5 research outputs found

    An optimal synchronous bandwidth allocation scheme for guaranteeing synchronous message deadlines with the timed-token MAC protocol

    Get PDF
    This paper investigates the inherent timing properties of the timed-token medium access control (MAC) protocol necessary to guarantee synchronous message deadlines in a timed token ring network such as, fiber distributed data interface (FDDI), where the timed-token MAC protocol is employed. As a result, an exact upper bound, tighter than previously published, on the elapse time between any number of successive token arrivals at a particular node has been derived. Based on the exact protocol timing property, an optimal synchronous bandwidth allocation (SBA) scheme named enhanced MCA (EMCA) for guaranteeing synchronous messages with deadlines equal to periods in length is proposed. Thm scheme is an enhancement on the previously publiibed MCA scheme

    Analysing TDMA with slot skipping

    Get PDF
    We propose a schedulability analysis for a particular class of time division multiple access (TDMA) networks, which we label as TDMA/SS. SS stands for slot skipping, reflecting the fact that a slot is skipped whenever it is not used. Hence, the next slot can start earlier in benefit of hard real-time traffic. In the proposed schedulability analysis, we assume knowledge of all message streams in the system, and that each node schedules messages in its output queue according to a rate monotonic policy (as an example). We present the analysis in two steps. Firstly, we address the case where a node is only permitted to transmit a maximum of one message per TDMA cycle. Secondly, we generalise the analysis to the case where a node is assigned a budget of messages per TDMA cycle it may transmit. A simple algorithm to assign budgets to nodes is also presented

    A Control Plane For Prioritized Real-time Communications In Wireless Token Ring Networks

    Get PDF
    Tez (Yüksek Lisans) -- İstanbul Teknik Üniversitesi, Fen Bilimleri Enstitüsü, 2008Thesis (M.Sc.) -- İstanbul Technical University, Institute of Science and Technology, 2008Kablosuz ağlarda gerçek zaman kısıtlarını sağlamak zor bir araştırma problemidir. Jetonlu halka mimarisine sahip ağlar yanıt süreleri deterministik olduğundan ve gecikmelerin üst sınırının tahmin edilebilir olmalarından dolayı gerçek zaman kısıtlarını sağlamak için daha elverişlidir. Bu tezde kablosuz jetonlu halka ağları için katı gerçek zaman kısıtlarını sağlamak üzere MAC katmanında zamanlı jeton protokolünü içeren merkezi bir denetim düzlemi önerilmektedir. Bu denetim düzleminde üç tane fonksiyon gerçeklenmiştir. Bunlar kabul denetimi, istasyon çıkarma ve trafik ayrımı fonksiyonlarıdır. Böylece dinamik bir halka yapısı oluşturulmuş ve yüksek öncelikli trafiğin ağa girme şansı artmış ve düşük öncelikli trafik taşıyan istasyonların gerektiğinde yüksek öncelikli trafiğe yer vermeleri için ağdan çıkarılmaları sağlanmıştır. Simülasyon sonuçlarına göre önerilen denetim düzlemi sayesinde yüksek öncelikli trafiğin düşük öncelikli trafiğe göre ağda daha fazla bant genişliğine sahip olduğu ve katı gerçek zaman kısıtlarının sağlandığı görülmüştür.Providing real-time guarantees in wireless networks is a challenging research problem. Token ring networks are more suitable for real-time communications due to the fact that the response time is highly deterministic and also the upper bound of the latency in these networks is predictable. This thesis proposes a centralized control plane incorporating the timed token protocol in the MAC layer for providing hard real-time guarantees in wireless token ring networks which implements three important functions, namely the admission control procedure, the station eviction procedure and a traffic differentiation mechanism. In this approach a dynamic ring structure is built, where high priority stations have more chance of admittance and stations with low priority can be removed from the ring. Simulation results show that the proposed control plane ensures higher priority traffic more bandwidth than lower priority traffic and guarantees that deadline constraints of hard real-time traffic are satisfied.Yüksek LisansM.Sc

    Utilization-based delay guarantee techniques and their applications

    Get PDF
    Many real-time systems demand effective and efficient delay-guaranteed services to meet timing requirements of their applications. We note that a system provides a delay-guaranteed service if the system can ensure that each task will meet its predefined end-to-end deadline. Admission control plays a critical role in providing delayguaranteed services. The major function of admission control is to determine admissibility of a new task. A new task will be admitted into the system if the deadline of all existing tasks and the new task can be met. Admission control has to be efficient and efficient, meaning that a decision should be made quickly while admitting the maximum number of tasks. In this dissertation, we study a utilization-based admission control mechanism. Utilization-based admission control makes an admission decision based on a simple resource utilization test: A task will be admitted if the resource utilization is lower than a pre-derived safe resource utilization bound. The challenge of obtaining a safe resource utilization bound is how to perform delay analysis offline, which is the main focus of this dissertation. For this, we develop utilization-based delay guarantee techniques to render utilization-based admission control both efficient and effective, which is further confirmed with our data. We develop techniques for several systems that are of practical importance. We first consider wired networks with the Differentiated Services model, which is wellknown as its supporting scalable services in computer networks. We consider both cases of providing deterministic and statistical delay-guaranteed services in wired networks with the Differentiated Services model. We will then extend our work to wireless networks, which have become popular for both civilian and mission critical applications. The variable service capacity of a wireless link presents more of a challenge in providing delay-guaranteed services in wireless networks. Finally, we study ways to provide delayguaranteed services in component-based systems, which now serve as an important platform for developing a new generation of computer software. We show that with our utilization-based delay guarantee technique, component-based systems can provide efficient and effective delay-guaranteed services while maintaining such advantages as the reusability of components

    General schedulability bound analysis and its applications in real-time systems

    Get PDF
    Real-time system refers to the computing, communication, and information system with deadline requirements. To meet these deadline requirements, most systems use a mechanism known as the schedulability test which determines whether each of the admitted tasks can meet its deadline. A new task will not be admitted unless it passes the schedulability test. Schedulability tests can be either direct or indirect. The utilization based schedulability test is the most common schedulability test approach, in which a task can be admitted only if the total system utilization is lower than a pre-derived bound. While the utilization bound based schedulability test is simple and effective, it is often difficult to derive the bound. For its analytical complexity, utilization bound results are usually obtained on a case-by-case basis. In this dissertation, we develop a general framework that allows effective derivation of schedulability bounds for different workload patterns and schedulers. We introduce an analytical model that is capable of describing a wide range of tasks' and schedulers'ÃÂÃÂ behaviors. We propose a new definition of utilization, called workload rate. While similar to utilization, workload rate enables flexible representation of different scheduling and workload scenarios and leads to uniform proof of schedulability bounds. We introduce two types of workload constraint functions, s-shaped and r-shaped, for flexible and accurate characterization of the task workloads. We derive parameterized schedulability bounds for arbitrary static priority schedulers, weighted round robin schedulers, and timed token ring schedulers. Existing utilization bounds for these schedulers are obtained from the closed-form formula by direct assignment of proper parameters. Some of these results are applied to a cluster computing environment. The results developed in this dissertation will help future schedulability bound analysis by supplying a unified modeling framework and will ease the implementation practical real-time systems by providing a set of ready to use bound results
    corecore