1,105 research outputs found

    An overview on managing additive consistency of reciprocal preference relations for consistency-driven decision making and Fusion: Taxonomy and future directions

    Get PDF
    The file attached to this record is the author's final peer reviewed version. The Publisher's final version can be found by following the DOI link.The reciprocal preference relation (RPR) is a powerful tool to represent decision makers’ preferences in decision making problems. In recent years, various types of RPRs have been reported and investigated, some of them being the ‘classical’ RPRs, interval-valued RPRs and hesitant RPRs. Additive consistency is one of the most commonly used property to measure the consistency of RPRs, with many methods developed to manage additive consistency of RPRs. To provide a clear perspective on additive consistency issues of RPRs, this paper reviews the consistency measurements of the different types of RPRs. Then, consistency-driven decision making and information fusion methods are also reviewed and classified into four main types: consistency improving methods; consistency-based methods to manage incomplete RPRs; consistency control in consensus decision making methods; and consistency-driven linguistic decision making methods. Finally, with respect to insights gained from prior researches, further directions for the research are proposed

    Algorithms to Detect and Rectify Multiplicative and Ordinal Inconsistencies of Fuzzy Preference Relations

    Get PDF
    The file attached to this record is the author's final peer reviewed version. The Publisher's final version can be found by following the DOI link.Consistency, multiplicative and ordinal, of fuzzy preference relations (FPRs) is investigated. The geometric consistency index (GCI) approximated thresholds are extended to measure the degree of consistency for an FPR. For inconsistent FPRs, two algorithms are devised (1) to find the multiplicative inconsistent elements, and (2) to detect the ordinal inconsistent elements. An integrated algorithm is proposed to improve simultaneously the ordinal and multiplicative consistencies. Some examples, comparative analysis, and simulation experiments are provided to demonstrate the effectiveness of the proposed methods

    A systematic review on multi-criteria group decision-making methods based on weights: analysis and classification scheme

    Get PDF
    Interest in group decision-making (GDM) has been increasing prominently over the last decade. Access to global databases, sophisticated sensors which can obtain multiple inputs or complex problems requiring opinions from several experts have driven interest in data aggregation. Consequently, the field has been widely studied from several viewpoints and multiple approaches have been proposed. Nevertheless, there is a lack of general framework. Moreover, this problem is exacerbated in the case of experts’ weighting methods, one of the most widely-used techniques to deal with multiple source aggregation. This lack of general classification scheme, or a guide to assist expert knowledge, leads to ambiguity or misreading for readers, who may be overwhelmed by the large amount of unclassified information currently available. To invert this situation, a general GDM framework is presented which divides and classifies all data aggregation techniques, focusing on and expanding the classification of experts’ weighting methods in terms of analysis type by carrying out an in-depth literature review. Results are not only classified but analysed and discussed regarding multiple characteristics, such as MCDMs in which they are applied, type of data used, ideal solutions considered or when they are applied. Furthermore, general requirements supplement this analysis such as initial influence, or component division considerations. As a result, this paper provides not only a general classification scheme and a detailed analysis of experts’ weighting methods but also a road map for researchers working on GDM topics or a guide for experts who use these methods. Furthermore, six significant contributions for future research pathways are provided in the conclusions.The first author acknowledges support from the Spanish Ministry of Universities [grant number FPU18/01471]. The second and third author wish to recognize their support from the Serra Hunter program. Finally, this work was supported by the Catalan agency AGAUR through its research group support program (2017SGR00227). This research is part of the R&D project IAQ4EDU, reference no. PID2020-117366RB-I00, funded by MCIN/AEI/10.13039/ 501100011033.Peer ReviewedPostprint (published version

    Consensus Reaching in Social Network Group Decision Making: Research Paradigms and Challenges

    Get PDF
    The file attached to this record is the author's final peer reviewed version. The Publisher's final version can be found by following the DOI link.In social network group decision making (SNGDM), the consensus reaching process (CRP) is used to help decision makers with social relationships reach consensus. Many CRP studies have been conducted in SNGDM until now. This paper provides a review of CRPs in SNGDM, and as a result it classifies them into two paradigms: (i) the CRP paradigm based on trust relationships, and (ii) the CRP paradigm based on opinion evolution. Furthermore, identified research challenges are put forward to advance this area of research

    Classical Dynamic Consensus and Opinion Dynamics Models: A Survey of Recent Trends and Methodologies

    Get PDF
    The file attached to this record is the author's final peer reviewed version. The Publisher's final version can be found by following the DOI link.Consensus reaching is an iterative and dynamic process that supports group decision-making models by guiding decision-makers towards modifying their opinions through a feedback mechanism. Many attempts have been recently devoted to the design of efficient consensus reaching processes, especially when the dynamism is dependent on time, which aims to deal with opinion dynamics models. The emergence of novel methodologies in this field has been accelerated over recent years. In this regard, the present work is concerned with a systematic review of classical dynamic consensus and opinion dynamics models. The most recent trends of both models are identified and the developed methodologies are described in detail. Challenges of each model and open problems are discussed and worthwhile directions for future research are given. Our findings denote that due to technological advancements, a majority of recent literature works are concerned with the large-scale group decision-making models, where the interactions of decision-makers are enabled via social networks. Managing the behavior of decision-makers and consensus reaching with the minimum adjustment cost under social network analysis have been the top priorities for researchers in the design of classical consensus and opinion dynamics models

    Induced hesitant 2-tuple linguistic aggregation operators with application in group decision making

    Get PDF
    In this article, hesitant 2-tuple linguistic arguments are used to evaluate the group decision making problems which have inter dependent or inter active attributes. Operational laws are developed for hesitant 2-tuple linguistic elements and based on these operational laws hesitant 2- tuple weighted averaging operator and generalized hesitant 2- tuple averaging operator are proposed. Combining Choquet integral with hesitant 2-tuple linguistic information, some new aggregation operators are defined, including the hesitant 2-tuple correlated averaging operator, the hesitant 2-tuple correlated geometric operator and the generalized hesitant 2-tuple correlated averaging operator. These proposed operators successfully manage the correlations among the elements. After investigating the properties of these operators, a multiple attribute decision making method based on these operators, is suggested. Finally, an example is given to illustrate the practicality and feasibility of proposed method

    Fuzzy Analytical Hierarchy Process for Supplier Selection: A Case Study in An Electronic Component Manufacturer

    Get PDF
    Supplier selection has become one of the essential effects on the entire electronic supply chain network to gain competitiveness. In the upstream supply chain, companies are able to achieve a high quality and value of products to reduce the potential risks from both internal and external stakeholders by selecting the right suppliers. The case study company produces a nano sim-card connector in which four different types of raw materials are processed into different parts. Currently, the case study company selects each raw material supplier based on its appraisal record. Nevertheless, the appraisal record is measured by the department of procurement. When candidate suppliers are categorized at the same level, the cost becomes the priority criteria to select the supplier, which increases the potential risks of, for example, the components defect rate, a penalty from clients, and a reduction in orders. This paper proposed a Fuzzy analytic hierarchy process (FAHP) model for the selection of raw material suppliers by collecting data from two of the company’s departments (procurement and engineering) and the clients to address qualitative and quantitative elements, uncertainty, and linguistic vagueness based on the company’s scenario in two parts. First, the main and sub-criteria can be weighted using a decision-maker (DM) to identify the level of importance. Second, the FAHP model also dealt with personal preferences and judgement so that the right supplier(s) for each raw material could be selected by collecting and computing the data from the respondents. Then, the sensitivity analysis is applied to observe how the decisions change when the model parameters in the top five sub-criteria change. The proposed model can offer better information and solutions for the DM in the case study company to differentiate the crucial main and sub-criteria and select the suitable raw material suppliers effectively

    Diminishing Choquet Hesitant 2-Tuple Linguistic Aggregation Operator for Multiple Attributes Group Decision Making

    Get PDF
    In this article, we develop a diminishing hesitant 2-tuple averaging operator (DH2TA) for hesitant 2-tuple linguistic arguments. DH2TA work in the way that it aggregate all hesitant 2-tuple linguistic elements and during the aggregation process it also controls the hesitation in translation of the resultant aggregated linguistic term. We develop a scalar product for hesitant 2-tuple linguistic elements and based on the scalar product a weighted diminishing hesitant 2-tuple averaging operator (DWH2TA) is introduced. Moreover, combining Choquet integral with hesitant 2-tuple linguistic information, the diminishing Chouqet hesitant 2-tuple average operator (DCH2TA) is defined. The proposed operators higher reflect the correlations among the elements. After investigating the properties of these operators, a multiple attribute decision making method based on DCH2TA operator is proposed. Finally, an example is given to illustrate the significance and usefulness of proposed method

    A graph model with minimum cost to support conflict resolution and mediation in technology transfer of new product co-development.

    Get PDF
    The file attached to this record is the author's final peer reviewed version. The Publisher's final version can be found by following the DOI link.Successful new product development advocate for collaboration among different institutions in which technology transfer dispute widely exists. Although several studies have discussed conflict modelling and resolution in technology transfer dispute, scant research attempted to model third-party (or mediator) mediation, let alone develop effective approaches to minimize cost in the conflict resolution process. This study uses a graph model and minimum cost to investigate the conflict resolution and mediation in technology transfer dispute of new product collaborative development. On the one hand, the conflict in technology transfer of new product collaborative development is modelled using the graph model theory, in which the stakeholders (or decision-makers), their options, the feasible states, and the preferences of decision-makers are analyzed. On the other hand, an inverse graph model with minimum cost is designed to tackle the problem of specifying which decision-makers’ preferences lead to a desired solution, thereby making it easier for a mediator or other third party to influence the course of the conflict. In the inverse graph model with minimum cost, two 0-1 mixed linear approaches are constructed to judge the Nash and General Merataionality stabilities within the graph model, and several optimization-based models that minimize mediation cost are designed for the mediator to guide the technology transfer conflict resolution process to achieve the desired solution. Finally, the proposed methodology is applied to a technology transfer dispute case study

    Multicriteria Consensus Models to Support Intelligent Group Decision-Making

    Get PDF
    The development of intelligent systems is progressing rapidly, thanks to advances in information technology that enable collective, automated, and effective decision-making based on information collected from diverse sources. Group decision-making (GDM) is a key part of intelligent decision-making (IDM), which has received considerable attention in recent years. IDM through GDM refers to a decision-making problem where a group of intelligent decision-makers (DMs) evaluate a set of alternatives with respect to specific attributes. Intelligent communication among DMs aims to give orders to the available alternatives. However, GDM models developed for IDM must incorporate consensus support models to effectively integrate input from each DM into the final decision. Many efforts have been made to design consensus models to support IDM, depending on the decision problem or environment. Despite promising results, significant gaps remain in research on the design of such support models. One major drawback of existing consensus models is their dependence on the type of decision environment, making them less generalizable. Moreover, these models are often static and cannot respond to dynamic changes in the decision environment. Another limitation is that consensus models for large-scale decision environments lack an efficient communication regime to enable DM interactions. To address these challenges, this dissertation proposes developing consensus models to support IDM through GDM. To address the generalization issue of existing consensus models, reinforcement learning (RL) is proposed. RL agents can be built on the Markov decision process to enable IDM, potentially removing the generalization issue of consensus support models. Contrary to most consensus models, which assume static decision environments, this dissertation proposes a computationally efficient dynamic consensus model to support dynamic IDM. Finally, to facilitate secure and efficient interactions among intelligent DMs in large-scale problems, Blockchain technology is proposed to speed up the consensus process. The proposed communication regime also includes trust-building mechanisms that employ Blockchain protocols to remove enduring and limitative assumptions on opinion similarity among agents
    corecore