272 research outputs found

    Analysis and Realization of a Dual-Nacelle Tiltrotor Aerial Vehicle

    Get PDF
    Unmanned aerial vehicles are a salient solution for rapid deployment in disaster relief, search and rescue, and warfare operations. In these scenarios, the agility, maneuverability and speed of the UAV are vital components towards saving human lives, successfully completing a mission, or stopping dangerous threats. Hence, a high speed, highly agile, and small footprint unmanned aerial vehicle capable of carrying minimal payloads would be the best suited design for completing the desired task. This thesis presents the design, analysis, and realization of a dual-nacelle tiltrotor unmanned aerial vehicle. The design of the dual-nacelle tiltrotor aerial vehicle utilizes two propellers for thrust with the ability to rotate the propellers about the sagittal plane to provide thrust vectoring. The dual-nacelle thrust vectoring of the aerial vehicle provides a slimmer profile, a smaller hover footprint, and allows for rapid aggressive maneuvers while maintaining a desired speed to quickly navigate through cluttered environments. The dynamic model of the dual-nacelle tiltrotor design was derived using the Newton-Euler method and a nonlinear PD controller was developed for spatial trajectory tracking. The dynamic model and nonlinear PD controller were implemented in Matlab Simulink using SimMechanics. The simulation verified the ability of the controlled tiltrotor to track a helical trajectory. To study the scalability of the design, two prototypes were developed: a micro scale tiltrotor prototype, 50mm wide and weighing 30g, and a large scale tiltrotor prototype, 0.5m wide and weighing 2.8kg. The micro scale tiltrotor has a 1.6:1 thrust to weight ratio with an estimated flight time of 6 mins in hover. The large scale tiltrotor has a 2.3:1 thrust to weight ratio with an estimated flight time of 4 mins in hover. A detailed realization of the tiltrotor prototypes is provided with discussions on mechanical design, fabrication, hardware selection, and software implementation. Both tiltrotor prototypes successfully demonstrated hovering, altitude, and yaw maneuvering while tethered and remotely controlled. The developed prototypes provide a framework for further research and development of control strategies for the aggressive maneuvering of underactuated tiltrotor aerial vehicles

    Rotorcraft Blade Pitch Control Through Torque Modulation

    Get PDF
    Micro air vehicle (MAV) technology has broken with simple mimicry of manned aircraft in order to fulfill emerging roles which demand low-cost reliability in the hands of novice users, safe operation in confined spaces, contact and manipulation of the environment, or merging vertical flight and forward flight capabilities. These specialized needs have motivated a surge of new specialized aircraft, but the majority of these design variations remain constrained by the same fundamental technologies underpinning their thrust and control. This dissertation solves the problem of simultaneously governing MAV thrust, roll, and pitch using only a single rotor and single motor. Such an actuator enables new cheap, robust, and light weight aircraft by eliminating the need for the complex ancillary controls of a conventional helicopter swashplate or the distributed propeller array of a quadrotor. An analytic model explains how cyclic blade pitch variations in a special passively articulated rotor may be obtained by modulating the main drive motor torque in phase with the rotor rotation. Experiments with rotors from 10 cm to 100 cm in diameter confirm the predicted blade lag, pitch, and flap motions. We show the operating principle scales similarly as traditional helicopter rotor technologies, but is subject to additional new dynamics and technology considerations. Using this new rotor, experimental aircraft from 29 g to 870 g demonstrate conventional flight capabilities without requiring more than two motors for actuation. In addition, we emulate the unusual capabilities of a fully actuated MAV over six degrees of freedom using only the thrust vectoring qualities of two teetering rotors. Such independent control over forces and moments has been previously obtained by holonomic or omnidirection multirotors with at least six motors, but we now demonstrate similar abilities using only two. Expressive control from a single actuator enables new categories of MAV, illustrated by experiments with a single actuator aircraft with spatial control and a vertical takeoff and landing airplane whose flight authority is derived entirely from two rotors

    Mathematical modeling and vertical flight control of a tilt-wing UAV

    Get PDF
    This paper presents a mathematical model and vertical flight control algorithms for a new tilt-wing unmanned aerial vehicle (UAV). The vehicle is capable of vertical take-off and landing (VTOL). Due to its tilt-wing structure, it can also fly horizontally. The mathematical model of the vehicle is obtained using Newton-Euler formulation. A gravity compensated PID controller is designed for altitude control, and three PID controllers are designed for attitude stabilization of the vehicle. Performances of these controllers are found to be quite satisfactory as demonstrated by indoor and outdoor flight experiments

    Enhancing VTOL Multirotor Performance With a Passive Rotor Tilting Mechanism

    Get PDF
    This article discusses the benefits of introducing a simple passive mechanism to enable rotor tilting in Vertical Take-Off and Landing (VTOL) multirotor vehicles. Such a system is evaluated in relevant Urban Air Mobility (UAM) passenger transport scenarios such as hovering in wind conditions and overcoming rotor failures. While conventional parallel axis multirotors are underactuated systems, the proposed mechanism makes the vehicle fully actuated in SE(3), which implies independent cabin position and orientation control. An accurate vehicle simulator with realistic parameters is presented to compare in simulation the proposed architecture with a conventional underactuated VTOL vehicle that shares the same physical properties. In order to make fair comparisons, controllers are obtained solving an optimization problem in which the cost function of both systems is chosen to be equivalent. In particular, the control laws are Linear-Quadratic Regulators (LQR), which are derived by linearizing the systems around hover. It is shown through extensive simulation that the introduction of a passive rotor tilting mechanism based on universal joints improves performance metrics such as vehicle stability, power consumption, passenger comfort and position tracking precision in nominal flight conditions and it does not compromise vehicle safety in rotor failure situations

    Backpropagating constraints-based trajectory tracking control of a quadrotor with constrained actuator dynamics and complex unknowns

    Get PDF
    In this paper, a backpropagating constraints-based trajectory tracking control (BCTTC) scheme is addressed for trajectory tracking of a quadrotor with complex unknowns and cascade constraints arising from constrained actuator dynamics, including saturations and dead zones. The entire quadrotor system including actuator dynamics is decomposed into five cascade subsystems connected by intermediate saturated nonlinearities. By virtue of the cascade structure, backpropagating constraints (BCs) on intermediate signals are derived from constrained actuator dynamics suffering from nonreversible rotations and nonnegative squares of rotors, and decouple subsystems with saturated connections. Combining with sliding-mode errors, BC-based virtual controls are individually designed by addressing underactuation and cascade constraints. In order to remove smoothness requirements on intermediate controls, first-order filters are employed, and thereby contributing to backstepping-like subcontrollers synthesizing in a recursive manner. Moreover, universal adaptive compensators are exclusively devised to dominate intermediate tracking residuals and complex unknowns. Eventually, the closed-loop BCTTC system stability can be ensured by the Lyapunov synthesis, and trajectory tracking errors can be made arbitrarily small. Simulation studies demonstrate the effectiveness and superiority of the proposed BCTTC scheme for a quadrotor with complex constrains and unknowns

    Development, analysis and control of a spherical aerial vehicle

    Get PDF
    With the ability to provide close surveillance in narrow space or urban areas, unmanned aerial vehicles (UAVs) have been of great interest to many scholars and researchers. The spherical aerial vehicle offers substantial design advantages over the conventional small aerial vehicles. As a new kind of small aerial vehicles, spherical aerial vehicle is presented in this paper. Firstly, the unique structure of spherical aerial vehicle is presented in detail. And then the dynamics theory based on this vehicle’s structure is analyzed, and the equations of force and moment acting on the aircraft were deduced. Based on the above, the dynamics model of spherical aerial vehicle is derived and the nonlinear state equation is established. The control system of the spherical aerial vehicle’s flight motion, including the hardware and software parts, is presented concretely. The backstepping control method is used in the state equation to get the stability of the spherical aerial vehicle’s motion. At last, the experimental results and simulation analysis are provided to confirm the feasibility of the spherical aerial vehicle’s flight movement in the air

    Hull Design for ROV with Four Thrusters (X4-ROV)

    Get PDF
    In this research, an X4-ROV consisting of four thrusters is design to develop a small ROV which does not have any rudders for an observation class unmanned underwater vehicle system. Each thruster is arranged at equal intervals to the same plane, and the attitude motions of a roll, a pitch and a yaw, and the translational motion forward are realizable by changing the rotational speeds of four thrusters. In this paper, the construction of an X4-ROV system and the motion method are described, together with the added mass. A torpedo hull shape with four thrusters is draft using solidworks for fabrication of hull (body) shape using a 3d printer. The operator will communicate with ROV via open source platfor

    Nonlinear Feedback Control of Axisymmetric Aerial Vehicles

    Get PDF
    We investigate the use of simple aerodynamic models for the feedback control of aerial vehicles with large flight envelopes. Thrust-propelled vehicles with a body shape symmetric with respect to the thrust axis are considered. Upon a condition on the aerodynamic characteristics of the vehicle, we show that the equilibrium orientation can be explicitly determined as a function of the desired flight velocity. This allows for the adaptation of previously proposed control design approaches based on the thrust direction control paradigm. Simulation results conducted by using measured aerodynamic characteristics of quasi-axisymmetric bodies illustrate the soundness of the proposed approach
    corecore