17,343 research outputs found

    Screening of energy efficient technologies for industrial buildings' retrofit

    Get PDF
    This chapter discusses screening of energy efficient technologies for industrial buildings' retrofit

    Bi-objective modeling approach for repairing multiple feature infrastructure systems

    Get PDF
    A bi-objective decision aid model for planning long-term maintenance of infrastructure systems is presented, oriented to interventions on their constituent elements, with two upgrade levels possible for each element (partial/full repairs). The model aims at maximizing benefits and minimizing costs, and its novelty is taking into consideration, and combining, the system/element structure, volume discounts, and socioeconomic factors. The model is tested with field data from 229 sidewalks (systems) and compared to two simpler repair policies, of allowing only partial or full repairs. Results show that the efficiency gains are greater in the lower mid-range budget region. The proposed modeling approach is an innovative tool to optimize cost/benefits for the various repair options and analyze the respective trade-offs.info:eu-repo/semantics/publishedVersio

    The Motivation, Architecture and Demonstration of Ultralight Network Testbed

    Get PDF
    In this paper we describe progress in the NSF-funded Ultralight project and a recent demonstration of Ultralight technologies at SuperComputing 2005 (SC|05). The goal of the Ultralight project is to help meet the data-intensive computing challenges of the next generation of particle physics experiments with a comprehensive, network-focused approach. Ultralight adopts a new approach to networking: instead of treating it traditionally, as a static, unchanging and unmanaged set of inter-computer links, we are developing and using it as a dynamic, configurable, and closely monitored resource that is managed from end-to-end. Thus we are constructing a next-generation global system that is able to meet the data processing, distribution, access and analysis needs of the particle physics community. In this paper we present the motivation for, and an overview of, the Ultralight project. We then cover early results in the various working areas of the project. The remainder of the paper describes our experiences of the Ultralight network architecture, kernel setup, application tuning and configuration used during the bandwidth challenge event at SC|05. During this Challenge, we achieved a record-breaking aggregate data rate in excess of 150 Gbps while moving physics datasets between many sites interconnected by the Ultralight backbone network. The exercise highlighted the benefits of Ultralight's research and development efforts that are enabling new and advanced methods of distributed scientific data analysis

    Getting Things Done: The Science behind Stress-Free Productivity

    Get PDF
    Allen (2001) proposed the “Getting Things Done” (GTD) method for personal productivity enhancement, and reduction of the stress caused by information overload. This paper argues that recent insights in psychology and cognitive science support and extend GTD’s recommendations. We first summarize GTD with the help of a flowchart. We then review the theories of situated, embodied and distributed cognition that purport to explain how the brain processes information and plans actions in the real world. The conclusion is that the brain heavily relies on the environment, to function as an external memory, a trigger for actions, and a source of affordances, disturbances and feedback. We then show how these principles are practically implemented in GTD, with its focus on organizing tasks into “actionable” external memories, and on opportunistic, situation-dependent execution. Finally, we propose an extension of GTD to support collaborative work, inspired by the concept of stigmergy

    The Design and Demonstration of the Ultralight Testbed

    Get PDF
    In this paper we present the motivation, the design, and a recent demonstration of the UltraLight testbed at SC|05. The goal of the Ultralight testbed is to help meet the data-intensive computing challenges of the next generation of particle physics experiments with a comprehensive, network- focused approach. UltraLight adopts a new approach to networking: instead of treating it traditionally, as a static, unchanging and unmanaged set of inter-computer links, we are developing and using it as a dynamic, configurable, and closely monitored resource that is managed from end-to-end. To achieve its goal we are constructing a next-generation global system that is able to meet the data processing, distribution, access and analysis needs of the particle physics community. In this paper we will first present early results in the various working areas of the project. We then describe our experiences of the network architecture, kernel setup, application tuning and configuration used during the bandwidth challenge event at SC|05. During this Challenge, we achieved a record-breaking aggregate data rate in excess of 150 Gbps while moving physics datasets between many Grid computing sites
    • 

    corecore