple systems including solar PV, wind, and battery system. The
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proposed module may be regarded as hybrid system that combines the com-

prehensive benefits of detailed IBR models with the reduced computational

requirement of the average models. (Chapter 3)

5. An approach for developing the equivalent circuit model of a utility-scale battery

system capable of estimating the voltage response of the entire unit with up to

99% accuracy, using equipment typically available at the installation site. A

multi-hour discharge cycle for the BESS that can identify its equivalent circuit

parameters while ensuring that the battery system terminal voltage stabilizes

after transient discharge operations was also proposed (Chapter 4)

6. Evaluation and comparison of the performance of utility-scale equivalent circuit

models developed at multiple sub-component levels, i.e. at the rack, module,

and cell levels. The results of the study indicated that for a battery system with

an active battery management system, the equivalent circuit model of either the

cell, module or rack can be scaled to represent the entire battery system with

less than 1% average error. (Chapter 4)

7. A new configuration and control for PV and battery system to share a dc-

dc converter, increase PV capacity factor as well as inverter utilization factor.

The setup provides the utility the capability of integrating energy storage into

existing PV systems at a minimal cost. (Chapter 5)
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6.3 Recommendations for future work

Based on the results of this dissertation and earlier research conducted by others,

possible further research may include the following:

1. The battery sizing technique presented in chapter 2 does not consider the usable

capacity of the BESS, its round trip efficiency, and self-discharge rate. As the

next step to this work, considering these parameters and employing advanced

optimization such as differential evolution and genetic algorithm can appropri-

ately establish a relationship between the ac to dc ratio of a solar PV and the

BESS power energy capacity required to make it dispatchable.

2. The proposed minute-to-minute dispatch model in chapter 3 may even be further

improved upon the integration of additional cost parameters such as generator

start-up cost, shut down cost, days and hour ahead forecasts that will enable the

proposed dispatch model to exist independently of the other model. This ap-

proach will expand the combination of generators dispatch to meet demand and

increase the solar PV hosting capacity by committing fewer thermal generator

units during periods of high solar irradiance.

3. The methodology presented in chapter 4 for estimating utility-scale battery sys-

tem parameters is based on the manufacturer reported state of charge (SOC).

The accuracy of the equivalent circuit model can be further improved by esti-

mating the SOC of each cell through its performance evaluation and terminal

voltage variation. Another step to improve the accuracy can be to include pa-

rameters such as self-discharge rate, state of health, and degradation rate in its
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equivalent circuit model.

4. The detailed economical benefits, electrical losses and equipment degradation

associated with the PV and BESS configuration proposed in chapter 5 can

provide additional insight into its feasibility. Furthermore, the understanding of

the proposed control stability during the transition between multiple operation

modes may be used to develop safety limitations on the battery operation.

Additionally, an improved battery sizing methodology, that takes into account

the system’s physical limitations and losses may be employed.
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