1,264 research outputs found

    Network streaming and compression for mixed reality tele-immersion

    Get PDF
    Bulterman, D.C.A. [Promotor]Cesar, P.S. [Copromotor

    A framework for realistic 3D tele-immersion

    Get PDF
    Meeting, socializing and conversing online with a group of people using teleconferencing systems is still quite differ- ent from the experience of meeting face to face. We are abruptly aware that we are online and that the people we are engaging with are not in close proximity. Analogous to how talking on the telephone does not replicate the experi- ence of talking in person. Several causes for these differences have been identified and we propose inspiring and innova- tive solutions to these hurdles in attempt to provide a more realistic, believable and engaging online conversational expe- rience. We present the distributed and scalable framework REVERIE that provides a balanced mix of these solutions. Applications build on top of the REVERIE framework will be able to provide interactive, immersive, photo-realistic ex- periences to a multitude of users that for them will feel much more similar to having face to face meetings than the expe- rience offered by conventional teleconferencing systems

    From Capture to Display: A Survey on Volumetric Video

    Full text link
    Volumetric video, which offers immersive viewing experiences, is gaining increasing prominence. With its six degrees of freedom, it provides viewers with greater immersion and interactivity compared to traditional videos. Despite their potential, volumetric video services poses significant challenges. This survey conducts a comprehensive review of the existing literature on volumetric video. We firstly provide a general framework of volumetric video services, followed by a discussion on prerequisites for volumetric video, encompassing representations, open datasets, and quality assessment metrics. Then we delve into the current methodologies for each stage of the volumetric video service pipeline, detailing capturing, compression, transmission, rendering, and display techniques. Lastly, we explore various applications enabled by this pioneering technology and we present an array of research challenges and opportunities in the domain of volumetric video services. This survey aspires to provide a holistic understanding of this burgeoning field and shed light on potential future research trajectories, aiming to bring the vision of volumetric video to fruition.Comment: Submitte

    Machine Learning for Multimedia Communications

    Get PDF
    Machine learning is revolutionizing the way multimedia information is processed and transmitted to users. After intensive and powerful training, some impressive efficiency/accuracy improvements have been made all over the transmission pipeline. For example, the high model capacity of the learning-based architectures enables us to accurately model the image and video behavior such that tremendous compression gains can be achieved. Similarly, error concealment, streaming strategy or even user perception modeling have widely benefited from the recent learningoriented developments. However, learning-based algorithms often imply drastic changes to the way data are represented or consumed, meaning that the overall pipeline can be affected even though a subpart of it is optimized. In this paper, we review the recent major advances that have been proposed all across the transmission chain, and we discuss their potential impact and the research challenges that they raise

    Streaming and User Behaviour in Omnidirectional Videos

    Get PDF
    Omnidirectional videos (ODVs) have gone beyond the passive paradigm of traditional video, offering higher degrees of immersion and interaction. The revolutionary novelty of this technology is the possibility for users to interact with the surrounding environment, and to feel a sense of engagement and presence in a virtual space. Users are clearly the main driving force of immersive applications and consequentially the services need to be properly tailored to them. In this context, this chapter highlights the importance of the new role of users in ODV streaming applications, and thus the need for understanding their behaviour while navigating within ODVs. A comprehensive overview of the research efforts aimed at advancing ODV streaming systems is also presented. In particular, the state-of-the-art solutions under examination in this chapter are distinguished in terms of system-centric and user-centric streaming approaches: the former approach comes from a quite straightforward extension of well-established solutions for the 2D video pipeline while the latter one takes the benefit of understanding users’ behaviour and enable more personalised ODV streaming

    Closing the gap: human factors in cross-device media synchronization

    Get PDF
    The continuing growth in the mobile phone arena, particularly in terms of device capabilities and ownership is having a transformational impact on media consumption. It is now possible to consider orchestrated multi-stream experiences delivered across many devices, rather than the playback of content from a single device. However, there are significant challenges in realising such a vision, particularly around the management of synchronicity between associated media streams. This is compounded by the heterogeneous nature of user devices, the networks upon which they operate, and the perceptions of users. This paper describes IMSync, an open inter-stream synchronisation framework that is QoE-aware. IMSync adopts efficient monitoring and control mechanisms, alongside a QoE perception model that has been derived from a series of subjective user experiments. Based on an observation of lag, IMSync is able to use this model of impact to determine an appropriate strategy to catch-up with playback whilst minimising the potential detrimental impacts on a users QoE. The impact model adopts a balanced approach: trading off the potential impact on QoE of initiating a re-synchronisation process compared with retaining the current levels of non-synchronicity, in order to maintain high levels of QoE. A series of experiments demonstrate the potential of the framework as a basis for enabling new, immersive media experiences

    Do Users Behave Similarly in VR? Investigation of the User Influence on the System Design

    Get PDF
    With the overarching goal of developing user-centric Virtual Reality (VR) systems, a new wave of studies focused on understanding how users interact in VR environments has recently emerged. Despite the intense efforts, however, current literature still does not provide the right framework to fully interpret and predict users’ trajectories while navigating in VR scenes. This work advances the state-of-the-art on both the study of users’ behaviour in VR and the user-centric system design. In more detail, we complement current datasets by presenting a publicly available dataset that provides navigation trajectories acquired for heterogeneous omnidirectional videos and different viewing platforms—namely, head-mounted display, tablet, and laptop. We then present an exhaustive analysis on the collected data to better understand navigation in VR across users, content, and, for the first time, across viewing platforms. The novelty lies in the user-affinity metric, proposed in this work to investigate users’ similarities when navigating within the content. The analysis reveals useful insights on the effect of device and content on the navigation, which could be precious considerations from the system design perspective. As a case study of the importance of studying users’ behaviour when designing VR systems, we finally propose a user-centric server optimisation. We formulate an integer linear program that seeks the best stored set of omnidirectional content that minimises encoding and storage cost while maximising the user’s experience. This is posed while taking into account network dynamics, type of video content, and also user population interactivity. Experimental results prove that our solution outperforms common company recommendations in terms of experienced quality but also in terms of encoding and storage, achieving a savings up to 70%. More importantly, we highlight a strong correlation between the storage cost and the user-affinity metric, showing the impact of the latter in the system architecture design
    • 

    corecore