841 research outputs found

    Post-Westgate SWAT : C4ISTAR Architectural Framework for Autonomous Network Integrated Multifaceted Warfighting Solutions Version 1.0 : A Peer-Reviewed Monograph

    Full text link
    Police SWAT teams and Military Special Forces face mounting pressure and challenges from adversaries that can only be resolved by way of ever more sophisticated inputs into tactical operations. Lethal Autonomy provides constrained military/security forces with a viable option, but only if implementation has got proper empirically supported foundations. Autonomous weapon systems can be designed and developed to conduct ground, air and naval operations. This monograph offers some insights into the challenges of developing legal, reliable and ethical forms of autonomous weapons, that address the gap between Police or Law Enforcement and Military operations that is growing exponentially small. National adversaries are today in many instances hybrid threats, that manifest criminal and military traits, these often require deployment of hybrid-capability autonomous weapons imbued with the capability to taken on both Military and/or Security objectives. The Westgate Terrorist Attack of 21st September 2013 in the Westlands suburb of Nairobi, Kenya is a very clear manifestation of the hybrid combat scenario that required military response and police investigations against a fighting cell of the Somalia based globally networked Al Shabaab terrorist group.Comment: 52 pages, 6 Figures, over 40 references, reviewed by a reade

    LOGISTICS IN CONTESTED ENVIRONMENTS

    Get PDF
    This report examines the transport and delivery of logistics in contested environments within the context of great-power competition (GPC). Across the Department of Defense (DOD), it is believed that GPC will strain our current supply lines beyond their capacity to maintain required warfighting capability. Current DOD efforts are underway to determine an appropriate range of platforms, platform quantities, and delivery tactics to meet the projected logistics demand in future conflicts. This report explores the effectiveness of various platforms and delivery methods through analysis in developed survivability, circulation, and network optimization models. Among other factors, platforms are discriminated by their radar cross-section (RCS), noise level, speed, cargo capacity, and self-defense capability. To maximize supply delivered and minimize the cost of losses, the results of this analysis indicate preference for utilization of well-defended convoys on supply routes where bulk supply is appropriate and smaller, and widely dispersed assets on shorter, more contested routes with less demand. Sensitivity analysis on these results indicates system survivability can be improved by applying RCS and noise-reduction measures to logistics assets.Director, Warfare Integration (OPNAV N9I)Major, Israel Defence ForcesCivilian, Singapore Technologies Engineering Ltd, SingaporeCommander, Republic of Singapore NavyCommander, United States NavyCaptain, Singapore ArmyLieutenant, United States NavyLieutenant, United States NavyMajor, Republic of Singapore Air ForceCaptain, United States Marine CorpsLieutenant, United States NavyLieutenant, United States NavyLieutenant, United States NavyLieutenant, United States NavyLieutenant, United States NavyCaptain, Singapore ArmyLieutenant Junior Grade, United States NavyCaptain, Singapore ArmyLieutenant Colonel, Republic of Singapore Air ForceApproved for public release. distribution is unlimite

    Integrated helicopter survivability

    Get PDF
    A high level of survivability is important to protect military personnel and equipment and is central to UK defence policy. Integrated Survivability is the systems engineering methodology to achieve optimum survivability at an affordable cost, enabling a mission to be completed successfully in the face of a hostile environment. “Integrated Helicopter Survivability” is an emerging discipline that is applying this systems engineering approach within the helicopter domain. Philosophically the overall survivability objective is ‘zero attrition’, even though this is unobtainable in practice. The research question was: “How can helicopter survivability be assessed in an integrated way so that the best possible level of survivability can be achieved within the constraints and how will the associated methods support the acquisition process?” The research found that principles from safety management could be applied to the survivability problem, in particular reducing survivability risk to as low as reasonably practicable (ALARP). A survivability assessment process was developed to support this approach and was linked into the military helicopter life cycle. This process positioned the survivability assessment methods and associated input data derivation activities. The system influence diagram method was effective at defining the problem and capturing the wider survivability interactions, including those with the defence lines of development (DLOD). Influence diagrams and Quality Function Deployment (QFD) methods were effective visual tools to elicit stakeholder requirements and improve communication across organisational and domain boundaries. The semi-quantitative nature of the QFD method leads to numbers that are not real. These results are suitable for helping to prioritise requirements early in the helicopter life cycle, but they cannot provide the quantifiable estimate of risk needed to demonstrate ALARP. The probabilistic approach implemented within the Integrated Survivability Assessment Model (ISAM) was developed to provide a quantitative estimate of ‘risk’ to support the approach of reducing survivability risks to ALARP. Limitations in available input data for the rate of encountering threats leads to a probability of survival that is not a real number that can be used to assess actual loss rates. However, the method does support an assessment across platform options, provided that the ‘test environment’ remains consistent throughout the assessment. The survivability assessment process and ISAM have been applied to an acquisition programme, where they have been tested to support the survivability decision making and design process. The survivability ‘test environment’ is an essential element of the survivability assessment process and is required by integrated survivability tools such as ISAM. This test environment, comprising of threatening situations that span the complete spectrum of helicopter operations requires further development. The ‘test environment’ would be used throughout the helicopter life cycle from selection of design concepts through to test and evaluation of delivered solutions. It would be updated as part of the through life capability management (TLCM) process. A framework of survivability analysis tools requires development that can provide probabilistic input data into ISAM and allow derivation of confidence limits. This systems level framework would be capable of informing more detailed survivability design work later in the life cycle and could be enabled through a MATLAB¼ based approach. Survivability is an emerging system property that influences the whole system capability. There is a need for holistic capability level analysis tools that quantify survivability along with other influencing capabilities such as: mobility (payload / range), lethality, situational awareness, sustainability and other mission capabilities. It is recommended that an investigation of capability level analysis methods across defence should be undertaken to ensure a coherent and compliant approach to systems engineering that adopts best practice from across the domains. Systems dynamics techniques should be considered for further use by Dstl and the wider MOD, particularly within the survivability and operational analysis domains. This would improve understanding of the problem space, promote a more holistic approach and enable a better balance of capability, within which survivability is one essential element. There would be value in considering accidental losses within a more comprehensive ‘survivability’ analysis. This approach would enable a better balance to be struck between safety and survivability risk mitigations and would lead to an improved, more integrated overall design

    Nature-inspired survivability: Prey-inspired survivability countermeasures for cloud computing security challenges

    Get PDF
    As cloud computing environments become complex, adversaries have become highly sophisticated and unpredictable. Moreover, they can easily increase attack power and persist longer before detection. Uncertain malicious actions, latent risks, Unobserved or Unobservable risks (UUURs) characterise this new threat domain. This thesis proposes prey-inspired survivability to address unpredictable security challenges borne out of UUURs. While survivability is a well-addressed phenomenon in non-extinct prey animals, applying prey survivability to cloud computing directly is challenging due to contradicting end goals. How to manage evolving survivability goals and requirements under contradicting environmental conditions adds to the challenges. To address these challenges, this thesis proposes a holistic taxonomy which integrate multiple and disparate perspectives of cloud security challenges. In addition, it proposes the TRIZ (Teorija Rezbenija Izobretatelskib Zadach) to derive prey-inspired solutions through resolving contradiction. First, it develops a 3-step process to facilitate interdomain transfer of concepts from nature to cloud. Moreover, TRIZ’s generic approach suggests specific solutions for cloud computing survivability. Then, the thesis presents the conceptual prey-inspired cloud computing survivability framework (Pi-CCSF), built upon TRIZ derived solutions. The framework run-time is pushed to the user-space to support evolving survivability design goals. Furthermore, a target-based decision-making technique (TBDM) is proposed to manage survivability decisions. To evaluate the prey-inspired survivability concept, Pi-CCSF simulator is developed and implemented. Evaluation results shows that escalating survivability actions improve the vitality of vulnerable and compromised virtual machines (VMs) by 5% and dramatically improve their overall survivability. Hypothesis testing conclusively supports the hypothesis that the escalation mechanisms can be applied to enhance the survivability of cloud computing systems. Numeric analysis of TBDM shows that by considering survivability preferences and attitudes (these directly impacts survivability actions), the TBDM method brings unpredictable survivability information closer to decision processes. This enables efficient execution of variable escalating survivability actions, which enables the Pi-CCSF’s decision system (DS) to focus upon decisions that achieve survivability outcomes under unpredictability imposed by UUUR

    System importance measures: A new approach to resilient systems-of-systems

    Get PDF
    Resilience is the ability to withstand and recover rapidly from disruptions. While this attribute has been the focus of research in several fields, in the case of system-of-systems (SoSs), addressing resilience is particularly interesting and challenging. As infrastructure SoSs, such as power, transportation, and communication networks, grow in complexity and interconnectivity, measuring and improving the resilience of these SoSs is vital in terms of safety and providing uninterrupted services. ^ The characteristics of systems-of-systems make analysis and design of resilience challenging. However, these features also offer opportunities to make SoSs resilient using unconventional methods. In this research, we present a new approach to the process of resilience design. The core idea behind the proposed design process is a set of system importance measures (SIMs) that identify systems crucial to overall resilience. Using the results from the SIMs, we determine appropriate strategies from a list of design principles to improve SoS resilience. The main contribution of this research is the development of an aid to design that provides specific guidance on where and how resources need to be targeted. Based on the needs of an SoS, decision-makers can iterate through the design process to identify a set of practical and effective design improvements. ^ We use two case studies to demonstrate how the SIM-based design process can inform decision-making in the context of SoS resilience. The first case study focuses on a naval warfare SoS and describes how the resilience framework can leverage existing simulation models to support end-to-end design. We proceed through stages of the design approach using an agent-based model (ABM) that enables us to demonstrate how simulation tools and analytical models help determine the necessary inputs for the design process and, subsequently, inform decision-making regarding SoS resilience. ^ The second case study considers the urban transportation network in Boston. This case study focuses on interpreting the results of the resilience framework and on describing how they can be used to guide design choices in large infrastructure networks. We use different resilience maps to highlight the range of design-related information that can be obtained from the framework. ^ Specific advantages of the SIM-based resilience design include: (1) incorporates SoS- specific features within existing risk-based design processes - the SIMs determine the relative importance of different systems based on their impacts on SoS-level performance, and suggestions for resilience improvement draw from design options that leverage SoS- specific characteristics, such as the ability to adapt quickly (such as add new systems or re-task existing ones) and to provide partial recovery of performance in the aftermath of a disruption; (2) allows rapid understanding of different areas of concern within the SoS - the visual nature of the resilience map (a key outcome of the SIM analysis) provides a useful way to summarize the current resilience of the SoS as well as point to key systems of concern; and (3) provides a platform for multiple analysts and decision- makers to study, modify, discuss and documentoptions for SoS

    A strategic framework for e-government security: the case in Nigeria

    Get PDF
    A thesis submitted to the University of Bedfordshire in partial fulfilment of the requirements for the degree of Doctor of PhilosophyCountries across the globe are striving towards full-scale implementation of e-government. One of the issues arising with the efforts to this realization is the assurance of secure transactions while upholding high privacy standards. In order to engage citizens in the process, there must be transparency and confidence that the e-government systems they are using are reliable and will deliver the services with integrity, confidentiality and accountability. Different systems require different levels of security according to the services they provide to their users. This research presents an investigation into reasons why e-government security frameworks developed by researchers with the claim that it is one-size-fits-all issue may not hold true, particularly in the case of Nigeria, based on certain identified realities. The claim of a generalized framework appears very challenging because there seem to be much diversity across different governments. Countries differ in one or more of the following characteristics: political systems, legal systems, economic situation, available technological infrastructure, Internet and PC penetration, availability of skills and human resources, literacy levels, computer literacy levels, level of poverty, leadership, and ethnic diversities in terms of norms, languages, and expertise. Security measures implemented in e-government projects in some developed countries, beginning with more established e-government systems around the world, were evaluated and a strategic framework for e-government security proposed which considers both technical and non-technical factors that involve people, processes and technologies. The framework is proposed to advance the rapid adoption of practices that will guarantee e-government security. It seeks to provide a flexible, repeatable and cost-effective approach to implementing e-government security. This research examines the issues of enclosure in the implementation of e-government from the perspective of security and ultimately survivability

    DEFINING, MEASURING, AND ANALYZING DEFENSIBILITY IN THE DEFENSIVE CYBER OPERATIONS CONTEXT

    Get PDF
    When talking about cyber systems, both researchers and decision makers have used the term "defensibility" widely, but there is no universal definition for it and no method to observe and measure it. This study examines how defensibility can be defined in a defensive cyber operations context, what critical factors constitute it, and how those factors could be measured. This is done by first examining doctrine and research to create a framework of meaning for defensibility. Second, the study proposes seven fundamental capabilities that a defender needs to be able to perform in defensive cyber operations and a set of system attributes that affect those capabilities. Finally, a set of measures for those attributes is proposed to allow defensibility to be observed and measured. The results of this study are a definition of defensibility for the defensive cyber operations context, a list of system attributes that constitute its defensibility, and a set of associated measurements for these attributes. Using these, it is possible to analyze the defensibility of a system to indicate what restrictions a defender might have when conducting operations in the system and the areas where the system needs to improve. This work is the first step in building defensibility into a useful tool that highlights the needs of a defensive actor who conducts dynamic defensive operations in a system, versus the needs of an actor who implements static measures to increase cyber security.Löjtnant, Swedish NavyApproved for public release. Distribution is unlimited

    Acquiring the Tools of Grand Strategy: The US Navy\u27s LCS as a Case Study

    Get PDF
    Grand strategy is about how states allocate resources and employ these resources to achieve desired political conditions. In examining the match between desired ends and available ways and means, an often-overlooked subject is how the specific tools of grand strategy are forged. One of these tools is the Littoral Combat Ship (LCS), a Major Defense Acquisition Program (MDAP) that started in 2000. LCS remains a controversial and often unpopular program with many stakeholders to this day. This study examines how the means of grand strategy, in this case a new ship class, are acquired. It also looks at how these means are employed (ways) to achieve the desired outcomes (ends) and the feedback loop between means, ways, and ends. The initial portion of the study examines how the U.S. Department of Defense and Department of the Navy formally acquire systems or “systems of systems.” The second portion of the study examines the design, construction, and fielding of the LCS class or the attainment of Initial Operational Capability (IOC). The final portion analyzes the design, construction, and introduction of the LCS into the fleet in terms of the three models used by Graham Allison and Philip Zelikow in Essence of Decision; the Rational Actor Model (RAM), Organizational Behavior, and Governmental Politics – Models I, II, and III respectively. The hypothesis is that individual personalities may have more influence than any of these models account for and that instances of individual impact may offer more nuanced insights into these models of state behavior. This study reveals that the process of evolutionary acquisition and spiral development caused increased risk in the time-line for achieving Final Operational Capacity (FOC) of LCS. It also provides insight into the reaction and adaption of a large organization to changes in its environment. This study does not however reveal strong evidence to support the hypothesis of individual personalities significantly influencing decision making or action taking compared to organizations in Models I-III. The details of individual participation and internal deliberations are obscured by security and proprietary rules which privileges models I and II in the analysis

    Compilation of Abstracts, June 2016

    Get PDF
    NPS Class of June 2016This quarter’s Compilation of Abstracts summarizes cutting-edge, security-related research conducted by NPS students and presented as theses, dissertations, and capstone reports. Each expands knowledge in its field.http://archive.org/details/compilationofabs109454990

    Value-Driven Enterprise Architecture Evaluation for the Joint Force Protection Advanced Security System

    Get PDF
    The U.S. military has placed a strong focus on the importance of operating in a joint environment, where capabilities and missions are shared between service components. Protecting U.S. forces is a major consideration in the joint environment. The Joint Force Protection Advanced Security System (JFPASS) architecture has been created to fill a critical gap in Joint Force Protection guidance for systems acquisition. The systems engineering (SE) field has made wide use of system architectures to represent complex systems. As fundamental SE principles become more widespread, analysis tools provide an objective method for the evaluation of the resulting architectural products. This study used decision analysis to develop a standardized, yet adaptable and repeatable model to evaluate the capabilities of the JFPASS for any installation or facility belonging to the United States Department of Defense (DoD). Using the Value-Focused Thinking (VFT) methods, a value hierarchy was created by consulting with subject matter experts. The resulting model, named Value-Driven Enterprise Architecture (VDEA) score, provides an analysis tool, which enables DoD decision-makers to use JFPASS architecture products to quickly and easily evaluate the value provided by the system; VDEA provides insight into the overall quality and capability of the system. Through the scoring and sensitivity analysis functions, capability gaps and potential improvements can be identified. Future studies in this area will provide a vehicle for rating not only operational level systems, but also individual functional projects against other alternatives
    • 

    corecore