

May 2006

GENERAL SCHEDULABILITY BOUND ANALYSIS

AND ITS APPLICATIONS IN REAL-TIME SYSTEMS

A Dissertation

by

JIANJIA WU

Submitted to the Office of Graduate Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

Major Subject: Computer Science

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Texas A&M Repository

https://core.ac.uk/display/4272753?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

May 2006

Approved by:

Co-Chairs of Committee, Wei Zhao
 Douglas K. Loh
Committee Members, Jyh-Charn Liu
 Rabi N. Mahapatra
Head of Department, Valerie E. Taylor

GENERAL SCHEDULABILITY BOUND ANALYSIS

AND ITS APPLICATIONS IN REAL-TIME SYSTEMS

A Dissertation

by

JIANJIA WU

Major Subject: Computer Science

Submitted to the Office of Graduate Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

iii

ABSTRACT

General Schedulability Bound Analysis and Its Applications in Real-time Systems.

(May 2006)

Jianjia Wu, B.S., Tianjin University;

M.S., Beijing University of Aeronautics and Astronautics

 Co-Chairs of Advisory Committee: Dr. Wei Zhao
 Dr. Douglas Loh

Real-time system refers to the computing, communication, and information system

with deadline requirements. To meet these deadline requirements, most systems use a

mechanism known as the schedulability test which determines whether each of the

admitted tasks can meet its deadline. A new task will not be admitted unless it passes the

schedulability test. Schedulability tests can be either direct or indirect. The utilization

based schedulability test is the most common schedulability test approach, in which a

task can be admitted only if the total system utilization is lower than a pre-derived bound.

While the utilization bound based schedulability test is simple and effective, it is often

difficult to derive the bound. For its analytical complexity, utilization bound results are

usually obtained on a case-by-case basis. In this dissertation, we develop a general

framework that allows effective derivation of schedulability bounds for different

workload patterns and schedulers. We introduce an analytical model that is capable of

describing a wide range of tasks’ and schedulers’ behaviors. We propose a new

definition of utilization, called workload rate. While similar to utilization, workload rate

iv

enables flexible representation of different scheduling and workload scenarios and leads

to uniform proof of schedulability bounds. We introduce two types of workload

constraint functions, s-shaped and r-shaped, for flexible and accurate characterization of

the task workloads. We derive parameterized schedulability bounds for arbitrary static

priority schedulers, weighted round robin schedulers, and timed token ring schedulers.

Existing utilization bounds for these schedulers are obtained from the closed-form

formula by direct assignment of proper parameters. Some of these results are applied to a

cluster computing environment. The results developed in this dissertation will help

future schedulability bound analysis by supplying a unified modeling framework and

will ease the implementation practical real-time systems by providing a set of ready to

use bound results.

v

DEDICATION

To my wife and parents

vi

ACKNOWLEDGEMENTS

This dissertation would not have been possible to complete without the help of so

many great people.

I would like to thank Professor Wei Zhao, my supervisor, for his constant guidance,

support, inspiration, and encouragement through all my Ph.D. study. He taught me the

principles of doing research and ways to approach research problems. He showed me

how to ask questions, how to express my ideas, and how to write research papers that

can be understood by others. He gave me insightful advice for my research as well as

daily life. He is a master teacher and his comments always hit the mark. What I learned

from him will benefit my future.

Special thanks go to Professor Douglas Loh, my co-supervisor, who introduced me

to the Texas A&M University and provided me continuous support through the past

years. He taught me how to broaden my mind, not narrow it. He advised me on how to

think systematically and how to view things from different perspectives. Most

importantly, he showed me how to respect others. He is an outstanding supervisor, and a

great friend.

I want to express my sincere gratitude to Professor Jyh-Charn Liu for his patient,

support, encouragement and trust. He was always there to discuss with me about my

research problems and he provided many valuable comments. He spent hours and hours

of time helping me revise my research papers and showing me why the revisions are

vii

better. He is one of those exceptional professors who do not show you the solution

directly, but guide you through the process of reaching the solution.

Many thanks go to Professor Rabi Mahapatra for serving on my committee and for

sharing his research experiences with me.

I want to thank Professor Jerry Stuth for allowing me to complete my Ph.D. study

while working full time for him.

I want to thank all fellow students in my research group, especially Zhibin Mai, Dan

Cheng, Shengquang Wang, and Nan Zhang, for their collaboration and insightful

comments.

Finally, I would like to thank my parents, sister, and brother for their unconditional

help and support. I owe a lot to my beloved wife who encouraged me when I was

depressed, listened to me when I was complaining, and believed in me even when I

doubted myself. This dissertation could not have been completed without my lovely

daughter who is my source of inspiration.

viii

NOMENCLATURE

α Protocol overhead ratio for weighted round robin and timed token
ring schedulers, /TTRTα τ=

jC The increment of an s-shaped workload constraint function at the thj
period, j = 1, 2, …, L

C The constant increment of an s-shaped workload constraint function
after the thL period

d The worst case (i.e., largest) delay of all jobs in a task

∆ A positive integer defined by the relationship of k λ= ∆

D Relative deadline of a task
η Heterogeneity of a task set, (/ ,)V kη λ= Γ⎡ ⎤⎢ ⎥

f (t) Workload function

()F I Workload constraint function

g (t) Service function

()G I Service constraint function

Γ Task set
γ Normalized token rotation frequency for weighted round robin and

timed token right schedulers, min /D TTRTγ = ⎢ ⎥⎣ ⎦ where Dmin is the
shortest relative deadline of all tasks

V (, Γ) Heterogeneity function of task set Γ
k Normalized deadline of a task, /k D P=

L Number of jC s in an s-shaped workload constraint function

λ Degree of deadline inversion

P Period of a periodic task
µ Task set workload burstness of s-shaped tasks
S Segement length parameter in an s-shaped workload constraint

function
τ Token rotation overhead which is the time spent in token rotation per

round

ix

dt Job absolute deadline

rt Job release time

ft Job completion time

T A task

TRT Token rotation time which is time to finish last token rotation

TTRT Target token rotation time for weighted round robin and timed token
ring schedulers

θ Scaling parameter used for workload rate measurement

W (θ , Γ) Workload rate of task set Γ
*()W θ Schedulability bound

x

TABLE OF CONTENTS

 Page

ABSTRACT. ..iii

DEDICATION. ... v

ACKNOWLEDGEMENTS. .. vi

NOMENCLATURE...viii

TABLE OF CONTENTS. ... x

LIST OF FIGURES...xii

CHAPTER

I INTRODUCTION.. 1

A. Real-time Systems.. 1
B. Schedulability Test ... 2
C. Problems ... 4
D. Related Work.. 5
E. Dissertation Contributions .. 7
F. Dissertation Outline .. 10

II SYSTEM MODEL ... 11

A. Task, Task Set, Workload, and Service Functions............................... 11
B. Workload Constraint Functions.. 16
C. Service Constraint Functions.. 28
D. Workload Rate and Schedulability Bound ... 38

III SCHEDULABILITY BOUND FOR STATIC PRIORITY
SCHEDULERS .. 51

A. Static Priority Schedulers ... 51
B. Schedulability Bound For S-Shaped Tasks .. 53
C. Schedulability Bound for R-Shaped Tasks... 67

xi

CHAPTER Page

IV SCHEDULABILITY BOUND FOR WEIGHTED ROUND ROBIN
SCHEDULERS .. 73

A. Weighted Round Robin Schedulers ... 73
B. Schedulability Bound for Normalized Weighted Assignment 75
C. Schedulability Bound for Deadline Based Weight Assignment........... 91

V SCHEDULABILITY BOUND FOR TIMED TOKEN RING
SCHEDULERS .. 98

A. Timed Token Ring Schedulers ... 98
B. Schedulability Bound for Normalized Weight Assignment 100
C. Schedulability Bound for Deadline Based Weight Assignment......... 114

VI APPLICATIONS.. 121

A. Background .. 121
B. System Architecture ... 122
C. Implementation... 125

VII SUMMARY AND CONCLUSIONS... 130

REFERENCES.. 132

APPENDIX A ... 138

APPENDIX B ... 156

APPENDIX C ... 166

APPENDIX D ... 168

APPENDIX E.. 172

VITA ... 174

xii

LIST OF FIGURES

FIGURE Page

 1 Example of Workload Function. ... 12

 2 An Example Periodic Task.. 13

 3 An Example Task Set, Their Execution Sequence, Workload and Service
Functions. .. 14

 4 Over-estimation Problem of the Periodic Task Model.. 17

 5 Modeling Task Workload with Workload Constraint Function............................ 18

 6 An Example S-shaped Workload Constraint Function. .. 20

 7 On-off Workload Constraint Function .. 27

 8 Piecewise Linear Workload Constraint Function.. 27

 9 Continuous Workload Constraint Function... 28

 10 Components in the Generalized Service Constraint Function. 31

 11 Illustration of the Transformation Function. ... 41

 12 Workload Heterogeneity. .. 55

 13 Schedulability Bound of Static Priority Schedulers. ... 59

 14 Comparison of New Schedulability Bounds with Previous Results. 60

 15 Schedulability Bound of Static Priority Schedulers with R-Shaped Tasks........... 69

 16 Schedulability Bound of Weighted Robin Scheduler with Normalized
Weight Assignment and Fixed Normalized Deadline k =1. 84

xiii

FIGURE Page

 17 Schedulability Bound of Weighted Robin Scheduler with Normalized
Weight Assignment and Fixed Normalized Token Rotation Frequency

2γ = .. 85

 18 Schedulability Bound of Weighted Robin Scheduler with Normalized
Weight Assignment and Fixed Task Set Workload Burstness 1µ = 86

 19 Schedulability Bound of Weighted Robin Scheduler with Normalized
Weight Assignment and R-Shaped Tasks.. ... 89

 20 Schedulability Bound of Weighted Robin Scheduler with Deadline Based
Weight Assignment. .. 96

 21 Schedulability Bound of Timed Token Ring Scheduler with Normalized
Weight Assignment for and Fixed Normalized Deadline k =1............................ 108

 22 Schedulability Bound of Timed Token Ring Scheduler with Normalized
Weight Assignment and Fixed Token Rotation Frequency γ =2........................ 109

 23 Schedulability Bound of Timed Token Ring Scheduler with Normalized
Weight Assignment and Fixed Workload Burstnessµ =1. 110

 24 Schedulability Bound of Timed Token Ring Scheduler with Normalized
Weight Assignment and R-Shaped Tasks. .. 113

 25 Schedulability Bound of Timed Token Ring Scheduler with Deadline
Based Weight Assignment. ... 119

 26 System Architecture of the RCMDA. ... 124

 27 Psedocode to Update Degree of Deadline Inversion... 127

1

This dissertation follows the style of IEEE Transactions on Computers.

CHAPTER I

INTRODUCTION

A. Real-time Systems

Real-time system refers to the computing, communication, and information system

with deadline requirements. Real-time systems and can be divided into soft real-time

systems and hard real-time systems. In a soft real-time system, violation of the deadline

requirement may lead to some level of performance suffering or economic loss, while in

hard real-time systems, catastrophe results will happen. Examples of soft real-time

systems include video conferencing, voice over IP, and many others. In a video

conferencing/voice over IP system, the video/voice data packages need to be delivered

from one end to the other in a given time interval. Violation of the deadline requirements

affect the smoothness of the conference or conversation, but typically will not result in

catastrophe outcomes. Examples of hard real-time systems include missile control, radar

monitoring, aircraft traffic control, and many others, in which missing deadline

requirements may lead to huge economic or human life loss, e.g. failure of delivery of

routing commands to an aircraft before deadline may result in aircraft collision.

A typical real-time system includes three major components: resource, task, and

scheduler. A task is a sequence of jobs that together accomplish certain mission, and the

resource is what needs to be consumed in order to finish a job. Since the resource in a

2

system is shared, different jobs may want to use the resource at the same time and thus

confliction will happen. The scheduler is the unit that decides which job should use the

resource in case of such resource usage confliction. In a voice over IP system, a

conversation can be treated as a task and delivering of each voice package is a job. The

network bandwidth is the resource to be consumed for the delivery the voice packages.

The routers responsible for sending/receiving data packages can be considered as the

schedulers.

B. Schedulability Test

To meet the deadline requirements, most real-time systems use a mechanism known

as the schedulability test (also called admission control), which determines whether each

of the admitted tasks can meet its deadline. A new task will not be admitted unless it

passes the schedulability test. An admitted task will be guaranteed to meet its deadlines

throughout its mission.

The schedulability test can be either direct or indirect. Direct schedulability test

explicitly calculates the worst-case delays (the length of the time interval from the

instant a job request the resource to the instant the job is finished) of the tasks in order to

determine the permissibility of a new task. This type of test is more accurate, but usually

has high run-time computing cost in calculating the delays.

An indirect schedulability test does not compute the delays, but tests selected system

parameters to determine the schedulability of a new task. The utilization based

schedulability test is the most common approach, in which a task can be admitted only if

3

the total system utilization is lower than a pre-derived bound. The major advantages of

this schedulability test are as follows:

1) It is very efficient with a complexity of O(1). Unlike the direct schedulability

test that need to evaluate the schedulability of each task in the system (and the

new one) upon the arrival a new task, the utilization based schedulability test

only needs to check whether the total system utilization (including the new task)

is lower than the pre-derived utilization bound.

2) It provides an operation margin for system administrators and thus improves the

stability of a real-time system. During design phase, the system designer can set

an upper bound of utilization that is lower than the pre-derived bound. By

providing such safety margin, the system can work smoothly even some tasks

accidentally violate their load constraints, or when some system parameter

changes, e.g. clock skew.

Various utilization bounds have been derived in the literature, and many have been

applied to implementation of mission critical applications. Some of the most notable

results include 69% (and extensions) for the Rate/Deadline Monotonic scheduler

(RMS/DMS) [34], [43], [49], [56], [57], and [66]; 100% for Earliest Deadline First

scheduler (EDF) [49]; and 33% for the Timed Token protocol (TTP) [5], [52], [75], and

[80]; etc. Utilization bounds of RMS/DMS in multiprocessor systems have also been

derived in [9], [10-12], [29], and [62]. Some important utilization bounds for non-

periodic systems are derived in [1-3], and [74]. A more detailed summary of the

literature is given in the related work section.

4

C. Problems

Though many bound results have been obtained for existing scheduling systems,

most of the bounds are for periodic tasks, and it is difficult to generalize the utilization

bound method to non-periodic system due to the following two problems:

1) Ambiguity in defining utilization for non-periodic tasks. Utilization is a

measurement of the resource consumption rate within a certain time window

(referred to as a measuring window). Typically, for periodic systems, task

periods have been used as the measuring window. It is difficult to extend this

definition to the domain of non-periodic tasks because one cannot have a well-

defined notion of “period”. One certainly could define a long-term stable

utilization with the measuring window length being infinitely large, but this type

of definition may not correctly reflect the resource demand within the deadline.

Because of this, in [1] and [9], the authors proposed to define the utilization by

setting the length of the measuring window as the relative deadline of the task.

Though works in some cases, this definition used a fixed interval (the relative

deadline of the task) to measure the workload and we noticed that deriving the

bound result using a fixed interval is very difficult in some scheduling systems.

To derive utilization bounds, we must have a flexible, robust notion of

utilization that can be applied to a broad range of workloads and schedulers. The

definition should correctly reflect the resource demand and facilitate derivation

of the bounds.

5

2) Ad hoc-ness in the derivation of the utilization bound. Most utilization bound

results are obtained case-by-case, and the method developed for one system

cannot be easily applied to another. The difficulty of the bound derivation can be

attributed to the high complexity of the underlying optimization problem since

one must find an optimal (lower) bound of the utilization in an infinite space of

non-schedulable task sets, but more importantly, to the lack of general system

model and bound derivation methodology.

D. Related Work

In their seminal work [49], the authors derived the well-known 69% utilization

bound for the RMS on single processor systems, where relative deadlines of periodic

tasks are equal to their periods. A rich collection of utilization bounds have been derived

since then for different systems. This result has been extended to arbitrary deadline

assignment schemes in [42], [43] and [66]. In [40] and [46], the authors improved the

bound by exploiting the ratio between the longest and shortest task periods. The work in

[22] and [39] further improved the bound result with the concept of the harmonic chain

that exploits the divisibility between periods. The authors in [34] introduced an

algorithm that transforms the periodic task into a harmonic task set, which has a

workload bound of 1, and proved that the algorithm performs better than the bound

derived in [46] and [49], with the cost of higher complexity.

Utilization bounds of static priority schedulers on the time token protocol in FDDI

networks were derived in [5], [52], [75], and [80]. The utilization bound for static

6

priority schedulers in a network environment have been studied in [74]. Utilization

bounds for non-periodic tasks have been addressed in [1-3] and [51]. Utilization bounds

for RMS/DMS in multi-processor systems have been studied in [9-11], [29], and [51].

Schedulability analysis for weighted round robin schedulers has been conducted in [8].

Generalizing the definition of utilization from periodic tasks to aperiodic tasks has

been studied in [1-3], [9], [56], and [74]. In deriving the utilization bound for RMS with

multiframe and general real-time task models, the authors in [56] and [57] proposed a

maximum average utilization that allows calculation of utilization in an infinite

measuring window. In the analysis of the utilization bound in a multi-node network

environment with leaky bucket packet sources, the authors in [74] used a utilization

definition that is based on the sustainable rate in the leaky bucket function. To derive the

utilization bound for non-periodic tasks and multiprocessor systems, the authors in [1-3]

and [9] proposed a utilization definition that is based on relative deadlines of tasks,

instead of periods.

The linear programming method that has been proposed for finding utilization

bounds when task parameters are known a priori has been studied in [22], [41], and [65].

The work in [13] and [14] introduced a new schedulability test which is similar to

utilization based admission control. Specifically they proved that for periodic tasks with

RMS, a task set is schedulable if (1) 2iuΠ + ≤ , where ui is the utilization of the i-th task.

Some non utilization based schedulability bound analysis for static priority scheudlers

are done in [44] and [47].

7

Generalization of a periodic task model was proposed in [52] and [56], in which the

authors derived a bound result for multiframe tasks which allows jobs in the same task to

have different size, provided that the relative deadline is same as period length.

Using workload constraint function to model tasks can be traced back to [23], [24],

i.e. leaky bucket constraints of network traffic. This concept was expanded in [74] to

analyze the utilization bounds of static priority schedulers. The general model for real-

time tasks proposed in [56] shares a similar concept, and it corresponds to a special

group of workload constraint functions in multiframe forms. The idea of modeling

schedulers with service constraint functions originated in [16], [18], [19], [25], and [64].

Workload constraint and service constraint functions have been used for direct

schedulability test in [6], [7], [15], [25], [26], [47], [67], and [68] among many others,

but none of them is used for utilization based test.

E. Dissertation Contributions

In this dissertation, we introduce an analytical model that is capable of describing a

wide range of tasks and schedulers’ behaviors１. In addition to address the problems

mentioned above, we broaden the utilization bound derivation techniques using the

following approach:

1) We propose a new definition of utilization, called workload rate, which

measures the resource demand within a time window of length proportional to

１ Some of the results of this dissertation have been published in [73].

8

the deadline of a task, so that it can be used to characterize both periodic and

non-periodic tasks in the same framework. Taking the relative deadline of the

task length of the measuring window to define the utilization was first proposed

in [1] and [9]. Several other key system parameters are characterized with

respect to the workload rate in formulation of the utilization bound solutions.

2) We introduced two special types of task workload models, i.e. the s-shaped and

r-shaped. The s-shaped workload model is an extension of the classical periodic

task model and allows more accurate and flexible characterization of task

workload requirements. The r-shaped workload model is an extension of the

classical leak-bucket task model widely used in network environment.

3) On the basis of the network calculus framework [15], [16], [18], [19], and [23-

25], a new bound derivation methodology is proposed. We derive some key

relationships between workload and services, to arrive at a lower bound of

workload rate for arbitrary services and schedulers. In previous work, the search

for utilization bound was usually made along the boundary between the spaces

of schedulable and non-schedulable task sets. Knowing that finding the

boundary of the two spaces is already a major undertaking, we directly

derived the schedulability bound by solving a minimization problem over the

entire task set population. As a result, the utilization results (of schedulability

testing) are applicable to a much broader range of task models and schedulers.

9

4) To illustrate the effectiveness of our new methodology, we explicitly derive a

set of parameterized workload rate bound for static priority schedulers, weighted

round robin schedulers, and timed token ring schedulers.

o A closed-form bound formula is obtained for static priority schedulers. The

bound is parameterized for different priority assignments and for various

task releasing patterns. We show that when the parameters are set properly,

existing bounds can be easily obtained from our generalized bound formula,

including: the system has periodic tasks whose deadlines are equal to periods.

Tasks are scheduled by a rate monotonic scheduler [49]; the system has

periodic tasks whose deadlines are less than periods. Tasks are scheduled by

a rate monotonic scheduler [43] and [66]; the system has periodic tasks

whose deadlines are multiples of periods. Tasks are scheduled by a rate

monotonic scheduler [34]; the system has multiframe tasks whose deadlines

are equal to periods. Tasks are scheduled by a rate monotonic scheduler [57].

To our knowledge, no current literature covers as a wide range of systems as

our methodology.

o A set of closed-form bound formulae are obtained for weighted round robin

schedulers with different weight assignment schema.

o A set of closed-form bound formulae are obtained for TTP schedulers with

different weight assignment schema. We shown that existing bounds are

special cases of our newly derived bound and can be obtained from the new

bound, including the 33% utilization bound for the TTP with periodic tasks

10

and normalized deadline assignment scheme [5], the utilization bound for

TTP scheduler with periodic tasks and optimized weight assignment [55].

To best of our knowledge, no current literature covers as a wide range of systems as

our methodology.

F. Dissertation Outline

This dissertation is organized as follows. Chapter II introduces the task, scheduler

and schedulability bound models. In Chapter III, schedulability bounds for static priority

are analyzed. Chapter V derives closed-form bounds for weighted round robin

schedulers with different weight assignment schema. Chapter VI derives closed-form

bounds for timed token ring schedulers. In Chapter VII, application of the bound results

to a cluster environment is discussed. Summary and conclusions are given in Chapter

VIII.

11

CHAPTER II

 SYSTEM MODEL

A. Task, Task Set, Workload, and Service Functions

We assume that a single processor computing system is to serve a task set

1 2{ }nT T TΓ = , , ..., , where iT is the i-th task. When the context is clear, we may omit

index i in the subsequent discussions. Each task is composed of a sequence of jobs. The

worst-case execution time of a job is called the job size, which is measured in second. A

job can start its execution after its release time, rt , and must be finished by its absolute

deadline d rt t D= + where D is called relative deadline. For a job, the time elapsed

from the release time rt to the completion time ft is called the delay of the job, and the

worst-case (i.e., largest) delay of all jobs in a task is denoted by *d . Within a task, the

jobs have the same relative deadline, but may not necessarily have the same size. Jobs

within a task are executed in a first come, first served order.

To characterize the resource demand of task T analytically, we define ()f t , the

workload function for T , as follows:

 ()f t = the summation of the sizes of all the jobs from T released in [0]t, . (II-1)

Figure 1 is an example of the workload function. Figure 1.a illustrates the job sizes

and arrival time instants. As can be seen, there is a job of size 5 released at time 1,

followed by a job of size 2 at time 5, a job of size 2 at time 9, and so on. Figure 1.b

12

draws the workload function. It is clear that there is a jump of the size of the job size at

the release instant of each job.

Time

() - workload function

2

Time

(a)

(b)

Total Job
Size

6

10

4

8

12

14

16

4 8 12 16 20 24

4 8 12 16 20 2410

4

2

Job Size

Figure 1. Example of Workload Function.

We say ()f t is a periodic workload function if it is of the following form:

 () tf t C
P
φ−⎡ ⎤= ⎢ ⎥⎢ ⎥

, (II-2)

where C is the job size, φ is the phase, and P is the period of the task. It is easy to see

that a periodic task release its first job of size C right after time φ and releases a new job

same size every P time unit. We say a task is a periodic task if its workload function is

13

periodic. Periodic task exists in many real-time systems, e.g. periodic sampling task in a

digital sampling system, periodic target tracking task in a radar monitoring system.

Figure 2 is an example periodic task with period of 7, job size of 4, and phase being 1.

Figure 2. An Example Periodic Task.

Similarly, to characterize the actual processor time received by task T , we define

()g t , the service function for T , as follows:

 ()g t = the total execution time rendered to jobs of task T during [0]t, . (II-3)

Let us consider a real-time systems with two periodic tasks 1 2{ }T TΓ = , where

1 5P = , 1 2C = , 1 3D = , and 2 6P = , 2 1C = , 2 4D = . We assume the jobs are served in a

14

first-come-first-serve order. We use , i kJ to denote the thk job from task iT . Figure 3

illustrates the arrival time of the jobs (Figure 3.a and 3.b), the CPU execution sequence

(Figure 3.c), and the workload and service functions for the two tasks (Figure 3.d).

Figure 3. An Example Task Set, Their Execution Sequence, Workload and Service

Functions.

Based on the definitions of *d , ()f t and ()g t , it can be verified that

15

 ()()*
0sup inf | () ()td f t g tτ τ≥= ≤ + . (II-4)

That is, the worst case delay of a task is the maximum horizontal distance between

its workload and service function. Interested reader can check Figure 3 and find out that

the worst case delay for task 1T is 2 and 5 for task 2T .

In a real-time system, a major goal of the schedulability test algorithm is to check the

truthfulness of

 *d D≤ . (II-5)

One may want to use (II-4) to calculate *d and then compare the result with D to

test the schedulability. However, this method may not be suitable for online operation

because the exact forms of ()f t and ()g t may not be available when schedulability test

is made. For example, in an online real-time conference system, the exact workload of

the video traffic will be unknown until the conference is finished since the sizes of video

frames depend on the movement of the participants during the meeting and other

dynamic factors. Furthermore, even if ()f t and ()g t are available, e.g. an online play-

back movie, they are often too cumbersome to handle. A practical solution is using some

alternative simple forms of ()f t and ()g t that can be obtained during schedulability

test.

16

B. Workload Constraint Functions

Much work has been done on the alternatives of ()f t . For example, in periodic task

model, a typical alternative of ()f t is

 () /F t t P C= ⎡ ⎤⎢ ⎥ , (II-6)

where C is the maximum job size and P is the minimum inter-job separation time.

Though this alternative maybe accurate for periodic tasks, it can over-estimate the

resource demand for non-periodic tasks [57], and would lead to pessimistic

schedulability decisions. Let us consider the example in Figure 1 and model the task

workload use the function defined in (II-6). Since the maximum job size of the task is 5

and the minimum length of job separation time is 1, we have 5C = and 1P = . As a

result, we have the function

 () 5F t t= ⎡ ⎤⎢ ⎥ . (II-7)

Figure 4 compares this alternative with the original f function. One can notice

degree of over-estimation.

17

Figure 4. Over-estimation Problem of the Periodic Task Model.

A different alternative of ()f t is the workload constraint function ()F I that satisfies

that for any 0 I t≤ ≤

 () () ()f t f t I F I− − ≤ . (II-8)

The ()F I in form of (II-8) was first introduced in [23] and [24] and has been widely

used [15], [18], [19], [45], and [74]. By convention, (0) 0F = and ()F I is non-

decreasing. ()F I is an upper bound of total size of jobs can be released in any time

window [,]t I t− . We use I in (II-8) because F defined on the domain of time

intervals, while ()f t is defined in the domain of time. Typically, a workload constraint

function should have the following properties as discussed in [16].

Property 1 (non decreasing): For 0I ≥ and 0∆ ≥ ,

 () ()i iF I F I+ ∆ ≥ . (II-9)

18

Property 2 (triangle relationship): For 1 0I ≥ and 2 0I ≥ ,

 1 2 1 2() () ()i i iF I I F I F I+ ≤ + . (II-10)

The workload constraint function defined in (II-8) is tighter than the alternative

function defined in (II-6), since for systems with periodic task model, it can be verified

that () /F I I P C= ⎡ ⎤⎢ ⎥ is a workload constraint function satisfies (II-8). Figure 5

illustrates a workload constraint function for the task introduced in Figure 3. By

checking the arrival pattern of the jobs from the task, we know that in any interval of

length 1, the total job size is no more than 5 units, 7 in any interval of length 5, and 9 in

any interval of length 8, etc… Thus, we can verify that the ()F I satisfies the constraint

in (II-8). One can notice that this alternative function ()F I is tighter than the one used

in Figure 4. In this dissertation we will use ()F I defined in (II-8) as the chosen

alternative of ()f t .

Total Job
Size

4 8 12 16 20 24

()

6

10

2

4

8

12

14

Time

16

F()

Figure 5. Modeling Task Workload with Workload Constraint Function.

19

In most practical cases, the F function can be obtained based on the known

workload properties of the tasks. For example, in a network environment, the incoming

traffic is typically regulated by a leaky bucket controller which controls that in any

interval of length I , the total packages went through the controller is no more than

Iσ ρ+ . Thus ()F I Iσ ρ= + is a workload constraint function satisfies (II-8).

1. S-shaped Workload Constraints

Knowing that workload constraint functions can exist in many different forms and

deriving schedulability bound for arbitrary workload constraint function may be very

challenging, we start with a special workload constraint function, namely the staircase-

shaped (s-shaped) workload constraint function.

 As its name suggests, an s-shaped workload constraint function consists of

segmented pieces, and resembles a staircase. The values of an s-shaped workload

constraint function increase only at border points of segments. We assume that the

segment length S is fixed, and the increments may not be identical for the first L

segments where L is a parameter in the function.

20

1C

2S 3S

()F I

I4S 5S

2C

3C
4C

C
C4L =

S
Figure 6. An Example S-shaped Workload Constraint Function.

Formally, an s-shaped workload constraint function can be expressed as follows:

 1

1

()

()

a j
j

L j
j

C a L
F I

C u L C a L

⎧
⎪

=⎪⎪
⎨
⎪
⎪

=⎪⎩

≤
=

+ − >

∑
∑

 (II-11)

where /a I S= ⎡ ⎤⎢ ⎥
jC is the increment at the beginning of the thj segment, and C is the

constant increment after the thL segment. Figure 6 shows an example of the s-shaped

workload constraint function. When L = ∞ , an s-shaped constraint function reduces to

the general real-time task model, as the one defined in [56].

We say that an s-shaped function ()F I is smooth when

 1 2 .LC C C C≥ ≥ ≥ ≥ (II-12)

21

That is, if an s-shaped constraint function is smooth, then its increments over time

are monotonically non-increasing. The smoothness property greatly simplifies the

schedulability analysis.

Any non-smooth s-shaped workload constraint function can be converted into a

smooth one. One simple algorithm is:

Step 1. Locate the first jC in the function such that 1j jC C +< ;

Step 2. Replace both jC and 1jC + with 1() / 2j jC C ++ ;

Step 3. Repeat Steps 1 and 2 until no such jC exists;

Step 4. Replace the jC s that are less than C with C .

It can be easily verified that the result of the above process will produce a constraint

function that is s-shaped and still meets the definition given in (II-8). For example,

consider the non-smooth s-shaped constraint function in Figure 6 with segment length

8S = , 1 5C = , 2 5C = , 3 1C = , 4 5C = , and 2C = . This function can be transformed to a

smooth one with 8S = , 1 5C = , 2 5C = , 3 3C = , 4 3C = , and 3C = .

In the rest of this dissertation, unless otherwise specified, we only consider smooth s-

shaped workload constraint functions. The s-shaped workload constraint functions cover

a broad range of tasks and have analytical properties that facilitate the derivation of

workload rate bounds. The following example illustrates how to model the multiframe

tasks with s-shaped workload constraint function.

Example. S-shaped workload constraint functions for multiframe tasks. As defined in

[31], a multiframe task is expressed in the form of ()()0 1 1, , ..., , N
i i i iE E E P− where iP is

22

the minimum job separation time and the execution time of the thj job is (1) mod j N
iE − . For

instance, ((3, 1), 3) denotes a task whose minimum job separation time is 3, and its

execution time alternates between 3 and 1. A multiframe task is said to be

Accumulatively Monotonic (AM) [57], if the total execution time for the first j frames is

the largest among all size j frame sequences for all j, j = 1, 2, ….

Recall that an s-shaped constraint function is characterized by parameters S , L , 1C ,

2C , …, LC , and C. Given a multiframe task ()()0 1 1, , ..., , N
i i i iE E E P− , we can construct

its corresponding ()F I by assigning the following parameter values: iS P= , L = ∞ ,

1 1C φ= , and 1j j jC φ φ −= − , 2, 3, ...j = , where jφ , 1, 2, ...j = , is defined as

 () ()()0, 1, 2, ...max () .j f j P f Pφ == + − (II-13)

It is can be verified that for 0t ≥ , 0I ≥ , the following inequality holds for ()F I just

constructed,

 () () ()f t I f t F I+ − ≤ , (II-14)

and it is a valid workload constraint function. By definition, when the multiframe task is

AM we know that 1 0Eφ = and 2 0 0E Eφ = + . And thus, we have 1 0C E= and 1 1C E= .

Note that the newly constructed s-shaped function is not necessarily smooth.

Note that the notion of workload and service constraint function defined in (II-8) and

(II-41) are not entirely new. Similar definitions have been proposed in the literature, e.g.,

the burst-ness constraint function in [23], the arrival curve and service curves in [15] and

23

[16], the rate controlling function in [46], and the workload constraint functions in [45],

[72], and [74], just to name a few. But, little, if any, of its effect has been explored for

schedulability bound analysis.

For any s-shaped workload constraint function, we have the following property.

Lemma 2-1. For an s-shaped constraint function F and two positive integers and ' ,

if '≤ , then

 () (')
'

F S F S
≥ . (II-15)

Proof. We prove this lemma by induction. It is trivial that (II-15) holds for '= .

Assume that (II-15) holds for ' m= + . That is,

 () (())F S F m S
m

+
≥

+
 . (II-16)

Now we will prove (II-15) is true for ' 1m= + + . That is,

 () ((1))
1

F P F m S
m

+ +
≥

+ +
 . (II-17)

To establish the lemma, we only need to show

 (()) ((1))
1

F m S F m S
m m

+ + +
≥

+ + +
 . (II-18)

We will prove (II-18) in two cases.

Case 1: m L+ < . By (II-11), we have

24

 1((1)) (()) mF m S F m S C + ++ + = + + . (II-19)

By multiplying ()m+ on both sides of (II-19), we get

 1() ((1)) () (()) () mm F m S m F m S m C + ++ + + = + + + + . (II-20)

By (II-12), we know that 1m jC C+ + ≤ , for all 1j m≤ + + , and thus,

 1
1

() mm j
j

m C C++ +
=

+ ≤∑ . (II-21)

Substituting (II-21) into (II-20), we have

1

() ((1)) () (()) m j
j

m F m S m F m S C+

=
+ + + ≤ + + +∑ . (II-22)

By (II-11),

1

(()) m j
j

F m S C+

=
+ =∑ . (II-23)

Then substituting (II-23) into (II-22), we have

 () ((1)) (1) (())m F m S m F m S+ + + ≤ + + + . (II-24)

(II-24) is equivalent to (II-18).

Case 2: m L+ ≥ . By (II-11), we have,

 ((1)) (())F m S F m S C+ + = + + . (II-25)

By multiplying ()m+ on both sides of (II-25), we get

25

 () ((1)) () (()) ()m F m S m F m S m C+ + + = + + + + . (II-26)

By (II-12), jC C≤ , for all 1j m≤ + + . Thus,

1

() ()L j
j

m C C m L C
=

+ ≤ + + −∑ . (II-27)

By (II-11)

1

(()) ()L j
j

F m S C m L C
=

+ = + + −∑ . (II-28)

By substituting (II-28) into (II-27), we get

 () (())m C F m S+ ≤ + . (II-29)

Substituting (II-29) into (II-26), we have

 () ((1)) (1) (())m F m S m F m S+ + + ≤ + + + . (II-30)

This is equivalent to (II-18). The lemma then follows. □

An intuitive explanation of (II-15) is that the slope measured at the multiples of the

segments are non-increasing. As will be seen in the later bound derivation process, this

propertity greatly simplifies our schedulability bound analysis.

26

2. R-shaped Workload Constraint Functions

S-shaped workload constraint function is simple and flexible in characterizing

workload of different types of tasks, especially those periodic-like ones. In this section,

we introduce another type of workload constraint function, namely r-shaped workload

constraint function. Formally, we say a function F is r-shaped if 0 s t< < ,

 () / () /F s s F t t≥ , (II-31)

(II-31) means that the rate of the function ()F I is not increasing with I and can be

thought as a special case of the s-shaped workload constraint when the step 0S → .

Compared with s-shaped functions, r-shaped function is much simpler and this

simplicity can greatly reduce the complexity of the schedulability bound analysis.

Three example r-shaped workload constraint functions are given below. Figure 7 is

an on-off type workload constraint function which allows a task to release jobs at a

constant rate in the “on” mode as long as the task will be remain in “off” mode for a

certain time after the “on” mode. Figure 8 is a multi-piece linear workload constraint

function which is suitable for tasks that release jobs with higher rates in short time

windows and gradually reduces its releasing rate in longer windows. Figure 9 is a

workload constraint function in continuous form. Modeling tasks with this type of

workload constraint function may have the benefit of analysis simplicity given its

smooth property.

27

()iF I

I

On-Off Workload Constraint Function

Figure 7. On-off Workload Constraint Function.

()iF I

I

1 1tδ ρ+

2
2tδ ρ+

Figure 8. Piecewise Linear Workload Constraint Function.

28

()iF I

I
Figure 9. Continuous Workload Constraint Function.

Note that this r-shaped workload constraint function is not a new invention. Similar

to the s-shaped workload constraint function, which is a generalization of the classical

periodic task model, r-shaped workload constraint function is a generalization of the

widely used leaky-bucket traffic model initially proposed in [23] and [24]. R-shaped

workload constraint function has been discussed under the name of “star-shaped”

function in [16]. But to the best knowledge of the authors, limited work are done on the

schedulability bound analysis with this special type of workload constrain function.

C. Service Constraint Functions

With ()F I defined, let us now consider alternatives of ()g t . Though one can find

many different types of alternatives of ()g t , we are only interested in those that can

facilitate the delay bound analysis.

29

Strict Service Constraint Function. We say ()G I is a strict service constraint

function for task T if for any 0 I t≤ ≤

 () () ()g t g t I G I− − ≥ . (II-32)

With this definition, we have () ()g I G I≥ for all 0I ≥ and together with the fact

() ()f I F I≤ , we have

 ()() ()()*
0 0

ˆsup inf | () () sup inf | () ()t td f t g t F t G t dτ τ τ τ≥ ≥= ≤ + ≤ ≤ + = . (II-33)

That is to say, we can derive an upper bound of *d based on ()F I and ()G I (which

are defined in (II-8) and (II-32), respectively) by using the following expression:

 ()()*
0sup inf | () () .td F t G tτ τ≥≤ ≤ + (II-34)

Note the similarity between the right hand sides of both (II-4) and (II-34). That is, if

we substitute ()f t and ()g t in (II-4) by ()F I and ()G I (where ()F I and ()G I are

defined in (II-8) and (II-32)), respectively, the right hand side of (II-4) becomes an

upper-bound of the worst case delay for task T . As we mentioned earlier, (II-4) has

well-understood physical meaning. Thus, if we ought to define any new service

constraint function, we would prefer that it satisfies (II-34). Formally, we define Ψ , a

preferred class of function G , as follows:

 Ψ = {G | G satisfies (3-9) for any given ()F I defined in (II-8)} (II-35)

30

We can define an order over G . For two elements, 1G ∈Ψ and 2G ∈Ψ ,

 1 2G G≺ , (II-36)

if

 ()() ()()0 1 0 2sup inf | () () sup inf | () () .t tF t G t F t G tτ τ τ τ≥ ≥≤ + ≤ ≤ + (II-37)

It is obvious that function G defined in (II-32), belongs to Ψ . Also, if we define

 *() 0G t = (II-38)

then,

 *()G t ∈ Ψ (II-39)

That is, Ψ has more than one element. *G is the maximum element, as for any G in

Ψ ,

 *G G≺ . (II-40)

This is because *G results in a delay upper bound of infinite if we use (II-34) to

compute the delay bound.

It would be an interesting and challenging task to carry out a full investigation of G

(e.g., its size, its minimum element, etc.). A report on this investigation is yet to be seen.

Nevertheless, According to the studies by Parekh-Gallager [64], Chang [18], [19] Cruz

[25], and Le Boudec [16], there is at least another element in Ψ . This new element is

31

actually better than (i.e., no larger than) the one defined in (II-32). We introduce this

new G as follows.

Generalized Service Constraint Function. ()G I is said to be a generalized service

constraint function if for any 0t ≥ , there exists I t≤ that preserves the property

 () () ()g t f t I G I≥ − + . (II-41)

Typically, we assume that ()G I is non-decreasing and (0) 0G ≥ . By (II-41) it means

that for any t , we can find t I− , where 0 I t≤ ≤ , such that 1) all the jobs released in [0,

t I−] have been served, and 2) for jobs released in [t I− , t], at least ()G I amount of

jobs have been served, as illustrated in Figure 10.

0 t

jobs released and served in
this interval

at least G(I) of jobs released
and served in this interval

t - I

I

Figure 10. Components in the Generalized Service Constraint Function.

Note that in [16], the authors defined ()G I in form of

()0() inf () ()I tg t f t I G I≤ ≤≥ − + . This expression is equivalent to (II-41) except for the

case when f and/or G are not continuous. For simplicity, we use (II-41) in this paper.

The following theorem proves that the generalized service constraint function defined in

32

(II-41) is in the preferred class, and is better (tighter delay bound) than the one defined in

(3-7).

Theorem 2-1 [16]. Let 'G be defined by (II-32) and "G be defined by (II-35). Given a

task with its ()F I , we have

 "G ∈ G. (II-42)

and,

 '' 'G G≺ . (II-43)

Proof. For any fixed time 0t ≥ , let ()d t denote the delay of the jobs arrived at time t

and let x , 0x ≥ , be a variable such that

 ()x d t< . (II-44)

By definition of delay, we have

 () ()f t g t x> + . (II-45)

 By (II-41), we know that for time instant t x+ , there exists an I0, 00 I t x≤ ≤ + ,

such that

 0 0() () ()g t x f t x I G I+ > + − + . (II-46)

By substituting (II-45) into (II-46), we have

 0 0() () ()f t f t x I G I> + − + . (II-47)

33

By (II-41), we know that

 0() 0G I ≥ . (II-48)

By substituting (II-48) into (II-47), we have

 0() ()f t f t x I> + − . (II-49)

Since ()f t is non-decreasing, we know that

 0t t x I> + − . (II-50)

Thus, by (II-8), we have

 0 0() () ()f t f t x I F I x− + − ≤ − . (II-51)

Rewrite (II-51) into

 0 0() () ()F I x f t x I f x− + + − ≥ . (II-52)

By substituting (II-52) and (II-47), we have

 0 0() ()F I x G I− ≥ . (II-53)

Rewriting (II-53) with 1 0I I x= − as,

 1 1() ()F I G I x> + . (II-54)

34

By plotting the two curves of ()F I and ()G I together, one can notice immediately

that the maximum horizontal distance between the two curves is no less than x , or

specifically,

 ()()0sup inf | () ()I F I G I xτ τ≥ ≤ + ≥ . (II-55)

Since (II-55) is true for any ()x d t< , we know that

 ()()0sup inf | () () ()I F I G I d tτ τ≥ ≤ + ≥ . (II-56)

Since (II-56) is true for any t , 0t ≥ , we have

 ()() *
0sup inf | () ()I F I G I dτ τ≥ ≤ + ≥ . (II-57)

Comparing (II-57) with the definition of preferred class of service constraint

function, we know (II-42) is true.

The truefulness of (II-43) is apparent, since we can set the s in the definition

generalized service constraint function to be zero. □

From theorem 2-1, we have the following sufficient schedulability test condition.

Corollary 2-1. A task is schedulable if for any 0t ≥

 () ()F t G t D≤ + . (II-58)

Proof. By theorem 2-1, if (II-58) holds for all 0t ≥ , we have *d D≤ .

35

As ()G I defined in (II-41) is the best (the delay bound derived with this G is lowest)

by far we have discovered, in the rest of this paper, we will focus on this generalized

service constraint function. And hence, we may omit word “generalized” when context

is clear.

Now let us consider how to derive the service constraint function for static priority

scheduling systems. We say a scheduling system is a static priority one if each of the

tasks in the system is assigned a priority value and all the jobs in the task are sharing this

value. A job can be executed only if no other jobs with higher priority are waiting for the

resource. Without loss of generality, we assume that the tasks are labeled in descending

of their priority, i.e. task 1T has the highest priority and Tn is the task with lowest one.

We have the following theorem on the service constraint function of static priority

schedulers.

Theorem 2-2. For the static priority scheduling system, ()iG I , a service constraint

function for task iT , is

 ()1
0 1

() sup ()i
i x I jj

G I x F x−

≤ ≤ =
= − .∑ (II-59)

Proof. We will follow the definition of service constraint function to prove this theorem.

Specifically, let t be an arbitrary time instant. We need to prove that there exists a time

instant s such that (II-41) holds for the given t as defined in (II-41). We consider the

following cases.

36

Case 1: At time t , iT is not backlogged. In this case, all released jobs of iT have been

served. Let s equal to t , and we have

 () () () () 0 (0)i i i i ig t f s g t f t G− = − = = . (II-60)

Then, by comparing it with (II-41), we have the theorem established.

Case 2: At time t , iT is backlogged. Let s be the latest time instant before t such that

none of the higher priority tasks jT , j ≤ i, is backlogged. That is, for j = 1, 2, …, i,

 () ()j jf s g s= . (II-61)

Let t′ , s t t′≤ ≤ , be an arbitrary time instant between s and t inclusively. Since

()ig t is non-decreasing, we know that the service received by iT in time interval []s t,

should not be less than that in []s t′, . That is,

 () () () ()i i i ig t g s g t g s′− ≥ − . (II-62)

By the definition of s , we know that at least one task with priority no lower than iT

is backlogged in (]s t′, , which means that no job from tasks 1 i nT … T+ , , can be served.

So

 1

1
() () (() ())i

i i j jj
g t g s g t g s t s−

=
′ ′ ′− + − = − .∑ (II-63)

By (II-8) , we have, for j = 1, 2, …, i,

37

 () () ()j j jf t f s F t s′ ′− ≤ − . (II-64)

By the definition of s , we know that jT , j = 1, 2, …, i, is not backlogged at time s .

Thus, the received service by task jT , j = 1, 2, …, i, in [,]s t′ cannot be more than the

total size of the released jobs from jT in [,]s t′ . That is, for j = 1, 2, …, i,

 () () () ()j j j jg t g s f t f s′ ′− ≤ − . (II-65)

Substituting (II-65) into (II-64), we have, for j = 1, 2, …, i,

 () () ()j j jg t g s F t s′ ′− ≤ − . (II-66)

Furthermore, substituting (II-66) into (II-63), and we have

 1

1
() () ()i

i i jj
g t g s F t s t s−

=
′ ′− + − ≥ − .∑ (II-67)

If we substitute (II-61) into (II-67) and rearrange it, (II-67) will become

 1

1
() () ()i

i i jj
g t f s t s F t s−

=
′ ′− ≥ − − − .∑ (II-68)

Because t′ is an arbitrary time instant in []s t, , we have

 ()1
0 1

() () max ()i
i i x t s jj

g t f s x F x−

≤ ≤ − =
− ≥ − .∑ (II-69)

The theorem then follows by comparing (II-69) with the definition of service

constraint function given in (II-41). □

38

Note that the sup operation in (II-59) guarantees that ()iG I is non-negative, and non-

decreasing. An intuitive explanation of (II-59) is that the i-th can be blocked by task 1T ,

2T , …., 1iT − in worst case. Theorem 2-2 can be proved based on the definition of service

constraint function. Specifically, given any time instant t , one can define I such that

time t – I is the last time instant before t such that a task with priority lower than iT is

scheduled. Then from the property of static priority scheduler, one can prove that task iT

will receive at least ()1
0 1

sup ()i
x I jj

x F x−

≤ ≤ =
−∑ seconds of services in interval [t – I , t],

and thus the theorem.

D. Workload Rate and Schedulability Bound

1. Workload Rate

Though one can use (II-58) for each task to decide their schedulability test, it maybe

time consuming since the (II-58) need to be checked for all 0t ≥ . In this dissertation, we

will take a different approach similar to the utilization bound based test.

Recall that for utilization bound based schedulability test, a task set is schedulable

when the utilization of the task set is lower than a pre-derived bound. Our goal here is to

develop a similar bound based test algorithm.

Generally speaking, utilization is the resource consumption rate in a measuring time

window. For periodic systems, the most effective measuring window is task period. For

non-periodic tasks, in [1] and [9], the authors proposed to use the relative deadline of the

task as the length of the measuring window in order to define the utilization for non-

39

periodic tasks. While this choice is simple and convenient for some cases, we find that it

is too restrictive to meet our goal: a versatile utilization bound analysis system. Instead,

we propose to define the length of the measuring window as a linear scale of the relative

deadline. That is, the measuring window can be expressed as Dθ , where 0θ > is called

the scaling parameter and D is the relative deadline of the task.

To avoid confusion with the literature, we refer to this generalized utilization as the

scaled workload rate, and it can be formally expressed as

1

()(,) .n i i
i

i

F DW
D
θθ
θ=

Γ =∑ (II-70)

When the context of discussion is clear, the term “scaled” may be omitted. Since

()i iF Dθ is an upper bound of the size of jobs that can be released in any time window of

length iDθ , (,)W θ Γ can be treated as an upper bound of the job releasing rate averaged

in a window of length iDθ . Introducing θ into the modeling process parameterizes the

utilization measurement. For example, when 1θ = , (II-70) reduces to the definition

provided in [1] and [9]. This parameterized measurement of utilization enables flexible

representation of different scheduling and workload scenarios, and more importantly,

leads to uniform analysis system of schedulability bounds.

2. Schedulability Bound

For a given system, we say ()W θ∗ is schedulability bound if an arbitrary task set Γ is

schedulable when the following condition holds:

40

 () ()W Wθ θ∗, Γ < . (II-71)

The challenge is how to derive *()W θ for a broad range of workload patterns and

scheduling disciplines. Let the space of all task sets be denoted as Ω , i.e., { }TΩ = . Ω

can be partitioned into two subsets, sΩ and nsΩ , where

 { }| is schedulablesΩ = Γ Γ (II-72)

and

 { }| is not schedulablensΩ = Γ Γ . (II-73)

*()W θ is a lower bound of the workload rate of these task sets that belong to nsΩ .

That is

 ()*() inf (,)
ns

W Wθ θΓ∈Ω= Γ (II-74)

Many previous studies have implicitly followed (II-74) to derive schedulability

bounds. For example, the minimization process is often achieved by searching along the

boundary between sΩ and nsΩ . Instead of trying to find an analytical representation of

the boundary directly, which may be quite challenging task, we will transform all the

tasks in Ω , with a special transformation function ()Y Γ , into a region close to the

boundary between sΩ and nsΩ and then perform a minimization in that region. If the

transformation function ()Y Γ is properly selected, the bound results obtained on the

41

transformed region may be very close to the bound obtained from the exact boundary

between sΩ and nsΩ , if not the same. Figure 11 illustrates the concept.

Y(
Y(

Y(

Y(

Figure 11. Illustration of the Transformation Function.

To guarantee the correctness of the bound result obtained on the transformed tasks, it

is clear that Y needs to satisfies that for any nsΓ∈Ω ,

 (,) (, Y())W Wθ θΓ ≥ Γ . (II-75)

That is, the transformation will not increase the workload rate of any non-

schedulable task set. With (II-75) holds, we have

 () ()*() inf (,) inf (, Y())
ns n

W W Wθ θ θΓ∈Ω Γ∈Ω= Γ ≥ Γ . (II-76)

42

Note that (II-75) is only required for non-schedulable tasks. For schedulable tasks,

the transformation function may increase its workload rate, but it can be verified that this

will not affect the correctness of (II-76).

Now we will show how to construct Y . Let ()0inf () / ()i I i iG I D F Iα >= + and h be

the value of j at which
()

(1) j j
i

j

F D
D
θ

α
θ

− is minimized. That is, for 1, 2, ..., i n= ,

 () ()(1) (1)h h i i
h i

h i

F D F D
D D
θ θα α
θ θ

− ≤ − , (II-77)

Let 1 2{ ', ', ..., '}nT T T denote the transformed task set ()Y Γ , 'iF the workload

constraint function, and 'iD the relative deadline for 'iT , 1, 2, ..., i n= . We construct

the function Y as follows, for 1, 2, ..., i n= ,

 'i iD D= , (II-78)

for all i h≠

 '() ()i iF I F I= , (II-79)

and for i = h,

 '() ()i h iF I F Iα= . (II-80)

43

That is, the function Y changes the hF to ()h iF Iα and keeps the other iF and iD

untouched. Now, we will find a lower bound of the schedulability bound with the help of

the just constructed transformation function. By (II-70), we have

1

() ()(, ()) (1)
n

j j h h
h

j j h

F D F DW Y
D D
θ θθ α
θ θ=

Γ = + −∑ , (II-81)

 By Lemma 2-1, for any nsΓ∈Ω , there must exist a task jT such that 1jα < . By

substituting 1jα < into (II-81), we get, for any nsΓ∈Ω ,

 ()(1) 0h h
h

h

F D
D
θα
θ

− ≤ . (II-82)

By substituting (II-82) into (II-81), we have, for any nsΓ∈Ω ,

1

()
(, Y()) (,)

n
j j

j j

F D
W W

D
θ

θ θ
θ=

Γ ≤ = Γ∑ . (II-83)

Furthermore, by substituting (II-83) into (II-74), we get

 () ()*() inf (, Y()) inf (, Y())
ns

W W Wθ θ θΓ∈Ω Γ∈Ω≥ Γ ≥ Γ . (II-84)

Then, by substituting (II-81) into (II-84), we have the following theorem about the

workload bound.

Theorem 2-3. A lower bound of schedulability bound for a scheduler with respect to Ω

is given by

44

 *
1, 2, ...,

1

() ()() inf min (1)
n

j j i i
i n i

j j i

F D F DW
D D
θ θθ α
θ θΓ∈Ω =

=

⎛ ⎞⎛ ⎞
= + −⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

∑ , (II-85)

where ()0inf () / ()i I i iG I D F Iα >= + .

Proof. By the definition of schedulability bound, we just need to prove that ∀Γ∈Ω , Γ

is schedulable if

 *(,) ()W Wθ θΓ < , (II-86)

where *()W θ is given in (II-91). We will prove the theorem by contradiction. Let Γ be

a task set such that (II-86) holds, yet Γ is not schedulable. Let iT denote a non-

schedulable task in Γ . Then from Corollary 2-1, there exists s such that

 () ()i i iF s G s D> + . (II-87)

Thus,

 1iα < . (II-88)

Since () 0i iF Dθ ≥ , we have

 () ()i i i i
i

i i

F D F D
D D
θ θα
θ θ

≥ . (II-89)

By adding
1,

()n
j j

j j i j

F D
D
θ
θ= ≠

∑ on both sides of (II-89), we have

45

1 1,

() () ()n n
j j j j i i

i
j j j ij j i

F D F D F D
D D D
θ θ θα
θ θ θ= = ≠

≥ +∑ ∑ . (II-90)

This contradicts with (II-86). Then follows the theorem. □

Note that Theorem 2-3 is a general result. It is a closed-form representative of the

schedulability bound with task workload and service constraint functions being input

parameters. It holds for any workload constraint function and any work conserving

scheduler. By substituting specific forms of ()iF I and ()iG I into (II-85) and solving the

optimization problem, one can obtain the schedulability bounds for different schedulers.

For scheduler with s-shaped workload constraint functions, we have the following

result on its schedulability bound.

Corollary 2-2. Given any static priority scheduler with s-shaped tasks, a schedulability

bound with respect to Ω is given by

{ }
*

1, 2, , 0 1 .
1,

() ()() min min min
min ,

n
j j i i i

i n m
j j i j i i i

F D G m S DW
D D m D S
θ

θ
θ θ θΓ∈Ω = ... = , , ..

= ≠

⎛ ⎞⎛ ⎞⎛ ⎞⋅ +
⎜ ⎟= + .⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟+ ⋅⎝ ⎠⎝ ⎠⎝ ⎠

∑
 (II-91)

Corollary 2-2 is a specialization of Theorem 2-3 for s-shaped workload constraint

functions and can be proved by plug-in the properties of s-shaped workload constraint

function into (II-85).

Proof. By close observation of (II-91) and (II-85), we only need to prove

46

{ }0 0 1 .

() () ()min min
() min ,

i i i i i i
I m

i i i i i

G I D F D G mS D
F I D D m D S

θ
θ θ θ> = , , ..

⎛ ⎞⎛ ⎞+ +
≥ ⎜ ⎟⎜ ⎟ ⎜ ⎟+ ⋅⎝ ⎠ ⎝ ⎠

. (II-92)

Rewrite (II-92) it as

{ }0 0 1 .

() () ()min min
() min ,

i i i i i i
I m

i i i i i

G I D F D G mS D
F I D D m D S

θ
θ θ θ> = , , ..

⎛ ⎞⎛ ⎞+ +
≥ ⎜ ⎟⎜ ⎟ ⎜ ⎟+ ⋅⎝ ⎠ ⎝ ⎠

. (II-93)

We will prove (II-93) in two cases: i iD Sθ ≤ and i iD Sθ > .

Case 1: i iD Sθ ≤ . For any 0I > , let / iI S= ⎢ ⎥⎣ ⎦ . Then, by (II-11), () ((1))i i iF I F S≤ + ,

and thus,

 () () .
() ((1))

i i

i i i

G I D G I D
F I F S
+ +

≥
+

 (II-94)

By Lemma 2-1, we have ((1)) (1) ()i i i iF S F S+ ≤ + . Thus, (II-94) becomes

 () () .
() (1) ()

i i

i i i

G I D G I D
F I F S
+ +

≥
+

 (II-95)

Since i iD Sθ ≤ , by (II-11), we have () ()i i i iF S F Dθ= , and hence

 () () .
() (1) ()

i i

i i i

G I D G I D
F I F Sθ
+ +

≥
+

 (II-96)

Rewrite (II-96) as

47

 () () () .
() (1)

i i i i

i i i

G I D F S G I D
F I S S

θ
θ θ

+ +
≥

+
 (II-97)

Since ()iG I D+ is non-decreasing, we have () ()i i iG I D G S D+ ≥ + . Hence (II-99)

becomes

 () () () .
() (1)

i i i i i

i i i

G I D F S G S D
F I S S

θ
θ θ

+ +
≥

+
 (II-98)

Minimizing the right hand of (II-97) will not invalidate (II-97), we have

 0, 1, ...
() () ()min .

() (1)
i i i i i

m
i i i

G I D F S G mS D
F I S m S

θ
θ θ=

⎛ ⎞+ +
≥ ⎜ ⎟+⎝ ⎠

 (II-99)

Since (II-98) holds for any 0I > , we have

 0 0, 1, ...
() () ()min min .

() (1)
i i i i i

I m
i i i

G I D F S G mS D
F I S m S

θ
θ θ> =

⎛ ⎞ ⎛ ⎞+ +
≥⎜ ⎟ ⎜ ⎟+⎝ ⎠ ⎝ ⎠

 (II-100)

Thus the corollary is established for this case.

Case 2: i iD Sθ > . Let /i ih D Sθ= ⎡ ⎤⎢ ⎥ . It is clear that 1h ≥ and,

 () () .i i i i

i i

F D F hS
D D
θ
θ θ

= (II-101)

For any 0I > , let / iI S= ⎢ ⎥⎣ ⎦ . From Lemma 2-1, we know that

() (()) /()i i i iF hS F h S h≥ + + . Hence, we can rewrite (II-101) as

48

 () (()) .
()

i i i i

i i

F D hF h S
D h D
θ
θ θ

+
≥

+
 (II-102)

Since iF is non-decreasing and 1h ≥ , we have

 (()) ((1))i i i iF h S F S+ ≥ + . (II-103)

Substituting (II-103) into (II-102), we have

 () ((1)) .
()

i i i i

i i

F D hF S
D h D
θ
θ θ

+
≥

+
 (II-104)

By (II-11) and the definition of I , we have

 ((1)) ()i i iF S F I+ ≥ (II-105)

Substituting (II-105) into (II-104), we get

 () () .
()

i i i

i i

F D hF I
D h D
θ
θ θ

≥
+

 (II-106)

By multiplying ()
()

i

i

G I D
F I
+ on both sides of (II-106), we have

 () () () .
() ()

i i i i

i i i

G I D F D hG I D
F I D h D

θ
θ θ

+ +
≥

+
 (II-107)

Since i ihS Dθ≥ , we have

49

 .i i i

i i i

hS hS S
D hP Dθ θ

+
≥

+
 (II-108)

By substituting (II-108) into (II-107), we get

 () () () .
()

i i i i

i i i i

G I D F D G I D
F I D hS D

θ
θ θ

+ +
≥

+
 (II-109)

Since ()iG I D+ is non-decreasing, we have () ()i i iG I D G S D+ ≥ + . Hence (II-99)

becomes

 () () () .
()

i i i i i

i i i i

G I D F S G S D
F I S hP D

θ
θ θ

+ +
≥

+
 (II-110)

Minimizing the right hand side of (II-109) will not invalidate (II-109). So

 0, 1, ...
() () ()min .

()
i i i i i

m
i i i i

G I D F D G mS D
F I D mS D

θ
θ θ=

⎛ ⎞+ +
≥ ⎜ ⎟+⎝ ⎠

 (II-111)

Since (II-111) holds for any 0I > , we have

 0 0, 1, ...
() () ()min min .

()
i i i i i

I m
i i i i

G I D F D G mS D
F I D mS D

θ
θ θ> =

⎛ ⎞ ⎛ ⎞+ +
≥⎜ ⎟ ⎜ ⎟+⎝ ⎠ ⎝ ⎠

 (II-112)

Then follows the corollary. □

Similarly, for a system with set of tasks with r-shaped workload constraint functions,

we have the following result on its schedulability bound.

50

Corollary 2-3. A lower bound of the utilization bounds with r-shaped arrival curves is

 *
1 0

1

() ()() inf
j i

j j i i
i n I

j n j i

F D G I DU min min
D I D
θ

θ
θ θ

≠

Γ∈Ω = ... ≥
= ...

⎛ ⎞⎧ ⎫⎧ ⎫+⎪ ⎪ ⎪⎪⎜ ⎟= +⎨ ⎨ ⎬⎬⎜ ⎟+⎪ ⎪⎪ ⎪⎩ ⎭⎩ ⎭⎝ ⎠
∑ . (II-113)

Proof. If a task iT ∈Γ is not schedulable, then by Corollary 2-1, there must exists a time

instant 0s ≥ such that () ()i i iF s G s D> + . Combine with the fact that iF is r-shaped, we

have:

 () () ()i i i i i i

i i i

F D F s D G s D
D s D s D
θ θ
θ θ θ

+ +
≥ ≥ .

+ +
 (II-114)

By adding ()

1
j j

j

j i F D
Dj n

θ
θ

≠

= ...∑ to both sides, we get

1 1

() ()() ()j i j i
j j j ji i i i

j n j nj i j i

F D F DF D G s D
D D D s D
θ θθ
θ θ θ θ

≠ ≠

= ... = ...

+
+ ≥ + .

+∑ ∑ (II-115)

Since the left hand side of the above inequality is ()U θ, Γ and the right hand is

always greater then *()U θ , we know *() ()U Uθ θ, Γ ≥ . In summary, if a task set Γ is not

schedulable, then its workload is always greater then *()U θ , and we prove the corollary.

51

CHAPTER III

SCHEDULABILITY BOUND FOR STATIC PRIORITY SCHEDULERS

A. Static Priority Schedulers

We make the following assumptions on the static priority scheduling system under

consideration: (1) each task is assigned a static priority, and (2) the scheduler performs

preemptive, priority based task scheduling. To simplify the notation, we further assume

that tasks are labeled in descending priority order, i.e. 1T has the highest priority and nT

has the lowest one. Obviously, the static priority scheduler is work conserving.

In our model, we do not assume that priorities are assigned in any particular order,

and deadline inversion is allowed. To measure the impact of deadline inversion to

individual tasks, we formally define 1λ , the degree of deadline inversion for task iT , as

follows:

{ }1...max j i j

i
i

D
D

λ == . (III-1)

Note that 1iλ ≥ . When 1iλ = , deadlines of tasks with priority higher than iT are less

than or equal to iD . Hence, no deadline inversion occurs to iT . When 1iλ > , deadline

inversion occurs to task iT . Taking one step further, we let λ be the degree of deadline

inversion for the whole task set task set:

 { }1 2max , , ..., nλ λ λ λ= (III-2)

52

For example, let us consider a three-task task set { }1 2 3, , T T TΓ = with 1D =10,

2D =5, and 3D =20. 1T has the highest priority and 3T has the lowest one. Now by (III-1),

we can calculate the deadline inversion for 1T , 2T , and 3T as follows:

 1 1 1/ 1D Dλ = = , (III-3)

and

 () ()2 21 2max / max / 5 2, 10, 5DD Dλ = = = , (III-4)

and

 () ()3 1 2 3 3max , , / max / 20 110, 5, 20D D D Dλ = = = . (III-5)

By (III-2), we have

 ()1 2 3max , , 2λ λ λ λ= = . (III-6)

That is to say, this system is having a deadline inversion of 2.

The introduction of λ into the modeling process parameterizes the static priority

scheduling algorithms. For example, when 1λ = , the scheduler becomes deadline

monotonic. Furthermore, for periodic tasks, when 1λ = , and i iD P= ¸ the scheduler

becomes rate monotonic. In this case, if we set 1θ = in computing the workload rate, by

(II-11) and (II-70) we get

53

1 1

()(1,) n ni i i
i i

i i

F P CW
P P= =

Γ = =∑ ∑ . (III-7)

The left side of (III-7) is the classical utilization definition for periodic task set. This

example demonstrates the generality and flexibility of our task and scheduler models.

We will see that these properties play an important role in our schedulability analysis

technique.

B. Schedulability Bound For S-Shaped Tasks

In previous section, we have introduced the deadline inversion parameter that can

capture the difference between various priority assignment schemes. In this section, we

will first introduce two additional parameters, normalized deadline and task set

heterogeneity, which are related to s-shaped tasks and then derive a parameterized

schedulability based on these three key parameters.

1. Schedulability Bound

For task T with a given s-shaped constraint function, we define its normalized

deadline, k , as follows:

 /k D S= , (III-8)

where D is the relative deadline of T and S is the segment parameter in the constraint

function. k can be viewed as the deadline using S as the measurement unit, and it

characterizes tightness of the deadline requirements. The smaller the k , the more

54

difficult it is to schedule the task. It will be clear later that parameter k plays a critical

role in schedulability test. Following the convention in the literature [5], [34], [43], [49],

[50], [52], [56], [57], [66], [75], and [80], we assume that all the tasks have the same

value of k . That is, for 1, 2, ..., i n=

 ik k= . (III-9)

Recall that the workload rate (,)W θ Γ is an upper bound of the job releasing rate

averaged in a window of finite length iDθ . Since an s-shaped function allows bust job

releasing in short widows, as long as the job releasing rate slows down in longer window

lengths, using the workload rate measured in a window of length iDθ for schedulability

bound analysis may over-estimate the actual resource demand of the task, and thus result

in under-estimated bounds. To overcome this problem, in our schedulability bound

analysis, we want to take account into consideration the variance of the workload rate

measured in different windows. We proposed a task parameter, workload heterogeneity

()iη for this purpose, which is defined as,

 () /()
((1)) ()

i i
i

i i i i

F S
F S F S

η =
+ −

, (III-10)

where is a positive integer. Intuitively, ()iV is the ratio between the workload rate

measured in [0, iS], and the one measured in [iS , (1) iS+] as shown in Figure 12.

Clearly, for periodic task, ()iη = 1.

55

iS (1) iS+

()iF I

IiS

()iF S
((1))i iF S+

(3) iS+(2) iS+

Figure 12. Workload Heterogeneity.

Taking one step further, we define the heterogeneity of a task set as

 ()1 2(,) min (), (), ..., ()nη η η ηΓ = . (III-11)

Note that the heterogeneity is first introduced in [56] and [57] in the form of 1 2/C C

for a special case where = 1.

By substituting (II-59) into (II-91), and then optimize the consequent inequality for

the different parameters, we have the following closed-form schedulability bound for

static priority scheduler.

Theorem 3-4. Given a Static Priority Scheduler and collection of tasks with s-shaped

workload constraint functions, a schedulability bound with 1/θ λ= is given by

 ()()
()

1

1

* 1

1

1 1
1 () 1 1 11

() 1 2 3

n

n

r r
h r

r
r

rh r
rW n h h hr

rn h
λ

+

+

⎧ ≤
+⎪

⎪⎛ ⎞ = − + − < ≤⎨⎜ ⎟ +⎝ ⎠ ⎪
⎪ − = , ,...
⎩

 (III-12)

56

where k is the normalized deadline defined in (III-8), r kη= , θ is the heterogeneity of

tasks defined in (III-11), and h is

 kh
λ

= . (III-13)

Note that with our selection of 1/θ λ= , the workload is measured in a window

length of / /D D kS hSθ λ λ= = = . As suggested when we deal with (III-11), we will

measure the heterogeneity in the same window as that used for workload rate. That is,

following (III-11), we have

 ()
2 1

1

1

/ 1

()
1 2, 3,

i i

h j
iji

h

C C h

Ch
h h

C

η
−

=

⎧ <
⎪⎪= ⎨
⎪ − =⎪⎩

∑ (III-14)

and 1 2min(, , ...,)nη η η η= .

Proof. See Appendix B.

Theorem 3-4 defines a multi-dimensional schedulability bound surface based on four

system parameters, i.e. deadline inversion ratio, λ , normalized deadline k , task set

heterogeneity η , and number of tasks n .

2. Evaluation of Bound

On the basis of the theoretical results developed in previous section, we evaluate the

system performance in this section, using the schedulability bound as the primary

57

performance measure. Note that chance of a newly task being admitted into the system is

proportional to the schedulability bound, and thus high schedulability bounds are

preferred. The following factors affect the schedulability bound:

• The normalized deadline, k , of a task (see (III-8) for its definition). When

normalized deadlines of tasks become tighter, the expected schedulability bound

will be lower.

• The heterogeneity η of a task (see (III-11) for its definition). This parameter

gauges fitness of the workload constraint function in capturing the diversity of

job sizes in a task. One may use task heterogeneity to improve resource

allocation, rather than the pessimistic assumption of only using the worst case job

size in the periodic model. The system performance is expected to improve with

the increase of η value.

• The degree of deadline inversion, λ (see (III-2), for its definition). λ indicates

the degree of deadline inversion in a priority assignment. The system

performance suffers when the λ value increases.

The sensitivity of the schedulability bound with respect to the three key factors, k ,

η , and λ is analyzed, and the results are plotted in Figure 13. The 3-D graphs of

schedulability bounds vs. the three parameters are examined for 1,000 tasks, i.e., n =

1,000. In each of the three figures, for a fixed λ value, we varied k from 10-4 to 104 and

η from 1 to 102 to make the following observations:

• As expected, the tighter the deadlines, the lower the schedulability bounds. The

sensitivity is especially significant when k is small (i.e., less than 5). For

58

example, in Figure 13.(a), when k changes from 0.5 to 5, the schedulability

bound increases from 0.50 to 0.912. The sensitivity becomes less significant

when k is large. In Figure 13.(a), when k changes from 5 to 100, the

schedulability bound increases only about 10% (0.995 - 0.912).

• Large heterogeneity of task leads to improved schedulability bounds. The

sensitivity is higher when η is small, (i.e., 10), and becomes less sensitive for

larger η values. For example, for 1λ = , k = 1, when η changes from 1 to 10,

the schedulability bound increases from 0.693 to 0.953. When η changes from

10 to 100, the schedulability bound increases from 0.953 to 0.995.

• As the degree of deadline inversion increases, the schedulability bound decreases.

Consider a point where k = 1 and η = 1 in all the three figures. When λ

changes from 1, 4, to 16 (Figures 13.(a)-(c)), the schedulability bound decreases

from 0.693, to 0.250 and then to 0.063.

59

10-4
10-2

100
102

104

100

101

10
2
0

0.2

0.4

0.6

0.8

1

← 69%

Sc
he

du
la

bi
lit

y
B

ou
nd

η
k

(c) λ=16

10-4
10-2

100
102

104

100

101

102
0

0.2

0.4

0.6

0.8

1

← 69%

Sc
he

du
la

bi
lit

y
B

ou
nd

η
k

(b) λ=4

Figure 13. Schedulability Bound of Static Priority Schedulers.

10-4
10-2

100
102

104

100

101

102
0

0.2

0.4

0.6

0.8

1

← 69%

Sc
he

du
la

bi
lit

y
B

ou
nd

η
k

(a) λ=1

60

10-4
10

-2
100

102
104

100

101

102
0

0.2

0.4

0.6

0.8

1

← J. Lehoczky [21]

← 69% C. Liu, J. Layland [26]

← J. Lehoczky, L. Sha [22]
 D-T Peng, K. Kang [34]

← A. Mok, D. Chen [30],[31]

Sc
he

du
la

bi
lit

y
B

ou
nd

k
η

Figure 14. Comparison of New Schedulability Bounds with Previous Results.

In the above discussions, we examined how the three factors, k , η , and λ

independently affect the system performance. By further observing Theorem 3-4, one

notice that *W depends on /k λ . This implies a tradeoff relationship between k and λ .

To improve the schedulability bound, one can either increase the normalized deadline, or

lower the priority inversion ratio. On the other hand, we can keep the schedulability

unchanged while adjusting both k and λ as long as we can let /k λ be constant. To our

knowledge, this is the first time that the tradeoff relationship between deadline and

deadline inversion is explicitly expressed in an analytical form.

Theorem 3-4 is highly flexible. It gives the schedulability bounds for a wide range of

systems by parameterization of normalized deadline, heterogeneity of task, and degree of

C. Liu, J. Layland 1973)

A. Mok, D. Chen (1997)

J. Lehoczky, (1990)

J. Lehoczky, L. Sha (1986)
D-T Peng, K. Kang (1993)

61

deadline inversions. In this subsection, we illustrate how to match our results with those

derived in previous studies.

• First, we consider the classical periodic system, in which the task’s deadlines are

equal to task periods, and tasks are scheduled by a rate monotonic scheduler. In

[49], C. Liu, and J. Layland derived a schedulability bound as follows:

 ()1* 2 1nU n= − . (III-15)

• Now, we re-derive (III-15) by using Theorem 3-4. Note that by (III-7), the

workload rate reduces to the classical definition of utilization in this case. This

system has no deadline inversion, and hence λ = 1. Furthermore, since this is a

periodic system, from (III-7) we have η = 1. Because the relative deadline is

equal to the length of period, k = 1. Substituting λ = 1, η = 1, and k = 1 into

(III-12), we have

 ()1* *(1) 2 1nW U n= = − . (III-16)

• As n approaches infinity, *U and *W will approach 69%. This becomes one

point in the graph of Figure 14 we redraw the graph in Figure 13.(a) to highlight

the match.

• Second, we analyze the periodic system in which task’s deadlines are less than

periods and tasks are scheduled by a rate monotonic scheduler. In [43] and [66], J.

62

P. Lechoczky, L. Sha, D.-T. Peng, and K. G. Shin derived an utilization bound as

follows:

 ()1

1
2*

1
2

1/

(2) 1 1 1n

k k
U

n k k k

≤⎧⎪= ⎨ − + − < ≤⎪⎩
 . (III-17)

• By (III-7), in this case the workload rate and the classical utilization has the

following relationship

*

*(1) UW
k

= . (III-18)

We now re-derive (III-18) with Theorem 3-4. This system has no deadline

inversion, and hence λ = 1. From (III-7) we have η = 1. Because the relative

deadlines are less than the period lengths, we know that k < 1. Substituting λ =

1, and η = 1 into (III-12), we get

 ()()1

1
2

*
1
2

1
(1) 1 (2) 1 1 1n

k
W

n k k k
k

≤⎧
⎪= ⎨

− + − < ≤⎪⎩

 . (III-19)

By applying (III-18) into (III-19), and we have

 ()1

1
2*

1
2(2) 1 1 1n

k k
U

n k k k

≤⎧⎪= ⎨ − + − < ≤⎪⎩
 . (III-20)

63

This is exactly the same as (III-19). We illustrate this result by a curve in the 3-D

graph of in Figure 14.

• Third, we analyze the periodic system in which the task’s deadlines are multiples

of periods and tasks are scheduled by a rate monotonic scheduler. In [29], J. P.

Lechoczky obtained an utilization bound as follows:

 ()1
1* 1(1) () 1nk

kU k n −+= − − . (III-21)

Note that by (III-7), the workload rate reduces to the classical utilization in this

case. We will re-derive (III-21) through Theorem 3-4. This system has no

deadline inversion, and hence λ = 1. Furthermore, as this is a periodic system,

we have η = 1. Because the relative deadline is composed of multiple periods,

we have k being an integer larger than 1. Substituting λ = 1 and η = 1 into

(III-12), we have

 ()1* 1(1) () 1nk
kW kn += − . (III-22)

Note that (III-22) is not as tight as (III-21) (n vs. 1n −). This is due to the fact

that Theorem 3-4 is obtained for general s-shaped functions. However, the exact

bound of (III-21) can be easily obtained with our general method, as discussed

Appendix D. In Figure 14, a curve illustrates this match of results.

64

• Fourth, we analyze the AM multi-frame system in which task’s deadlines are

equals to periods and tasks are scheduled by a rate monotonic scheduler. In [56]

and [57], A. Mok and D. Chen obtained an utilization bound as follows:

 ()1* 1() 1na
aU an += − , (III-23)

where 0 1
1, 2,..., min { / }i n i ia E E== , and the j

iE is the job size of the j-th job. By

definition, we know that a r= , and by (III-7), the workload rate is the same as

the utilization used in [56] and [57]. Now we re-derive (III-23) from Theorem

3-4. In our terminology, this system has no deadline inversion, and hence λ = 1.

Furthermore, as this is a multi-frame system, from (III-7) we have rη = .

Because the relative deadline equals to periods, we have k = 1. Substituting λ =

1, rη = , and k = 1 into (III-12), we get

 ()1* 1(1) () 1nr
rW rn += − , (III-24)

which is exactly the same as (III-23). Again, this match is drawn on Figure 14.

• Finally, we examine a system that uses the general real-time model defined in

[56] and [57]. The task’s deadlines are equal to periods and tasks which are

scheduled by a rate monotonic scheduler. In [56] and [57], A. Mok and D. Chen

obtained an utilization bound as follows:

 ()1* 1() 1nr
rU rn += − . (III-25)

65

Again, by (III-7), we know that the workload rate reduces to the classical

utilization. Recall that s-shaped workload constraint functions reduce to the

general real-time task model when L = ∞ . Then it is trivial to show (III-25) is a

special case of Theorem 3-4.

Through the simple algebraic analysis mentioned above, we have illustrated that the

results obtained in [34], [43], [49], [56], and [57] are special cases of Theorem 3-4. We

virtually match all the previous results, with the exception of the slight difference

between (III-21) and (III-22). Furthermore, our results cover many cases that have not

been analyzed before, because the results from [34], [43], [49], [56], and [57] are merely

one point and three curves in the 3-D graph shown in Figure 14.

3. Extensions

In [22], the authors proved that the utilization bound for periodic task improves when

the periods of tasks are divisible. This observation is applicable to Theorem 3-4 as stated

next.

Corollary 3-4. Given static priority system and a task set Γ with s-shaped workload

constraint functions Γ , Γ is schedulable if

1
'

*

1
'

1min 1 ' () 1 1 ;
1

' () 1 , and is a positive integer.

n

n

k kn k
kW

k kn kk

λ ηη λη λ λ
λ η λη ληλ

⎧ ⎛ ⎞⎛ ⎞+⎛ ⎞, − + − ≤⎪ ⎜ ⎟⎜ ⎟⎜ ⎟⎪⎛ ⎞ ⎝ ⎠⎝ ⎠⎝ ⎠= ⎨⎜ ⎟
⎝ ⎠ +⎛ ⎞⎪ − = ∆ ∆⎜ ⎟⎪ ⎝ ⎠⎩

 (III-26)

66

where 'n is the number tasks with non-dividable segment lengths.

Proof. See Appendix E.

 In a non-preemptive system, a high priority task iT can be blocked by a lower

priority task jT , j i> , for a length of maxJ , the maximum job size of jT . Thus, this non-

preemption effect will lead to a priority inversion for the length of maxJ . During this

interval, the system acts as if jT has a higher priority than iT . In the worst case, the

system in this interval is operating in a mode with

*
1, 2, ..., 1, 2, ..., max { }/ min { }i n i i n iD Dλ λ = == = . By substituting this into Theorem 3-4, we

obtain the schedulability bound for non-preemption case.

Corollary 3-5. Given a non-preemptive static priority scheduler and a task set Γ with s-

shaped workload constraint functions, Γ is schedulable if

1
'

*
*

* *
*

* ** 1
'

*

1min 1 ' () 1 1 ;
1

, and is
' () 1

a positive integer.

n

n

k kn k
k

W
kk kn k

λ ηη λη λ λ
λ λη λη ηλ

⎧ ⎛ ⎞⎛ ⎞+⎛ ⎞, − + − ≤⎪ ⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠⎪⎛ ⎞ ⎝ ⎠= ⎨⎜ ⎟
⎝ ⎠ = ∆ ∆⎛ ⎞+⎪ −⎜ ⎟⎪ ⎝ ⎠⎩

 (III-27)

where *
1, 2, ..., 1, 2, ..., max { }/ min { }i n i i n iD Dλ = == and 'n is the number tasks with non-

dividable segment lengths.

Proof. It is apparent based on the above analysis.

67

C. Schedulability Bound for R-Shaped Tasks

1. Schedulability Bound

Theorem 3-5. Given a static priority scheduler and tasks with r-shaped workload

constraint functions, a schedulability bound is (1) 1/W λ∗ = .

Proof. By Theorem 2-2, we know ()iG t is a service constraint function to iT , where

 ()1
0 1

() max ()i
i x I jj

G I x F x−
≤ ≤ =

= .−∑ (III-28)

By (III-28) and Corollary 2-2, we have,

()1

1 10

1, 2, , 01

min ()()
(1) min min i

i
i jjx I Dj j

i n Ij j i

x F xF D
W

D I D

−
− =≤ ≤ +∗

= ... >
=

⎛ ⎞⎛ ⎞−⎜ ⎟⎜ ⎟≥ +⎜ ⎟⎜ ⎟+⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

∑
∑ . (III-29)

Since reducing the range of the max operation in { }1
0 1

()
i

i
x I D jj

max x F x−

≤ ≤ + =
−∑ will not

increase its value, we have

 () ()1 1

1 10
max max() 0 ()

i

i i
j i j ij jx I D

x F x I D F I D− −

= =≤ ≤ +
≥− , + − +∑ ∑ . (III-30)

By substituting (III-30) into (III-29), we have,

 ()11
* 1

1, 2, , 0 1

() max 0 ()
(1) min min

ii
j j i j ij

i n I j j i

F D I D F I D
W

D I D

−−
=

= ... >
=

⎞⎞⎛ ⎛ , + − + ⎟⎟≥ ⎜ ⎜ +⎜⎜ ⎟⎟+⎝⎝ ⎠⎠

∑∑ (III-31)

By definition of r-shaped workload constraint function (II-31), we have

68

() ()j i j i

i i

F D F I D
D I D

+
≥

+
. (III-32)

By substituting (III-32) into (III-31), we have

11

*

1, 2, , 11

()()
0 1max(1) min

ii
j ij j

i n jj ij

F DF D
W

DD

−−

= ... ==

⎛ ⎞⎛ ⎞
, −+≥ ⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

∑∑ . (III-33)

From the definition of deadline inversion (III-1) and (III-2), we have

 i jD Dλ≤ . (III-34)

By substituting (III-34) into (III-33), we get

1 1

*

1, 2, , 1 1

() ()
(1) min max 0 1

i i
j j j j

i n j jj j

F D F D
W

D D
λ− −

= ...
= =

⎛ ⎞⎛ ⎞
≥ + , −⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

∑ ∑ . (III-35)

Re-arrange (III-35) into

1 1

*

1, 2, , 1 1

() ()
(1) min max 1 (1)

i i
j j j j

i n j jj j

F D F D
W

D D
λ

− −

= ...
= =

⎛ ⎞⎛ ⎞
≥ , − −⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

∑ ∑ . (III-36)

It can be verified that

1 1

1 1

() () 1 1 (1)max
i i

j j j j

j jj j

F D F D
D D

λ
λ

− −

= =

⎛ ⎞
, − − ≥⎜ ⎟

⎝ ⎠
∑ ∑ . (III-37)

Then by substituting (III-37) into (III-36), we have,

69

 ()*
1, 2, , (1) min 1/1/i nW λλ= ...≥ = . (III-38)

Then the theorem is proven □

2. Evaluation of the Bound

1 2 4 8 16 32 64 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Sc
he

du
la

bi
lit

y
B

ou
nd

Deadline Inversion Ratio λ

Figure 15. Schedulability Bound of Static Priority Schedulers with R-Shaped Tasks.

Figure 15 plots the schedulability bound of static priority scheduler against the

deadline inversion ratio. From the figure, one can noticed that the schedulability bound

monotonically decreases with the increasing of deadline inversion ratio. In other word,

70

deadline monotonic scheduler is optimal among all static priority schedulers in terms of

schedulability bounds, i.e. deadline monotonic scheduler has the highest bound value,

100.0%, because its deadline inversion is 1. In practical systems, to achieve high system

resource utilization, one can minimize the deadline inversions, e.g. assign higher priority

to tasks with lower relative deadline values.

By a close observation of Theorem 3-5, one can also notice that the schedulability

bound does not depend on the number of tasks. This feature makes this bound result very

scalable for large-scale dynamic systems since when the number of tasks changes, the

schedulability test algorithm does not need to re-calculate the schedulability bound.

One may wonder why the schedulability bound in Theorem 3-5 does not have a

“normalized deadline” parameter, like the “ k ” used in Theorem 3-4 that measures the

tightness of deadline requirement. Does this mean the deadline assignment play no role

in the schedulability test? The answer is no. Note that in Theorem 3-5, the scaling

parameter θ , is 1. That is to say, the length of the measuring window of the workload

rate is iD for task iT . When the deadline requirements are relaxed, i.e. iD increases, the

length of the measuring window of the workload will also increase. Recall the definition

of r-shaped workload constraint function. We know that its workload rate is non-

increasing with the increase of the length of measuring window. Hence, the workload

rate measured for the tasks will possibly decrease with the relaxation of deadline

requirements. As a result of this, the total measured workload rate of a task set may

reduce. The effect is the same as the increasing of the schedulability bound.

71

3. Extensions

We can extend Theorem 3-5 to non-preemptive systems using the same strategy as

the one used in Corollary 3-5.

Corollary 3-6. Given a non-preemptive static priority scheduler and a task set Γ with r-

shaped workload constraint functions, Γ is schedulable if () *1, 1/W λΓ = where

*
1, 2, ..., 1, 2, ..., max { }/ min { }i n i i n iD Dλ = == .

Proof. In a non-preemptive system, a high priority task iT can be blocked by a lower

priority task jT , j i> , for a length of maxJ , the maximum job size of jT . Thus, this non-

preemption effect will lead to a priority inversion for the length of maxJ . During this

interval, the system acts as if jT has a higher priority than iT . In the worst case, the

system in this interval is operating in a mode with

*
1, 2, ..., 1, 2, ..., max { }/ min { }i n i i n iD Dλ λ = == = . By substituting this into Theorem 3-5, we

have the corollary. □

A different approach to handle non-preemptive system is to calculate the workload

rate using a measuring window length of iD - maxJ , or specifically,

 max
1

max

()(1,) n i i
i

i

F D JW
D J=

−
Γ =

−∑ . (III-39)

Since in a non-preemptive system, compared with preemptive one, a high priority

job can be blocked by a lower priority one by at most maxJ time unit, reduce the relative

72

deadline requirements of each task by the maxJ will guarantee that any schedulable task

in a preemptive system will also be schedulable in a non-preemptive one.

73

CHAPTER IV

SCHEDULABILITY BOUND FOR WEIGHTED ROUND ROBIN SCHEDULERS

A. Weighted Round Robin Schedulers

In this chapter, we analyze the schedulability bounds for the weighted round robin

schedulers which arrange tasks into a circle and serve them in round robin fashion. A

token is typically passed among the tasks and a task (job) can execute up to iH time

units once receives the token, where iH is called the allocation/bandwidth of the tasks.

If the task does not have any job waiting for the processor resource, or if it has already

ran for iH time units, the token will be passed to the next task in the circle. Typically

iH is calculated as

 ()i iH O TTRT τ= ⋅ − , (IV-1)

where iO , 0 1iO≤ ≤ , is the weight of task iT , and the TTRT , the target token rotation

time which is the desired time to finish one round of token rotation, and τ , the protocol

overhead, which is the time speet on token transversal and other protocol and network

operations. Typically,

1

1n
ii

O
=

=∑ . (IV-2)

Generally speaking, large TTRT means longer waiting time since a task have to wait

longer before receiving the token and starting execution. On the other hand, small TTRT

74

may lead to higher system overhead, e.g. context switching cost. To capture the effect of

TTRT on schedulability bound, we introduce a parameter, normalized token rotation

frequency γ . Formally,

 minD
TTRT

γ ⎢ ⎥= ⎢ ⎥⎣ ⎦
 , (IV-3)

where min min()iD D= is the shortest relative deadline of all the tasks in the system. γ

can be considered as the measured token rotation frequency in a window of length minD .

Higher frequency typically leads to shorter scheduling delay and thus higher

schedulability bound.

For convenience, we define another α , the protocol overhead ratio, as follows:

TTRT
τα = . (IV-4)

Theorem 4-6. For an arbitrary weighted round robin scheduler, a service constraint

function for task iT , is

1

() ni i
jj

I
G I HH

=

⎢ ⎥
= .⎢ ⎥
⎢ ⎥⎣ ⎦∑ (IV-5)

Proof. We prove this theorem based on the definition of service constraint function. Let

t be an arbitrary time instant. If at time t , all the jobs from task iT have been served,

then we can let s = t and (II-41) is true. Now we focus the case that at time t , task iT is

75

backlogged. Let s be the last time before t such that iT is not backlogged. That is to say,

at time s , we have

 () ()i ig s f s= . (IV-6)

In time interval [s , t], the scheduler served at least
1

/ n
jj

I H
=

⎢ ⎥
⎣ ⎦∑ rounds with a

serving time length of iH each round. In other words, task iT received at least

1
/ n

jj
I H

=
⎢ ⎥
⎣ ⎦∑ amount of service. Formally, we have

1

() () ni i i
jj

I
g t g s HH

=

⎢ ⎥
− ≥ .⎢ ⎥

⎢ ⎥⎣ ⎦∑ (IV-7)

By substituting (IV-6) into (IV-7), we have

1

() () ni i i
jj

I
g t f s HH

=

⎢ ⎥
− ≥ .⎢ ⎥

⎢ ⎥⎣ ⎦∑ (IV-8)

By comparing (IV-8) with (II-41), we know that the theorem is true. □

B. Schedulability Bound for Normalized Weighted Assignment

In a normalized assignment scheme, the allocation iH is assigned as follows:

 ()(1)
(1,)

i
i

WH TTRT
W

τ= ⋅ −
Γ

 , (IV-9)

76

where

 ()(1) i i
i

i

F DW
D

= , (IV-10)

and

1

(1,) (1)n
jj

W W
=

Γ =∑ , (IV-11)

and TTRT is the target token rotation time and is a system constant. TTRT can be

treated as the desired time needed to finish one round of token rotation.

Theorem 4-7. For an arbitrary weighted round robin scheduler with a collection of task

set Γ , a lower bound of schedulability bound is:

 ()
()

*
1, 2, ..., 0

(1)
(1) min min min ii

T i n I
i

W TTRTI DW
FTTRT I

τ
∈Ω = ≥

⎛ ⎞⎛ ⎞⋅ −⎛ ⎞+⎢ ⎥= ⎜ ⎟⎜ ⎟⎜ ⎟⎢ ⎥⎜ ⎟⎜ ⎟⎣ ⎦⎝ ⎠⎝ ⎠⎝ ⎠
. (IV-12)

Proof. By (II-58), we know that for any iT in Γ , is schedulable as long as, for any I ≥0

,

 ()
()

(1)
(1,)

ii
i

W TTRTI D F IWTTRT
τ⋅ −+⎢ ⎥ ≥⎢ ⎥ Γ⎣ ⎦

. (IV-13)

Rewrite (IV-13) as

()

(1,) (1)i
i

i

TTRTI DW W
FTTRT I

τ−+⎢ ⎥Γ ≤ ⎢ ⎥⎣ ⎦
. (IV-14)

77

It is easy to see that

()
()
()1, 2, ..., 0

(1)
(1) min min min ii i

i T i n I
i i

W TTRTTTRTI D I DW
F FTTRT TTRTI I

ττ
∈Ω = ≥

⎛ ⎞⎛ ⎞⋅ −⎛ ⎞−+ +⎢ ⎥ ⎢ ⎥≤ ⎜ ⎟⎜ ⎟⎜ ⎟⎢ ⎥ ⎢ ⎥⎜ ⎟⎜ ⎟⎣ ⎦ ⎣ ⎦⎝ ⎠⎝ ⎠⎝ ⎠
.

 (IV-15)

By substituting (IV-15) into (IV-14), we know that iT is schedulable as long as

 ()
()1, 2, ..., 0

(1)
(1,) min min min ii

T i n I
i

W TTRTI DW
FTTRT I

τ
∈Ω = ≥

⎛ ⎞⎛ ⎞⋅ −⎛ ⎞+⎢ ⎥Γ ≤ ⎜ ⎟⎜ ⎟⎜ ⎟⎢ ⎥⎜ ⎟⎜ ⎟⎣ ⎦⎝ ⎠⎝ ⎠⎝ ⎠
. (IV-16)

Then we established the theorem. □

1. Schedulability Bound for S-Shaped Tasks

In this subsection, we will derive a schedulability bound for the weighted robin

scheduler with normalized weight assignment scheme based on three system parameters:

normalized deadline defined in (III-8), normalized token rotation frequency defined in

(IV-3), protocol overhead ratio defined in (IV-4) and workload burstness µ .We define

the workload burstness for a task iT as

⎡ ⎤ ⎡ ⎤

() /
() /()

i i
i

i i

F S S
F S Sk k

µ = , (IV-17)

78

That is to say, the burstness is the ratio between the workload rate measured in a

window size of iS and the one measured in ⎡ ⎤ iSk . The greater the ratio, the more bursty

the workload is. We define the task set workload burstness as

 1, 2, ..., max ()i n iµ µ== . (IV-18)

 By (II-15), we know that

 1µ ≥ . (IV-19)

With the parameters defined, we have the following schedulability bound result.

Theorem 4-8. A lower bound of schedulability bound for weighted round robin

scheduler with normalized weight assignment, and s-shaped tasks is given by

 ⎡ ⎤() () ()1 11 min/ , 1,
1/ 1

W k kk α
γ µ

= ⋅ − ⋅ ⋅Γ
+

. (IV-20)

Proof. By (IV-12), we know that a schedulability bound is

 ()()()1, 2, ..., 0(1,) min min min ()T i n IW Z i∈Ω = ≥Γ = . (IV-21)

where

()0 (1)() max i

iI
i

TTRTI D WZ i
FTTRT I

τ
≥

−⎛ + ⎞⎢ ⎥= ⎜ ⎟⎢ ⎥⎣ ⎦⎝ ⎠
. (IV-22)

Rewrite (IV-22) into

79

 ()
()0

()() 1 max
i

i i i
I

i i i

I D
I D F DTTRTZ i

I D F DI
TTRT

α ≥

⎛ + ⎞⎢ ⎥
⎜ ⎟⎢ ⎥ +⎣ ⎦= − ⋅ ⎜ ⎟+⎜ ⎟⎜ ⎟
⎝ ⎠

. (IV-23)

Since 1i iI D I D
TTRT TTRT
+ +⎢ ⎥≤ +⎢ ⎥⎣ ⎦

, we have

 ()
()0

()() 1 max
1

i

i i i
I

i i i

I D
I D F DTTRTZ i

I D F DI
TTRT

α ≥

⎛ + ⎞⎢ ⎥
⎜ ⎟⎢ ⎥ +⎣ ⎦= − ⋅ ⎜ ⎟

+⎢ ⎥⎜ ⎟+⎜ ⎟⎢ ⎥⎣ ⎦⎝ ⎠

. (IV-24)

It is easy to verify that

min

1 1 1
1 1 1/ 11 11

i

i

i

I D
TTRT

I D
I D DTTRT

TTRTTTRT

γ

+⎢ ⎥
⎢ ⎥⎣ ⎦ = ≥ =
+ +⎢ ⎥ + ++⎢ ⎥ +⎢ ⎥ ⎢ ⎥⎣ ⎦

⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦

. (IV-25)

By substituting (IV-25) into (IV-24), we have

 ()
()0

()1
() 1 max

1/ 1
i i i

I
i i

I D F D
Z i

F DI
α

γ≥

+⎛ ⎞
≥ − ⋅ ⎜ ⎟+⎝ ⎠

. (IV-26)

Now let I = imS ω+ where 0 iSω≤ < . By (II-11), we have

 () ((1))i i iF I F m S≤ + . (IV-27)

By substituting (IV-27) into (IV-26) and rearrange it, we have

80

 () ()0

()1() 1 max
(1)1/ 1
i i i i

I
i i i

mS D F D
Z i

F m S D
ω

α
γ ≥

+ +⎛ ⎞
≥ − ⋅ ⎜ ⎟++ ⎝ ⎠

. (IV-28)

Since 0ω ≥ , we have

 () ()0

()1() 1 max
(1)1/ 1

i i i i
I

i i i

mS D F D
Z i

F m S D
α

γ ≥

+⎛ ⎞
≥ − ⋅ ⎜ ⎟++ ⎝ ⎠

. (IV-29)

By (II-15) we have

 () ()(1)
(1)

i i i i

i i

F m S F S
m S S

+
≤

+
. (IV-30)

By substituting (IV-30) into (IV-29) and rearrange it, we get

 () ()0

()1() 1 max
(1)1/ 1

i i i i
I

i i i

mS D F D
Z i

m F S D
α

γ ≥

+⎛ ⎞
≥ − ⋅ ⎜ ⎟++ ⎝ ⎠

. (IV-31)

By definition of s-shaped workload constraint function (II-11), we know that

 ⎡ ⎤() () ()i i i i i iF D F kS F Sk= = . (IV-32)

By substituting (IV-32) into (IV-31), we have

 () ()
⎡ ⎤

0

()1() 1 max
(1)1/ 1

i i i i
I

i i i

mS D F SkZ i
m F S kS

α
γ ≥

+⎛ ⎞
≥ − ⋅ ⎜ ⎟++ ⎝ ⎠

. (IV-33)

Rewrite (IV-33) into

81

 () ⎡ ⎤
() 0, 1, 2, ...

()1 1() 1 max
1/ 1 1

i i
m

i i

F S m kkZ i
k F S m

α
γ =

+⎛ ⎞≥ − ⋅ ⎜ ⎟+ +⎝ ⎠
. (IV-34)

It can be verified that

 ()0, 1, 2, ...max min 1,
1m

m k k
m=
+⎛ ⎞ ≥⎜ ⎟
+⎝ ⎠

. (IV-35)

By substituting (IV-35) into (IV-34), we have

 () ⎡ ⎤
()

()()1 1() 1 min 1,
1/ 1

i i

i i

F SkZ i k
k F S

α
γ

≥ − ⋅
+

. (IV-36)

By (IV-17)and (IV-18), we have

 ⎡ ⎤ ⎡ ⎤ ⎡ ⎤()
()

i i

i i i

F Sk k k
F S µ µ

= ≥ . (IV-37)

By substituting (IV-37) into (IV-36), we get

 () ⎡ ⎤ ()1() 1 min 1,
1/ 1

kZ i k
k

α
γ µ

≥ − ⋅
+

. (IV-38)

By substituting (IV-38) into (IV-21), we have a schedulability bound of

 () () ⎡ ⎤ ()* 11 min1, 1,
1/ 1

kW k
k

α
γ µ

= − ⋅Γ
+

. (IV-39)

By (II-11), we know that

82

 () ⎡ ⎤ ⎡ ⎤
⎡ ⎤

⎡ ⎤ ⎡ ⎤
1 1 1

() ()
1, ,

n n ni i i i
i i i

i i

F D F Skk k kW W
D k S k kk= = =

⎛ ⎞= = =Γ Γ⎜ ⎟
⎝ ⎠

∑ ∑ ∑ . (IV-40)

By substituting (IV-40) into (IV-39), we have a schedulability bound with scaling

parameter ⎡ ⎤ / kkθ = in form of

 ⎡ ⎤() () ()* 1 11 min/ , 1,
1/ 1

W k kk α
γ µ

= − ⋅ ⋅ ⋅Γ
+

. (IV-41)

Then we have the theorem proven. □

By a close observation of (IV-20), one can notice:

a) Schedulability bound monotonically decreases with the increasing of protocol

overhead ratio.

b) Given protocol overhead ratio α , normalized deadline k and workload

burstness µ , the schedulability bound increases with the increasing of

normalized token rotation frequency and attains its maximum

() ()1 min /1, kα µ− when γ →∞which implies infinitely fast token rotation

and is corresponding to the well-known theoretical generalized processor

sharing scheduler (GPS). Figure 16 illustrates this trend for the case 1k = .

c) Given protocol overhead ratio α , normalized deadline k and normalized

token rotation frequency γ , the schedulability bound decreases with the

increasing of task set workload burstness µ . This is because increasing of

µ implies more bursty workloads which are typically more difficult to

83

schedule than less bursty ones. The schedulability bound is maximized when

1µ = which corresponds to periodic tasks. Figure 17 illustrates this trend for

the case of 2γ = which means token rotates twice per Dmin time interval.

d) Given protocol overhead ratio α , task set workload burstness µ and

normalized token rotation frequency γ , relaxing deadline requirements

(increasing k) improves schedulability bound when 1k ≤ , but has no effect

when 1k > . This trend is shown in Figure 18. We should note that this does

not imply that, when 1k > , relaxing deadline requirement has no effect on

schedulability test, because, according to (IV-10) and (II-12), the calculated

workload rate in the window Di may decrease with the increasing of k. This

decreasing of workload rate is equivalent to the increasing of schedulability

bound.

e) For periodic tasks with relative deadlines equal to their period (Di=Pi), and

token rotation frequency 1γ = , (token rotates at least once per Dmin interval),

protocol overhead ratio 0α = , the schedulability bound is 50.0%. This is

highlighted on Figure 16 as a point.

f) For periodic tasks with relative deadlines equal to their period (Di=Pi), and

normalized token rotation frequency 2γ = , (token rotates at least twice per

Dmin interval), protocol overhead ratio 0α = , the schedulability bound is

66.7%. When the normalized deadline increases from 1 to 1.5, the

schedulability bound stays at 66.7%. This is illustrated as a serial of points in

84

Figure 17. Note this does not mean that k has no effect on schedulability test

since the workload rate is measured differently as explained in (c).

Figure 16. Schedulability Bound of Weighted Robin Scheduler with Normalized Weight

Assignment and Fixed Normalized Deadline k =1.

85

Figure 17. Schedulability Bound of Weighted Robin Scheduler with Normalized Weight

Assignment and Fixed Normalized Token Rotation Frequency 2γ = .

86

Figure 18. Schedulability Bound of Weighted Robin Scheduler with Normalized Weight

Assignment and Fixed Task Set Workload Burstness 1µ = .

Corollary 4-7. A lower bound of schedulability bound for weighted round robin

scheduler with normalized weight assignment, and periodic tasks is given by

 ⎡ ⎤ ()1(/ ,) min 1,
1/ 1

W k kk
α

γ
−

Γ =
+

. (IV-42)

Proof. By (IV-18), we have 1µ = and by substituting 1µ = into (IV-20) we have this

corollary established. □

87

2. Schedulability Bound for R-Shaped Tasks

Theorem 4-9. A lower bound of schedulability bound for normalized weighted round

robin scheduler with r-shaped tasks and a collection of task set Ω is given by

 * 1(1)
1/ 1

W α
γ
−

=
+

. (IV-43)

Proof. By (IV-12), we know that a schedulability bound is

 ()()()1, 2, ..., 0(1,) min min min ()T i n IW Z i∈Ω = ≥Γ = . (IV-44)

where

()0 (1)() max i

iI
i

TTRTI D WZ i
FTTRT I

τ
≥

−⎛ + ⎞⎢ ⎥= ⎜ ⎟⎢ ⎥⎣ ⎦⎝ ⎠
. (IV-45)

Rewrite (IV-45) into

 ()
()0

()() 1 max
i

i i i
I

i i i

I D
I D F DTTRTZ i

I D F DI
TTRT

α ≥

⎛ + ⎞⎢ ⎥
⎜ ⎟⎢ ⎥ +⎣ ⎦= − ⎜ ⎟+⎜ ⎟⎜ ⎟
⎝ ⎠

. (IV-46)

Since 1i iI D I D
TTRT TTRT
+ +⎢ ⎥≤ +⎢ ⎥⎣ ⎦

, we have

 ()
()0

()() 1 max
1

i

i i i
I

i i i

I D
I D F DTTRTZ i

I D F DI
TTRT

α ≥

⎛ + ⎞⎢ ⎥
⎜ ⎟⎢ ⎥ +⎣ ⎦= − ⎜ ⎟

+⎢ ⎥⎜ ⎟+⎜ ⎟⎢ ⎥⎣ ⎦⎝ ⎠

. (IV-47)

88

It can be verified that

min

1 1 1
1 1 11 11

i

i

i

I D
TTRT

I D
I D DTTRT

TTRTTTRT

γ

+⎢ ⎥
⎢ ⎥⎣ ⎦ = ≥ =
+ +⎢ ⎥ + ++⎢ ⎥ +⎢ ⎥ ⎢ ⎥⎣ ⎦

⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦

. (IV-48)

By substituting (IV-25) into (IV-24), we have

 ()
()0

()1
() 1 max

1/ 1
i i i

I
i i

I D F D
Z i

F DI
α

γ≥

+⎛ ⎞
≥ − ⎜ ⎟+⎝ ⎠

. (IV-49)

Since F is r-shaped, we know that () ()/() /()i i i i i iF D D F I D I D≥ + + thus

 ()
()0

()1
() 1 max

1/ 1
i i

I
i

F I D
Z i

F I
α

γ≥

+⎛ ⎞
≥ − ⎜ ⎟+⎝ ⎠

. (IV-50)

By substituting () ()i iF I D F I+ ≥ into (IV-50) and rearrange it, we have

 ()1() 1
1/ 1

Z i α
γ

≥ −
+

. (IV-51)

By substituting (IV-51) into (IV-44), we have

 ()* 1(1) 1
1/ 1

W α
γ

≥ −
+

. (IV-52)

That is to say, 1
1/ 1

α
γ
−
+

 is a schedulability bound with scaling parameter 1θ = . □

89

10-3 10-2 10-1 100 101 102 103 104
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Sc

he
du

la
bi

lit
y

B
ou

nd

γ

 50.0%

 90.9%

 99.0%

α = 0

Figure 19. Schedulability Bound of Weighted Robin Scheduler with Normalized Weight
Assignment and R-Shaped Tasks.

Figure 19 illustrates the relationship between the schedulability bound and the token

rotation frequency. By a close observation of (IV-43) and Figure 19, we have the

following conclusions:

• The schedulability bound increases with the increasing of normalized token

rotation frequency γ . In other words, the faster the token rotates, the higher the

90

schedulability bound is. When γ →∞ , which is the GPS schedule, the

schedulability bound attains its maximum 100.0%.

• The schedulability bound is not affected by the deadline assignment since there is

no “deadline parameter” in (IV-43). However, this does not imply that deadline

assignment has no effect on schedulability test, since the workload rate is

measured in Di window length. When Di increases, the measured workload rate

in Di window length could decrease based on the definition of r-shaped workload

constraint function (II-31).

• When the token rotates at lease once per Dmin interval, the schedulability bound is

50.0%. This bound is the same as the schedulability bound for periodic tasks with

relative deadlines equal to their periods. By a further comparison of (IV-42) and

(IV-43), one can conclude that for periodic tasks with relative deadlines equal

their periods (1k =), the schedulability bound is same as the one for r-shaped

tasks. One intuitive explanation is that weighted round robin schedulers have a

“task isolation” feature compared with static priority schedulers. In a static

priority scheduler, the change of high priority tasks’ workload pattern will

directly affect the available service for low priority ones, while in weighted

round robin schedulers, each task is guaranteed to be served for its allocation per

token rotation no matter how the workload pattern of other tasks change. With

this “task isolation” feature, the scheduling of each individual task is similar to a

single task system with slower processor in which, it is understandable that

difference between periodic task model and r-shaped task model may have no

91

effect on schedulability bound. This is because that the single task system just

needs to guarantee the total service for the task is no less than the total job arrival

in Di interval and it can be verified that when workload rate is the same, the total

arrival for s-shaped task is same as r-shaped one.

C. Schedulability Bound for Deadline Based Weight Assignment

In a deadline based assignment scheme, the allocation iH for task iT is assigned as

follows:

 ()i i
i

i

F DH
D

TTRT

=
⎢ ⎥
⎢ ⎥⎣ ⎦

. (IV-53)

Intuitively, this assignment scheme assigns the minimal amount of service required

per round to guarantee a total service of ()i iF D units before its deadline. Based on this

assignment, it is can be verified that the token rotates at least /iD TTRT⎢ ⎥⎣ ⎦ rounds with

each round providing a service of () / /i i iF D D TTRT⎢ ⎥⎣ ⎦ . This guarantees a total service of

amount ()i iF D in a window of length iD .

Theorem 4-9. A lower bound of schedulability bound for deadline based round robin

scheduler with arbitrary workload constraint function and a collection of task set Ω is

given by

92

 ()* 1(1) 1
1/ 1

W α
γ

= −
+

, (IV-54)

where γ is defined in (IV-3).

Proof. By (II-58) and (IV-5), we know that iT is schedulable as long as

 () 0Z i ≥ . (IV-55)

where

 ()
1

() i
n i i

ii

I D
Z i H F IH τ

=

+⎢ ⎥
= −⎢ ⎥+⎢ ⎥⎣ ⎦∑

. (IV-56)

By substituting (IV-53) into (IV-56) and rearrange it, we get

 ()
1

()() i i i
n i

i ii

I D F DZ i F IH D
TTRT

τ
=

+⎢ ⎥
= −⎢ ⎥+ ⎢ ⎥⎢ ⎥⎣ ⎦

⎢ ⎥⎣ ⎦
∑

. (IV-57)

Let I = imD ω+ where m is an integer and 0 iDω≤ < . Then we have

 ()
1

(1) ()() i i i
n i i

i ii

m D F DZ i F mD
H D

TTRT

ω
ω

τ
=

+ +⎢ ⎥
= − +⎢ ⎥+ ⎢ ⎥⎢ ⎥⎣ ⎦

⎢ ⎥⎣ ⎦
∑

. (IV-58)

Since iF is non-decreasing, we have

 ()
1

(1) ()() (1)i i i
n i i

i ii

m D F DZ i F m D
H D

TTRT

ω
τ

=

+ +⎢ ⎥
≥ − +⎢ ⎥+ ⎢ ⎥⎢ ⎥⎣ ⎦

⎢ ⎥⎣ ⎦
∑

. (IV-59)

93

By property of workload constraint function, we know that

 () ()(1) (1)i i i iF m D m F D+ ≤ + . (IV-60)

By substituting (IV-60) into (IV-59) and rearrange it, we get

 ()
1

(1)
() (1)i i ii

n
i ii

m D F DDZ i m
H DTTRT

TTRT

ω
τ

=

⎛ + + ⎞⎢ ⎥ ⎢ ⎥≥ − +⎜ ⎟⎢ ⎥ ⎢ ⎥⎜ ⎟+ ⎢ ⎥⎣ ⎦⎢ ⎥⎣ ⎦⎝ ⎠ ⎢ ⎥⎣ ⎦
∑

. (IV-61)

It can be verified that

1 1 1

(1) (1)
(1)i i i

n n n
i i ii i i

m D m D D
m

H H H
ω
τ τ τ

= = =

+ + +⎢ ⎥ ⎢ ⎥ ⎢ ⎥
≥ ≥ +⎢ ⎥ ⎢ ⎥ ⎢ ⎥+ + +⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦∑ ∑ ∑

. (IV-62)

By substituting (IV-62) into (IV-61) and rearrange it, we have

 ()
1

(1)
() i i ii

n
i ii

D m F DDZ i
H DTTRT

TTRT
τ

=

⎛ ⎞⎢ ⎥ +⎢ ⎥≥ −⎜ ⎟⎢ ⎥ ⎢ ⎥⎜ ⎟+ ⎢ ⎥⎣ ⎦⎢ ⎥⎣ ⎦⎝ ⎠ ⎢ ⎥⎣ ⎦
∑

. (IV-63)

By substituting (IV-63) into (IV-55), we know that iT is guaranteed to be

schedulable if

 ()
1

(1)
0i i ii

n
i ii

D m F DD
H DTTRT

TTRT
τ

=

⎛ ⎞⎢ ⎥ +⎢ ⎥− ≥⎜ ⎟⎢ ⎥ ⎢ ⎥⎜ ⎟+ ⎢ ⎥⎣ ⎦⎢ ⎥⎣ ⎦⎝ ⎠ ⎢ ⎥⎣ ⎦
∑

. (IV-64)

That is to say, iT is guaranteed to be schedulable if

94

1

n
ii

H TTRT τ
=

≤ −∑ . (IV-65)

By substituting (IV-53) into (IV-65), we know that iT is guaranteed to be

schedulable if

 ()
1

n i i
i

i

F D
TTRT

D
TTRT

τ
=

≤ −
⎢ ⎥
⎢ ⎥⎣ ⎦

∑ . (IV-66)

An equivalent form of (IV-66) is

()

1
1

i

n i i

i
ii

D
F D TTRT

DD
TTRT

α
=

⎛ ⎞
⎜ ⎟

≤ −⎜ ⎟⎢ ⎥⎜ ⎟⎜ ⎟⎢ ⎥⎣ ⎦⎝ ⎠

∑ . (IV-67)

Since 1i iD D
TTRT TTRT

⎢ ⎥≤ +⎢ ⎥⎣ ⎦
, we know that

() () ()
min1 1 1

1 11 1
i

n n ni i i i i i
ii i i

ii i i

D
F D F D F DTTRT D DDD D D

TTRTTTRTTTRT
= = =

⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎛ ⎞⎜ ⎟ + +⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟≤ ≤⎜ ⎟ ⎢ ⎥ ⎢ ⎥⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎢ ⎥ ⎜ ⎟⎜ ⎟⎜ ⎟ ⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦⎜ ⎟ ⎝ ⎠⎝ ⎠ ⎝ ⎠⎝ ⎠⎢ ⎥⎣ ⎦⎝ ⎠

∑ ∑ ∑ .

 (IV-68)

By substituting (IV-3) into (IV-68), we known that

() ()

1 1

1
1

i

n ni i i i
i i

ii i

D
F D F DTTRT

DD D
TTRT

γ= =

⎛ ⎞
⎜ ⎟ ⎛ ⎞⎛ ⎞≤⎜ ⎟ ⎜ ⎟⎜ ⎟⎢ ⎥ +⎝ ⎠ ⎝ ⎠⎜ ⎟⎜ ⎟⎢ ⎥⎣ ⎦⎝ ⎠

∑ ∑ . (IV-69)

95

By substituting (IV-69) into (IV-67), we know that iT is guaranteed to be

schedulable if

 ()
1

1 1
1/ 1

n i i
i

i

F D
D

α
γ =

⎛ ⎞
≤ −⎜ ⎟+ ⎝ ⎠

∑ . (IV-70)

That is to say, iT is guaranteed to be schedulable if

 () ()1

1(1,) 1
1/ 1

n i i
i

i

F D
W

D
α

γ=

⎛ ⎞
Γ = ≤ −⎜ ⎟ +⎝ ⎠

∑ . (IV-71)

In other words, * 1(1)
1/ 1

W α
γ
−

=
+

 is a schedulability bound with scaling parameter

1θ = .

96

10-3 10-2 10-1 100 101 102 103 104
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Sc
he

du
la

bi
lit

y
B

ou
nd

γ

 50.0%

 90.9%

 99.0%

α = 0
Figure 20. Schedulability Bound of Weighted Robin Scheduler with Deadline Based

Weight Assignment.

Figure 20 illustrates the relationship between the schedulability bound and the

normalized token rotation frequency. By a close observation of (IV-54) and Figure 20,

we can draw the following conclusions:

• The schedulability bound increases with the increasing of γ . The faster the token

rotates, the higher the schedulability bound is. When γ →∞ , which is the GPS

schedule, the schedulability bound attains its maximum 100.0%.

97

• By compare (IV-54) to (IV-43) and (IV-20), one can conclude that deadline

based assignment has a schedulability bound same as normalized weight

assignment with r-shaped tasks and no lower than the normalized weight

assignment with s-shaped tasks. An explanation for this phenomenon (better

performance of deadline based weight assignment) is that the allocation for each

task is assigned in a way that each task only reserves minimum services to

guarantee its own deadline. This minimum service reservation makes the

scheduler serve task based on the urgent-ness of the deadline requirements and

behaviors like the earliest deadline scheduler which is proven to be optimal.

• Furthermore, (IV-54) holds for arbitrary workload constraint functions, not just

for s-shaped and r-shaped tasks. This generality, together with the fact that the

allocation of each task is calculated only based on its own workload, makes the

deadline based weight assignment scheme really simple, efficient, and flexible

since the allocation of a task is not affected by the join, leave, and updates of

workload of other tasks.

98

CHAPTER V

SCHEDULABILITY BOUND FOR TIMED TOKEN RING SCHEDULERS

A. Timed Token Ring Schedulers

In this chapter, we analyze the schedulability bound for another group of schedulers,

namely the timed token ring schedulers. This type of schedulers were first proposed in

[31] and have been studied extensively in [4], [5], [17], [21], [27-33], [35-38], [48], [52-

55], [58-61], [63], [69-71], [75-83].

The timed token ring schedulers are similar to weighted round robin schedulers, but

are different. The difference lies in the fact that each task, after receiving the token and

executes iH units of real-time jobs, may continues to execute some non-real-time jobs if

the token arrives earlier in the last round. Specifically, let TTRT be the target token

rotation time and iH be the allocation to task iT . Upon receiving the token, a task can

execute its real-time jobs for up to iH time unit. iH is calculated based on its weight

factor Oi, the TTRT and τ , the protocol overhead, which is the time speeded on token

transversal and other protocol and network operations.

 ()i iH O TTRT τ= . − (V-1)

99

After the execution of the real-time jobs, the task can continue to execution its non-

real-time jobs for TTRT – TRT , where TRT is the actual token rotation time in the last

round. More detailed description of the timed token ring scheduler can be fund in [20].

Similar to the weighted round robin scheduler, we define a parameter, normalized

token rotation frequency γ for the timed token ring scheduler as

 minD
TTRT

γ ⎢ ⎥= ⎢ ⎥⎣ ⎦
 , (V-2)

where minD = min()iD is the least relative deadline of all the tasks in the system. γ can

be considered as the measured token rotation frequency in a window of length minD .

Higher frequency leads to short scheduling delay and thus higher schedulability bound.

The protocol overhead ratio α is defined as

TTRT
τα = . (V-3)

Theorem 5-1. For an arbitrary timed token ring scheduler, a service constraint function

for task iT , is

1

1() ni i
ii

I
G I H

H τ
=

⎢ ⎥−= .⎢ ⎥+⎢ ⎥⎣ ⎦∑
 (V-4)

Proof. We prove (V-4) based on the definition of service constraint function. Let t be an

arbitrary time instant. If at time t , all the jobs from task iT have been served, then we

can let s t= and apparently (II-41) is true. Now we will focus the case that at time t ,

100

task iT is backlogged. Let s be the last time before t such that iT is not backlogged.

That is to say, at time s , we have

 () ()i ig s f s= . (V-5)

In time interval [s , t], by property of the timed token ring scheduler, we know that

the scheduler served at least
1

1n
ii

I
H τ

=

⎢ ⎥−⎢ ⎥+⎢ ⎥⎣ ⎦∑
 rounds with a serving time length of iH

each round. In other words, task iT received at least
1

1n i
ii

I
H

H τ
=

⎢ ⎥−⎢ ⎥+⎢ ⎥⎣ ⎦∑
 amount of

service time. Then we have the theorem established. □

B. Schedulability Bound for Normalized Weight Assignment

In a normalized assignment scheme, the allocation iH is assigned as follows:

 ()(1)
(1,)

i
i

WH TTRT
W

τ= ⋅ −
Γ

 . (V-6)

Theorem 5-2. For a timed token ring scheduler with normalized weight assignment and

a collection of task set Γ , a lower bound of schedulability bound is:

 ()
()

*
1, 2, ..., 0

(1)
(1) min min min 1 ii

T i n I
i

W TTRTI DW
FTTRT I

τ
∈Ω = ≥

⎛ ⎞⎛ ⎞⋅ −⎛ ⎞+⎢ ⎥= ⎜ ⎟−⎜ ⎟⎜ ⎟⎢ ⎥⎜ ⎟⎜ ⎟⎣ ⎦⎝ ⎠⎝ ⎠⎝ ⎠
. (V-7)

101

Proof. By (II-58), we know that for any iT in Γ , is schedulable as long as, for any I ≥0 ,

 ()
()

1

(1)1
(1,)

i i
n i

ii

I D W TTRT
F IH W

τ
τ

=

+⎢ ⎥ ⋅ −− ≥⎢ ⎥+ Γ⎢ ⎥⎣ ⎦∑
. (V-8)

Rewrite (IV-13) as

()1

1(1,) (1)i
n i

i ii

I D TTRTW W
H F I

τ
τ

=

+⎢ ⎥ −−Γ ≤ ⎢ ⎥+⎢ ⎥⎣ ⎦∑
. (V-9)

It is easy to see that
1

n
ii

H TTRTτ
=

+ =∑ and

()
()
()1, 2, ..., 0

(1)
(1) min min min1 1 ii i

i T i n I
i i

W TTRTTTRTI D I DW
F FTTRT TTRTI I

ττ
∈Ω = ≥

⎛ ⎞⎛ ⎞⋅ −⎛ ⎞−+ +⎢ ⎥ ⎢ ⎥≤ ⎜ ⎟− −⎜ ⎟⎜ ⎟⎢ ⎥ ⎢ ⎥⎜ ⎟⎜ ⎟⎣ ⎦ ⎣ ⎦⎝ ⎠⎝ ⎠⎝ ⎠

 . (V-10)

By substituting (IV-15) into (IV-14), we know that iT is schedulable as long as

 ()
()1, 2, ..., 0

(1)
(1,) min min min 1 ii

T i n I
i

W TTRTI DW
FTTRT I

τ
∈Ω = ≥

⎛ ⎞⎛ ⎞⋅ −⎛ ⎞+⎢ ⎥Γ ≤ ⎜ ⎟−⎜ ⎟⎜ ⎟⎢ ⎥⎜ ⎟⎜ ⎟⎣ ⎦⎝ ⎠⎝ ⎠⎝ ⎠
. (V-11)

Then we know the theorem is true. □

In the following subsections, we will derive schedulability bound for timed token

ring schedulers with s-shaped and r-shaped workload constrain functions, respectively.

102

1. Schedulability Bound for S-shaped Tasks

Theorem 5-3. A lower bound of schedulability bound for timed token ring scheduler

with normalized weighted assignment and a collection of task set Ω is given by

 ⎡ ⎤() () ()1 11 min/ , 1,
1

W k kk
γ α
γ µ
−

= ⋅ − ⋅ ⋅Γ
+

, (V-12)

where γ is the normalized token rotation frequency defined in (V-2), α is the protocol

overhead ratio defined in (V-3), µ is the task set burstness for s-shaped tasks defined in

(IV-18), and k is normalized deadline for s-shaped tasks defined in (III-8).

Proof. By (IV-12), we know that a schedulability bound is

 ()()()1, 2, ..., 0(1,) min min min ()T i n IW Z i∈Ω = ≥Γ = . (V-13)

where

()0 (1)() max 1i

iI
i

TTRTI D WZ i
FTTRT I

τ
≥

−⎛ + ⎞⎢ ⎥= −⎜ ⎟⎢ ⎥⎣ ⎦⎝ ⎠
. (V-14)

Rewrite (IV-22) into

()0

1 ()() max
i

i i i
I

i i i

I D
I D F DTTRTTTRTZ i

I D TTRT F DI
TTRT

τ
≥

⎛ + ⎞⎢ ⎥ −⎜ ⎟⎢ ⎥ +−⎣ ⎦= ⎜ ⎟+⎜ ⎟⎜ ⎟
⎝ ⎠

. (V-15)

Since 1i iI D I D
TTRT TTRT
+ +⎢ ⎥≤ +⎢ ⎥⎣ ⎦

, we have

103

 ()
()0

1 ()() 1 max
1

i

i i i
I

i i i

I D
I D F DTTRTZ i

I D F DI
TTRT

α ≥

⎛ + ⎞⎢ ⎥ −⎜ ⎟⎢ ⎥ +⎣ ⎦= − ⎜ ⎟
+⎢ ⎥⎜ ⎟+⎜ ⎟⎢ ⎥⎣ ⎦⎝ ⎠

. (V-16)

It is easy to verify that

min

1 2 2 21 1 1
111 1

i

i i

I D
TTRT
I D I D D

TTRTTTRT TTRT
γ

+⎢ ⎥ −⎢ ⎥⎣ ⎦ = − ≥ − = −
+ + +⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ++ +⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦ ⎣ ⎦

. (V-17)

By substituting () ()i i i i

i i

F D F D
D I D

≥
+

 into (V-17) and rearrange it, we have

 ()
()0

()1() 1 max
1

i i i
I

i i

I D F D
Z i

F DI
γα
γ ≥

+⎛ ⎞−
≥ − ⎜ ⎟+ ⎝ ⎠

. (V-18)

Now let I = imS + ω where 0≤0 iSω≤ ≤ <Si. By (II-11), we have

 () ((1))i i iF I F m S≤ + . (V-19)

By substituting (V-19) into (V-18) and rearrange it, we have

 () ()0

()1() 1 max
(1)1
i i i i

I
i i i

mS D F D
Z i

F m S D
ωγα

γ ≥

+ +⎛ ⎞−
≥ − ⎜ ⎟++ ⎝ ⎠

. (V-20)

Since 0≤ω , we have

 () ()0

()1() 1 max
(1)1

i i i i
I

i i i

mS D F D
Z i

F m S D
γα
γ ≥

+⎛ ⎞−
≥ − ⎜ ⎟++ ⎝ ⎠

. (V-21)

104

By (II-15) we have

 () ()(1)
(1)

i i i i

i i

F m S F S
m S S

+
≤

+
. (V-22)

By substituting (V-22) into (V-21) and rearrange it, we get

 () ()0

()1() 1 max
(1)1

i i i i
I

i i i

mS D F D
Z i

m F S D
γα
γ ≥

+⎛ ⎞−
≥ − ⎜ ⎟++ ⎝ ⎠

. (V-23)

By definition of s-shaped workload constraint function (II-11), we know that

 ⎡ ⎤() () ()i i i i i iF D F kS F Sk= = . (V-24)

By substituting (V-24) into (V-23), we have

 () ()
⎡ ⎤

0

()1() 1 max
(1)1

i i i i
I

i i i

mS D F SkZ i
m F S kS

γα
γ ≥

+⎛ ⎞−
≥ − ⎜ ⎟++ ⎝ ⎠

. (V-25)

Rewrite (V-25) into

 () ⎡ ⎤
() 0, 1, 2, ...

()1 1() 1 max
1 1

i i
m

i i

F D m kkZ i
k F S m
γα
γ =

− +⎛ ⎞≥ − ⎜ ⎟+ +⎝ ⎠
. (V-26)

It is easy to verify that

 ()0, 1, 2, ...max min 1,
1m

m k k
m=
+⎛ ⎞ ≥⎜ ⎟
+⎝ ⎠

. (V-27)

By substituting (V-27) into (V-26), we have

105

 ⎡ ⎤
() () ()()1 1() 1 min 1,

1
i i

i i

F SkZ i k
k F S
γ α
γ
−

≥ −
+

. (V-28)

By (IV-18), we have

 ⎡ ⎤ ⎡ ⎤ ⎡ ⎤()
()

i

i i

F Sk k k
F S µ µ

= ≥ . (V-29)

By substituting (V-29) into (V-28), we get

 ⎡ ⎤ () ()1() 1 min 1,
1

kZ i k
k

γ α
γ µ
−

≥ −
+

. (V-30)

By substituting (V-30) into (V-29), we have a schedulability bound of

 () ⎡ ⎤ () ()1 1 min1, 1,
1

kW k
k

γ α
γ µ
−

= −Γ
+

. (V-31)

By (II-11), we know that

 () ⎡ ⎤ ⎡ ⎤
⎡ ⎤

⎡ ⎤ ⎡ ⎤
1 1 1

() ()
1, ,

n n ni i i i
i i i

i i

F D F Skk k kW W
D k S k kk= = =

⎛ ⎞= = =Γ Γ⎜ ⎟
⎝ ⎠

∑ ∑ ∑ . (V-32)

By substituting (V-32) into (V-31), we have a schedulability bound with scaling

parameter ⎡ ⎤ / kkθ = in form of

 ⎡ ⎤() () ()1 11 min/ , 1,
1

W k kk
γ α
γ µ
−

= ⋅ − ⋅ ⋅Γ
+

. (V-33)

Then we have the theorem proven. □

106

By a close observation of (V-12), one can notice:

• Given protocol overhead ratio α , normalized deadline k , and task set workload

burstness µ , higher token rotation frequency leads to improved schedulability

bound. The schedulability bound achieves its highest value when γ →∞ , when

the scheduler is GPS. When 1γ < , the schedulability bound reduces to zero. That

is to say, when it takes longer than the minimum relative deadline to finish one

round of token rotation, the schedulability bound is zero. This is understandable

since a task may not receive the token within its deadline and thus may not be

able to receive any service at all. Figure 21 illustrates this trend for the special

case k =1 and 0α = .

• Given protocol overhead ratio α , normalized deadline k , and token rotation

frequency γ , increasing of task set workload burstness µ results in decreased

schedulability bound. This is because the larger theµ , the bursty the workload is.

Typicaly, bursty workloads are more difficult schedule than less burstness ones.

The schedulability bound is maximized when µ =1 for periodic tasks. Figure 22

illustrates this trend for the case of k =1. Note that the workload rate is measured

in the window length of /i i iD k k⎡ ⎤⎢ ⎥ , not iS in (V-12).

• Given protocol overhead ratio α , token rotation frequency γ , and task set

workload burstnessµ , relaxed deadline requirements (larger normalized deadline

k) leads to improved schedulability bound. When k <1, the schedulability bound

107

increases linearly with the increasing of k . When k >1, the schedulability bound

does not change with the increase of k . This trend is shown as Figure 23. We

should note that this does not imply that, when 1k > , relaxing deadline

requirement has no effect on schedulability test, because, according to (IV-10)

and (II-12), the calculated workload rate in the window Di may decrease with the

increasing of k. This decreasing of workload rate is equivalent to the increasing

of schedulability bound.

• For periodic tasks, when k =1, µ =1, and 2γ = (token rotates twice per round),

our newly derived bound reduces to 33.3% which is first derived in [5] and is

corresponding to a point on the 3-D surface in Figure 21.

• By a close comparison between (IV-20) and (V-12), we notice that the

schedulability bound for time token ring scheduler is lower than weighted round

robin schedulers. For example, when when k =1, µ =1, and 2γ = , the

schedulability bound for weighted round robin scheduler is 66.7%, but only

33.3% for timed token ring scheduler. This is due to the interference of non real-

time jobs. However, the difference between the two bounds gradually reduces

with the increasing of token rotation frequency and approaches zero when

γ →∞ for GPS scheduler.

108

Figure 21. Schedulability Bound of Timed Token Ring Scheduler with Normalized

Weight Assignment for and Fixed Normalized Deadline k =1.

G. Agrawal, B. Chen,
W. Zhao, 1994

109

Figure 22. Schedulability Bound of Timed Token Ring Scheduler with Normalized

Weight Assignment and Fixed Token Rotation Frequency γ =2.

110

Figure 23. Schedulability Bound of Timed Token Ring Scheduler with Normalized

Weight Assignment and Fixed Workload Burstnessµ =1.

2. Schedulability Bound for R-shaped Tasks

Theorem 5-4. A lower bound of schedulability bound for timed token ring scheduler

and a collection of task r-shaped set Ω is given by

 ()* 1(1) 1
1

W γ α
γ
−

≥ ⋅ −
+

. (V-34)

Proof. By (IV-12), we know that a schedulability bound is

111

 ()()()1, 2, ..., 0(1,) min min min ()T i n IW Z i∈Ω = ≥Γ = . (V-35)

where

()0 (1)() max 1i

iI
i

TTRTI D WZ i
FTTRT I

τ
≥

−⎛ + ⎞⎢ ⎥= −⎜ ⎟⎢ ⎥⎣ ⎦⎝ ⎠
. (V-36)

Rewrite (V-36) into

 ()
()0

1 ()() max 1
i

i i i
I

i i i

I D
I D F DTTRTZ i

I D F DI
TTRT

α≥

⎛ + ⎞⎢ ⎥ −⎜ ⎟⎢ ⎥ +⎣ ⎦= −⎜ ⎟+⎜ ⎟⎜ ⎟
⎝ ⎠

. (V-37)

Since 1i iI D I D
TTRT TTRT
+ +⎢ ⎥≤ +⎢ ⎥⎣ ⎦

, we have

 ()
()0

1 ()() max 1
1

i

i i i
I

i i i

I D
I D F DTTRTZ i

I D F DI
TTRT

α≥

⎛ + ⎞⎢ ⎥ −⎜ ⎟⎢ ⎥ +⎣ ⎦= −⎜ ⎟
+⎢ ⎥⎜ ⎟+⎜ ⎟⎢ ⎥⎣ ⎦⎝ ⎠

. (V-38)

It is easy to verify that

min

1 2 2 2 11 1 1
1 111 1

i

i i

I D
TTRT
I D I D D

TTRTTTRT TTRT

γ
γ γ

+⎢ ⎥ −⎢ ⎥ −⎣ ⎦ = − ≥ − = − =
+ + + +⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ++ +⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦ ⎣ ⎦

. (V-39)

By substituting (V-39) into (V-38), we have

112

 ()
()0

()1
() 1 max

1
i i i

I
i i

I D F D
Z i

F DI
γ

α
γ≥

+−⎛ ⎞
≥ − ⎜ ⎟+⎝ ⎠

. (V-40)

Since F is r-shaped, we know that () ()/() /()i i i i i iF D D F I D I D≥ + + thus

 ()
()0

()1
() 1 max

1
i i

I
i

F I D
Z i

F I
γ

α
γ≥

+−⎛ ⎞
≥ − ⎜ ⎟+⎝ ⎠

. (V-41)

By substituting () ()i iF I D F I+ ≥ into (V-41) and rearrange it, we have

 () 1() 1
1

Z i γα
γ
−

≥ −
+

. (V-42)

By substituting (V-42) into (V-35), we have

 ()* 1(1) 1
1

W γα
γ
−

≥ −
+

. (V-43)

That is to say, ()1 1
1

γ α
γ
−

−
+

 is a schedulability bound with scaling parameter 1θ = . □

113

0 10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

S
ch

ed
ul

ab
ili

ty
 B

ou
nd

γ

 81.8%

 96.1%

 33.3%

 2

α = 0
Figure 24. Schedulability Bound of Timed Token Ring Scheduler with Normalized

Weight Assignment and R-Shaped Tasks.

Figure 24. illustrates the relationship between the schedulability bound and the token

rotation frequency. By a close observation of (V-34) and Figure 24, we can have the

following conclusions:

• The schedulability bound increases with the increasing of token rotation

frequency γ . The higher the frequency, the greater the schedulability bound is.

When γ →∞ , which is the GPS schedule, the schedulability bound attains its

maximum 100.0%.

114

• The sensitivity of the schedulability bound on token ration rotation frequency γ is

high for small γ , e.g. 10γ < , and gradually reduces. For example, when the

frequency increases from 2 to 10, the schedulability increases from 33.3% to

81.8%, a 48.5% gain. When the frequency increases from 10 to 50, the bound

changes from 81.8% to 96.1%, a mere 14.3% gain.

• By a close comparison between (V-34) and (IV-43), we notice that the

schedulability bound for time token ring scheduler is lower than weighted round

robin schedulers. For example, when 2γ = , the schedulability bound for

weighted round robin scheduler is 66.7%, but only 33.3% for timed token ring

scheduler. This is due to the interference of non real-time jobs. However, the

difference between the two bounds gradually reduces with the increasing of

token rotation frequency and approaches zero when γ →∞ for GPS scheduler.

C. Schedulability Bound for Deadline Based Weight Assignment

In a deadline based assignment scheme, the allocation iH is assigned as follows:

 ()

1

i i
i

i

F DH
D

TTRT

=
⎢ ⎥−⎢ ⎥⎣ ⎦

 , (V-44)

where for 1, 2, ..., i n= .

Theorem 5-5. A lower bound of schedulability bound for deadline based round robin

scheduler with arbitrary workload constraint function and a collection of task set Ω is

115

given by

 ()* 1(1) 1
1

W γ α
γ
−

= −
+

, (V-45)

where γ is defined in (IV-3).

Proof. By (II-58) and (IV-5), we know that iT is schedulable as long as

 () 0Z i ≥ . (V-46)

where

 ()
1

1() i
n i i

ii

I D
Z i H F IH τ

=

+⎢ ⎥−= −⎢ ⎥+⎢ ⎥⎣ ⎦∑
. (V-47)

By substituting (V-44) into (V-47) and rearrange it, we get

 ()
1

()()
1

i i i
n i

i ii

I D F DZ i F IH D
TTRT

τ
=

+⎢ ⎥
= −⎢ ⎥+ ⎢ ⎥⎢ ⎥⎣ ⎦ −⎢ ⎥⎣ ⎦
∑

. (V-48)

Let I = imD + ω where m is an integer and 0 ≤ ω < iD . Then we have

 ()
1

(1) ()()
1

i i i
n i i

i ii

m D F DZ i F mD
H D

TTRT

ω
ω

τ
=

+ +⎢ ⎥
= − +⎢ ⎥+ ⎢ ⎥⎢ ⎥⎣ ⎦ −⎢ ⎥⎣ ⎦

∑
. (V-49)

Since iF is non-decreasing, we have

116

 ()
1

(1) ()() (1)
1

i i i
n i i

i ii

m D F DZ i F m D
H D

TTRT

ω
τ

=

+ +⎢ ⎥
≥ − +⎢ ⎥+ ⎢ ⎥⎢ ⎥⎣ ⎦ −⎢ ⎥⎣ ⎦

∑
. (V-50)

By the triangle-property of workload constraint function, we know that

 () ()(1) (1)i i i iF m D m F D+ ≤ + . (V-51)

By substituting (V-51) into (V-50) and rearrange it, we get

 ()
1

(1)
() (1)

1

i i ii
n

i ii

m D F DDZ i m
H DTTRT

TTRT

ω
τ

=

⎛ + + ⎞⎢ ⎥ ⎢ ⎥≥ − +⎜ ⎟⎢ ⎥ ⎢ ⎥⎜ ⎟+ ⎢ ⎥⎣ ⎦⎢ ⎥⎣ ⎦⎝ ⎠ −⎢ ⎥⎣ ⎦
∑

. (V-52)

It is easy to verify that

1 1 1

(1) (1)
(1)i i i

n n n
i i ii i i

m D m D D
m

H H H
ω
τ

= = =

+ + +⎢ ⎥ ⎢ ⎥ ⎢ ⎥
≥ ≥ +⎢ ⎥ ⎢ ⎥ ⎢ ⎥+⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦∑ ∑ ∑

. (V-53)

By substituting (V-53) into (V-52) and rearrange it, we have

 ()
1

(1)
()

1

i i ii
n

i ii

D m F DDZ i
H DTTRT

TTRT
τ

=

⎛ ⎞⎢ ⎥ +⎢ ⎥≥ −⎜ ⎟⎢ ⎥ ⎢ ⎥⎜ ⎟+ ⎢ ⎥⎣ ⎦⎢ ⎥⎣ ⎦⎝ ⎠ −⎢ ⎥⎣ ⎦
∑

. (V-54)

By substituting (V-54) into (V-46), we know that iT is guaranteed to be schedulable

if

117

 ()
1

(1)
0

1

i i ii
n

i ii

D m F DD
H DTTRT

TTRT
τ

=

⎛ ⎞⎢ ⎥ +⎢ ⎥− ≥⎜ ⎟⎢ ⎥ ⎢ ⎥⎜ ⎟+ ⎢ ⎥⎣ ⎦⎢ ⎥⎣ ⎦⎝ ⎠ −⎢ ⎥⎣ ⎦
∑

. (V-55)

That is to say, iT is guaranteed to be schedulable if

1

n
ii

H TTRT τ
=

≤ −∑ . (V-56)

By substituting (V-44) into (V-56), we know that iT is guaranteed to be schedulable

if

 ()
1

1

n i i
i

i

F D
TTRT

D
TTRT

τ
=

≤ −
⎢ ⎥ −⎢ ⎥⎣ ⎦

∑ . (V-57)

An equivalent form of (V-57) is

()

1
1

1

i

n i i
i

ii

D
F D TTRT

DD
TTRT

τ
=

⎛ ⎞
⎜ ⎟− ≤⎜ ⎟

⎢ ⎥⎜ ⎟−⎜ ⎟⎢ ⎥⎣ ⎦⎝ ⎠

∑ . (V-58)

Since 1i iD D
TTRT TTRT

⎢ ⎥≤ +⎢ ⎥⎣ ⎦
, we know that

118

() () ()

() ()

1 1

1

1
1

1 1

11 1
1

i i

n ni i i i
i i

ii ii

n i i
i

i

D D
F D F DTTRT TTRT

DD DD
TTRT TTRT

F D
D

τ α

γ
α

γ

= =

=

⎛ ⎞⎛ ⎞⎛ ⎞ ⎢ ⎥ +⎜ ⎟⎜ ⎟⎜ ⎟ ⎢ ⎥− ⎣ ⎦⎜ ⎟≤ − ⎜ ⎟⎜ ⎟
⎢ ⎥ ⎢ ⎥⎜ ⎟⎜ ⎟⎜ ⎟− −⎜ ⎟ ⎜ ⎟⎜ ⎟⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎝ ⎠ ⎝ ⎠⎝ ⎠

⎛ ⎞+⎛ ⎞−≤ − ⎜ ⎟⎜ ⎟−⎝ ⎠⎝ ⎠

∑ ∑

∑

. (V-59)

By substituting (V-59) into (V-58), we known that

() () ()

1 1

11
1

i

n ni i i i
i i

ii i

D
F D F DTTRT

DD D
TTRT

γα
γ= =

⎛ ⎞
⎜ ⎟ ⎛ ⎞+

≤ −⎜ ⎟ ⎜ ⎟⎢ ⎥ − ⎝ ⎠⎜ ⎟⎜ ⎟⎢ ⎥⎣ ⎦⎝ ⎠

∑ ∑ . (V-60)

By substituting (V-60) into (V-58), we know that iT is guaranteed to be schedulable

if

 () ()
1

11 1
1

n i i
i

i

F D
D

γα
γ =

⎛ ⎞+
− ≤⎜ ⎟− ⎝ ⎠

∑ . (V-61)

That is to say, iT is guaranteed to be schedulable if

 () ()1

1(1,) 1
1

n i i
i

i

F D
W

D
γ α
γ=

⎛ ⎞ −
Γ = ≤ −⎜ ⎟ +⎝ ⎠

∑ . (V-62)

In other words, ()* 1(1) 1
1

W γ α
γ

−
= −

+
 is a schedulability bound with scaling parameter

1θ = . □

119

0 10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

S
ch

ed
ul

ab
ili

ty
 B

ou
nd

γ

 81.8%

 96.1%

 33.3%

 2

α = 0
Figure 25. Schedulability Bound of Timed Token Ring Scheduler with Deadline Based

Weight Assignment.

Figure 25 illustrates the relationship between the schedulability bound and the token

rotation frequency. By a close observation of (V-45) and Figure 25, we have the

following observations:

• The schedulability bound increases with the increasing of γ . The faster the token

rotates, the higher the schedulability bound is. When γ →∞ , which is the GPS

schedule, the schedulability bound attains its maximum 100.0%.

• By comparing (V-45) to (V-12) and (V-34), one can conclude that deadline based

assignment has a schedulability bound same as normalized weight assignment

120

with r-shaped tasks and no lower than the normalized weight assignment with s-

shaped tasks. An explanation for this phenomenon (better performance of

deadline based weight assignment) is that the allocation for each task is assigned

in a way that each task only reserves minimum services to guarantee its own

deadline. This minimum service reservation makes the scheduler serve task

based on the urgent-ness of the deadline requirements and behaviors closers to

earliest deadline scheduler which is proven to be optimal.

• Furthermore, (V-45) holds for arbitrary workload constraint functions, not just

for s-shaped and r-shaped tasks. This generality, together with the fact that the

allocation of each task is calculated only based on its own workload, makes the

deadline based weight assignment scheme really simple, efficient, and flexible

since the allocation of a task is not affected by the join, leave, and updates of

workload of other tasks.

• In [4], [53], [83], the authors derived a similar schedulability bound for periodic

tasks which is a special case of (V-45) since (V-45) holds for arbitrary workload

constraint functions.

121

CHAPTER VI

APPLICATIONS

A. Background

In the past years, Texas A&M University has been involved in a large number of

scientific modeling and data analysis projects. These projects share a data archive and

retrieval requirement, a need to visualize data, a call to perform customized modeling

tasks using complex environmental, atmospheric, oceanographic or geophysical models,

and a need to display data in a geospatially referenced manner. Most of these project

have high demands on computing resources and the model runs must be finished timely

so that the result to be of any use, e.g. hurricane forecasts. Many other projects at

different research institutions and organizations share similar needs. Typically, the

institutions and organizations will design and procure hardware and software to address

these problems for each individual project in an ad hoc manner. The high

implementation cost, the duplication of efforts, and the difficulty of collaboration due to

the lack of standardization for working process and data format, often leave something

to be desired.

The Reference Center for Modeling and Data Analysis (RCMDA) is established to

address all of these issues and will, further provide a reference case for implementation

of the Data Center model by creating and operating a working data center, and

addressing all identified tasks and requirements to achieve full functionality while

providing a working example and demonstration of the various aspects of such a project.

122

B. System Architecture

 Figure 26 illustrates the system architecture. On the left-most side is the user

interface layer which includes three major object groups a typical user can manipulates:

workflows, tasks, and admitted tasks. A workflow is composed of a set of inter-related

models. Each model is an executable with one or more inputs and produces one or more

outputs. The model could be a scientific simulation program, a data retrieval program, a

visualization package, or any other computing process. The outputs of one model could

be the input of the model. A workflow specification defines the relationship between the

models, e.g. input/output relationship, execution sequence, resource requirement, and

some other workflow parameters, e.g. time interval of a simulation or simulation length.

Once the workflow parameters are filled, a workflow becomes a task and is ready to be

executed on the clusters. A user can send an admit request to the system to run the task

on the cluster. If the request is granted, the task will start execution and we say the task

is an admitted task.

On the right-most side are the cluster resources which are categorized into different

groups based their functionalities: computing cluster, data processing cluster, and

graphic cluster. The computing cluster is used for scientific computing; the data

processing cluster is used for data retrieving and sharing, e.g. download data from

external web site and upload simulation output to collaborators’ file server; the graphic

cluster is used to generate graphics or supporting interactive visualization of the

simulation data. Separation of the clusters is necessary since different clusters have

123

different capabilities, e.g. graphic cluster must have special graphic packages installed,

and the nodes in data processing cluster must be able to connect to the Internet.

In the middle are the system components including admission control, job generator,

scheduler, and job dispatcher. Admission control is used to check the schedulability of

the tasks. Upon the admit request of a task, the admission control checks whether the

new task and the admitted tasks can meet their deadlines. If yes, the admission control

will return success and the task will be added to the admitted task table. If not, the

admission control returns failure and the task is rejected. For each admitted job, a job

generator instance is created and this instance is responsible for generation of the

individual jobs for this task based on its task specifications, e.g. execution periods. All

the generated jobs are appended to the incoming job queue which is managed by the

scheduler. The scheduler picks the jobs in the job queue one by one and inserts them into

the outgoing job queue. The jobs in the outgoing job queue are arranged based on the

scheduling policy, e.g. high priority job is in the front of the queue. The job dispatcher is

responsible for monitoring the cluster and picking the jobs from the outgoing job queue

and dispatching them to the cluster once the cluster is free. The job dispatcher also

monitors the progress of the jobs running on the cluster and notifies the scheduler,

admission control, job generator once a job is finished.

124

Figure 26. System Architecture of the RCMDA.

125

C. Implementation

The system is implemented in a LINUX environment using Java/J2EE as the main

programming language. The clusters are managed by the PBS (Portable Batch

Scheduling System). The clusters connected with gigabit switch. In the following

sections, we will discuss some of the implementation details.

1. Tasks Modeling

In this implementation, we use a special r-shaped workload constraint function to

model the task workload. We selected leaky bucket workload constraint function for its

extreme simplicity. For each task, we collect two workload parameters: σ and ρ ,

where σ is the burstness and ρ is the long-term rate. For each task, we also collect its

relative deadline D . The relative deadline is specified by the end user when create a

task.

Recall that a task is a workflow with input parameter set and a workflow is

composed of a sequence of models. The execution times of the models are obtained by

pre-run these models in a standard cluster. The execution times of each workflow are

then calculated automatically from these model execution times. During admission time,

the execution time is then normalized to the real cluster environment. The normalization

function is obtained using heuristic approach. The two workload constraint function

parameters: σ and ρ are then calculated based on this execution time of each workflow

and the execution patterns of the task specified by the end user, e.g. run every Friday, or

no more than twice per week and at lease one day apart between two consecutive runs.

126

2. Scheduler

We use static priority scheduler in current implementation. The scheduler maintains

a job queue for each cluster and the jobs in the queue are arranged based on their

priorities. That is, the jobs from the task with high priority are inserted in front of the

low priority ones. After admission, each task is assigned to a specific cluster for

execution. For each new job, the scheduler finds the cluster on which it will run and

insert the job to the outgoing job queue corresponding to the cluster. Since the queue is

ordered based on their priorities, the insert operations is very efficient using the binary

search algorithm with a complexity of O(log(n)).

3. Admission Control

We use schedulability bound based admission control in this implementation. Recall

that a set of r-shaped tasks is schedulable if

1

() / 1/n
i i ii

F D D λ
=

<∑ , (VI-1)

where λ is the deadline inversion and is calculated as

 1, 2, ...,

max ()
max j i j

i n
i

D
D

λ ≤
=

⎛ ⎞
= ⎜ ⎟

⎝ ⎠
. (VI-2)

For leaky bucket tasks, an equivalent form of (VI-1) is,

1

max

1/n i i i
i

i

D
D J
σ ρ λ

=

+
<

−∑ , (VI-3)

127

where maxJ is the maximum job size.

To perform the test, we need to calculate the deadline inversion ratio λ . Though we

can calculate λ upon the join request of a new task using (VI-2), the complexity of this

calculation is O(n2). To reduce the complexity, we introduce a different deadline

inversion ratio calculation algorithm described in Figure 27.

Figure 27. Pseudo-code to Update Degree of Deadline Inversion.

One can verify that the above algorithm has a complexity of O(n) which is much

more efficient then the calculation of deadline inversion directly using (VI-2).

TaskList : An array of the tasks currently admitted to the system. The array is sorted based on the
relative deadlines in ascending order.

n: Number of tasks in the task list.
CurrentDeadlineInversion: The current deadline inversion ratio in the system.
T: The task to be admitted.

i = the last task in the task array whose relative deadline is no more than the one of task T.
//Fist, let us find the deadline inversion ratio for task T if it is admitted
// Note that the deadline inversion for any existing task with higher priority than T will not be affected
For j = 0 to i-1
 Tj = the jth task in the TaskList
 ThisInversion = Relative Deadline of Tj/Relative Deadline of T
 If ThisInversion > CurrentDeadlineInversion Then
 CurrentDeadlineInversion = ThisInversion
 End if
Next
// Now calculate the maximum deadline inversion for low priority tasks.
For j = i to n
 Tj = the jth task in the TaskList
 ThisInversion = Relative Deadline of T/ Relative Deadline of Tj
 If ThisInversion > CurrentDeadlineInversion Then
 CurrentDeadlineInversion = ThisInversion
 End if
Next
return CurrentDeadlineInversion;

128

Another important functionality of the admission control component is handling the

task departure, e.g. deleted tasks, or finished tasks. The utilization reserved for these

deleted tasks must be recycled. In our current implementation, this recycle will not

happen until the system is idle. The reason for this is two folds: one is it has been proved

that the reserved resource of a denatured task can not be recycled at the time of departure

since the task may already used the resource, and second, recycling the reserved resource

at the system idle time is more efficient and safe since the system can be treated as a

“restart”.

4. Job Generator

The job generator is an active program that monitors the execution progress of the

jobs and release next job based on the task execution pattern specified by the user during

the admission time, e.g. execute the job every Friday. The job generator is created at the

time a new task is admitted and is destroyed after the task is finished or removed. The

generated jobs are sent to the incoming job queue of the scheduler. Most of the time, the

job generator will be in sleep stage and is waken up by the job dispatcher when a job is

finished normally or terminated inexpertly. Once awaken, the job scheduler parses the

task specification and decide which job should be released next.

129

5. Job Dispatcher

The job dispatcher is implemented as an active service that periodically checks the

cluster status. If the job dispatcher finds that the cluster is free (empty or partially

empty), it will perform the following two operations:

• Notify the admission control, scheduler, and the job generator.

• Get the next job from the scheduler.

Note that the job dispatcher may not be able to get a job from the scheduler. If this is

the case, the job dispatcher will change to sleep mode until the next polling time.

130

CHAPTER VII

SUMMARY AND CONCLUSIONS

This dissertation addresses the following problem:

How to derive schedulability bound for general real-time systems?

Based on network calculus theory, we proposed a general schedulability bound

analysis framework for real-time systems. The general framework uses workload

constraint function to model tasks, service constraint function for schedulers, and

workload rate for utilization measurement. We proposed two new special forms of

workload constraint functions that are flexible and accurate in modeling task behavior.

To show the powerfulness of the framework, we derived closed-form schedulability

bound for arbitrary static priority schedulers, weighted round robin schedulers, and

timed token ring schedulers. The bounds are parameterized for different system

configuration. By simple plug-in of parameters, we show that most of the existing bound

results are special cases of our new generalized bound results. We also applied some of

the result in a real world cluster computing project.

This work has several limitations and can be improved in many directions. Only

single processor systems are considered in this dissertation. Extension of the framework

and schedulability analysis to multi-processor system will be an interesting and

challenging task. Another direction of extension is to the networked computing

environment in which a job may take several hop to finish, e.g. delivering package from

one node to another node through a set of intermediate routers. Additional type workload

131

constraint functions can also be proposed. Though we implemented the schedulability

bound based admission control and a static priority scheduler in a cluster computing

environment, the modeling of the task workloads is not accurate and can be improved by

future research.

132

REFERENCES

[1] T. Abdelzaher and C. Lu, “Schedulability analysis and utilization bounds for
highly scalable real-time services,” Proc. 7th IEEE Real-Time Technology and
Applications Symposium, pp. 15-25, Jun. 2001.

[2] T. Abdelzaher and V. Sharma, “A synthetic utilization bound for aperiodic tasks
with resource requirements,” Proc. 15th Euromicro Conference on Real-Time
Systems, pp. 141-150, Jul. 2003.

[3] T. Abdelzaher, V. Sharma, and C. Lu, “A utilization bound for aperiodic tasks and
priority driven scheduling,” IEEE Trans. Computers, vol. 53, no. 3, pp. 334-350,
Mar. 2004

[4] G. Agrawal, B. Chen, and W. Zhao, “Local synchronous capacity allocation
schemes for guaranteeing message deadlines with the timed token protocol,” Proc.
IEEE INFOCOM'93, pp. 186-193, Mar. 1993.

[5] G. Agrawal, B. Chen, W. Zhao, and S. Davari, “Guaranteeing synchronous
message deadlines with the timed token protocol,” IEEE Trans. Computers, vol.
43, no. 3, pp. 327–339, Mar. 1994.

[6] R. Agrawal, R. L. Cruz, C. Okino, and R. Rajan, “A framework for adaptive
service guarantees,” Proc. 36th Allerton Conference on Communication, Control,
and Computation, pp. 693-702, Sept. 1998.

[7] R. Agrawal, R. L. Cruz, C. Okino, and R. Rajan, “Performance bounds for flow
control protocols,” IEEE/ACM Trans. Networking, vol. 7, no. 3, pp 310-323, Jun.
1999.

[8] R. Amitava, N. Malcolm, and W. Zhao, “Hard real-time communications with
weighted round robin service in ATM local area networks,” Proc. Engineering of
Complex Computer Systems, pp. 96-103, Nov. 1995.

[9] B. Andersson, “Static-priority scheduling on multiprocessors,” Ph.D. dissertation,
Dept. Computer Engineering, Chalmers Univ. of Technology, Göteborg, Sweden,
2003.

[10] B. Andersson, S. Baruah, and J. Jonsson, “Static-priority scheduling on
multiprocessors,” Proc. 22nd IEEE Real-Time Systems Symposium, pp. 193-202,
Dec. 2001.

[11] B. Andersson and J. Jonsson, “Fixed-priority preemptive multiprocessor
scheduling: to partition or not to partition,” Proc. 7th Int. Conf. Real-Time
Computing Systems and Applications, pp. 337-346, Dec. 2000.

[12] T. P. Baker, “Multiprocessor EDF and deadline monotonic schedulability
analysis,” Proc. 24th IEEE Int. Real-Time Systems Symposium, pp. 120-129, Dec.
2003.

[13] E. Bini, “Schedulability analysis of periodic fixed priority systems,” IEEE Trans.
Computers, vol. 53, no.11, pp. 1462-1473, Nov. 2004.

[14] E. Bini, G. C. Buttazzo, and G. Buttazzo, “Rate monotonic analysis: the hyperbolic
bound,” IEEE Trans. Computers, vol 52, no. 7, pp. 933-942, Jul. 2003.

133

[15] J. Y. Le Boudec, “Application of network calculus to guaranteed service
networks,” IEEE Trans. Inform. Theory, vol. 44, no. 3, pp. 1087-1096, May 1998.

[16] J. Y. Le Boudec and P. Thiran, Network Calculus, a Theory of Deterministic
Queuing Systems for the Internet. New York: Springer-Verlag, 2001.

[17] E. Chan, E. Chen, J. Cao, and C. Lee, “Timing properties of the FDDI-M medium
access protocol,” Computer Journal, vol. 40, no. 1, pp. 43-49, Jun. 1997.

[18] S. Chang, “On deterministic traffic regulation and service guarantee: a systematic
approach by filtering,” IEEE Trans. Inform. Theory, vol. 44, pp. 1096-1107, Aug.
1998.

[19] S. Chang, Performance Guarantees in Communication Networks. New York:
Springer-Verlag, 2000.

[20] B. Chen, and W. Zhao, “Properties of the timed token protocol,” Technical Report
92-038, Dept. of Computer Science, Texas A&M Univ., Oct. 1992.

[21] B. Chen, G. Agrawal, and W. Zhao, “Optimal synchronous capacity allocation for
hard real-time communications with the timed token protocol”, Proc. IEEE Real-
Time Systems Symposium (RTSS'92), pp. 198-207, Dec. 1992.

[22] D. Chen, A. K. Mok, and T.-W. Kuo, “Utilization bound revisited,” IEEE Trans.
Computers, vol. 52, no. 3, pp. 351- 361, Mar. 2003.

[23] R. L. Cruz, “A calculus for network delay, part I: network elements in isolation,”
IEEE Trans. Inform. Theory, vol. 37, no. 1, pp. 114–131, Jan. 1991.

[24] R. L. Cruz, “A calculus for network delay, part II: network analysis,” IEEE Trans.
Inform. Theory, vol. 37, no. 1, pp. 132–141, Jan. 1991.

[25] R. L. Cruz, “Quality of service guarantees in virtual circuit switched networks,”
IEEE J. Selected Areas in Communications, vol. 13, no. 6, pp. 1048–1056, Aug.
1995.

[26] R. L. Cruz, “SCED+: Efficient management of quality of service guarantees,”
Proc. IEEE INFOCOM 1998, pp. 625–642, Mar. 1998.

[27] FDDI Token ring media access control (MAC). ANSI Standard X3.139, 1987.
[28] F. Feng, A. Kumar, and W. Zhao, “Bounding application-to-application delays for

multimedia traffic in FDDI-based communication systems,” Proc. Multimedia
Computing and Networking, pp. 174-185, Mar. 1996.

[29] S. Funk, J. Goossens, and S. Baruah, “On-line scheduling on uniform
multiprocessors,” Proc. IEEE Real-Time Systems Symposium, pp. 183-192, Dec.
2001.

[30] D. T. Green and D. T. Marlow, “SAFENET--a LAN for navy mission critical
systems,” Proc. 14th IEEE Annual Conference on Local Area Computer Networks,
pp. 340-346, Oct. 1989.

[31] R. M. Grow, “A timed token protocol for local area networks,” Proc. Electro'82,
Token Access Protocols, paper 17/3, May 1982.

[32] M. Hamdaoui , and P. Ramanathan, “Selection of timed token protocol parameters
to guarantee message deadlines,” IEEE/ACM Trans. on Networking, vol. 3, no.3,
pp. 340-351, Jun. 1995.

[33] C.-C. Han , K. G. Shin, “A polynomial-time optimal synchronous bandwidth
allocation scheme for the timed-token MAC protocol,” Proc. 14th Annual Joint

134

Conference of the IEEE Computer and Communication Societies, pp. 875-882,
Apr. 1995.

[34] C.-C. Han, and H.-Y. Tyan, “A better polynomial-time schedulability test for real-
time fixed-priority scheduling algorithm,” Proc. 18th IEEE Real-Time Systems
Symposium, pp. 36-45, Dec. 1997.

[35] H. Hansson, M. Sjodin, and K. Tindell, “Guaranteeing real-time traffic through an
ATM network,” Proc. 30th Hawaii International Conference on System
Sciences: Advanced Technology Track, vol. 5, pp. 44-53, Jan. 1997.

[36] IEEE/ANSI Standard 802.4--1985 "Token passing bus access method and physical
layer specifications," IEEE, New York, 1985.

[37] M. J. Johnson, "Reliability mechanisms of the FDDI high bandwidth token ring
protocol," Comput. Net. ISDN Syst., vol. 2, no. 2, pp. 121-131, Feb. 1986.

[38] M. J. Johnson, "Proof that timing requirements of the FDDI token ring protocols
are satisfied," IEEE Trans. Communications, vol. COM-35, no. 6, pp. 620-625,
Jun. 1987.

[39] T.-W. Kuo and A. K. Mok, "Load Adjustment in Adaptive Real-Time Systems,"
Proc. Real-Time Systems Symposium, pp. 160-171, Dec. 1991.

[40] S. Lauzac, R. Melhem, and D. Mossé, "An improved rate-monotonic admission
control and is applications," IEEE Trans. on Computers, vol. 52, no. 3, pp. 337 –
350, Mar. 2003.

[41] C.-G. Lee, L. Sha, and A. Peddi, "Enhanced utilization bounds for QoS
management," IEEE Trans. Computers, vol. 53, no. 2, pp. 187-200, Feb. 2004.

[42] J. P. Lehoczky, “Fixed priority scheduling of periodic task sets with arbitrary
deadlines,” Proc. 11th IEEE Real Time Systems Symposium, pp. 201-209, Dec.
1990.

[43] J. P. Lehoczky and L. Sha, “Performance of real-time bus scheduling algorithms,”
ACM SIGMETRICS Performance Evaluation Review, vol. 14, no. 1, pp. 44–53,
May 1986.

[44] J. Leung and J. Whitehead, “On the complexity of fixed-priority scheduling of
periodic real-time tasks,” Performance Evaluation, vol. 2, no. 4, pp. 235-250, Dec.
1982.

[45] C. Li, R. Bettati, and W. Zhao, “New delay analysis in high speed networks,” Proc.
Int. Conf. Parallel Processing, pp. 454–461, Sept. 1999.

[46] J. Liebeherr, A. Burchard,Y. Oh, and S. H. Son, “New strategies for assigning
real-time tasks to multiprocessor systems,” IEEE Trans. Computers, vol. 44, no.
12, pp. 1429–1442, Dec. 1995.

[47] J. Liebeherr, D. E. Wrege, and D. Ferrari, “Exact admission control for networks
with a bounded delay service,” IEEE/ACM Trans. Networking, vol. 4, no. 6, pp.
885–901, Jun. 1996.

[48] C. C. Lim, L. Yao, and W. Zhao, "A comparative study of three token ring
protocols for real-time communications," Proc. IEEE Conf. Distributed
Computing Systems, pp. 308-317, May 1991.

[49] C. L. Liu and J. W. Layland, “Scheduling algorithms for multiprogramming in a
hard-real-time environment,” J. ACM, vol. 20, no. 1, pp. 46–61, Jan. 1973.

135

[50] J. W. S. Liu, Real-Time Systems. Upper Saddle River, NJ: Prentice-Hall, 2000.
[51] L. Lundberg and H. Lennerstad, “Global multiprocessor scheduling of aperiodic

tasks using time-independent priorities,” Proc. 9th IEEE Real-Time and Embedded
Technology and Applications Symposium, pp. 170-180, May 2003.

[52] N. Malcolm and W.Zhao, “Guaranteeing synchronous messages with arbitrary
deadline constraints in an FDDI network,” Proc. IEEE Conf. Local Computer
Networks, pp. 186-195, Sept. 1993.

[53] N. Malcolm and W. Zhao, “The timed-token protocol for real-time
communications,” Computer, vol. 27, no. 1, pp. 35-41, Jan. 1994.

[54] N. Malcolm, and W. Zhao, “Hard real-time communication in multiple-access
networks,” Real-Time Systems, vol. 8, no. 1, pp. 35-77, Jan. 1995.

[55] N. Malcolm, S. Kamat, and W. Zhao, “Real-time communication in FDDI
networks,” Real-Time Systems, vol. 10, no. 1, pp. 75-107, Jan. 1996.

[56] A. K. Mok and D. Chen, “A general model for real-time tasks,” Dept. Computer
Sciences, The Univ. of Texas at Austin, Technical Report TR-96-24, Oct. 1996.

[57] A. K. Mok and D. Chen, “A multiframe model for real-time tasks,” IEEE Trans.
Software Engineering, pp. 635-645, vol. 23, no. 10, Oct. 1997.

[58] J. K.-Y. Ng, “The effect of different packet size in a time-token protocol network
that supports real-time applications,” Proc. 2nd International Workshop on Real-
Time Computing Systems and Applications, pp. 34-41, Oct. 1995.

[59] J. K.-Y. Ng and V. C.-S. Lee, “Performance evaluation of transmission schemes
for real-time traffic in a high-speed timed-token MAC network,” Journal of
Systems and Software, vol. 54, no. 1, pp. 41-60, Sept. 2000.

[60] J. K.-Y. Ng and J. Liu, "Performance of local area network protocols for hard real-
time applications," Proc. IEEE Conf. Distributed Computing Systems, pp. 318-326,
May 1991.

[61] J. K.-Y. Ng and G. Nong, “Multimedia applications on FDDI networks connected
by an ATM switch,” Proc. IEEE Real-Time Technology and Applications
Symposium, pp. 60-65, May 1995.

[62] D. Oh and T. P. Bakker, “Utilization bounds for n-processor rate monotone
scheduling with static processor assignment,” Real Time Systems J., vol. 15, no. 1,
pp. 183-193, Nov. 1998.

[63] J. L. Paige, "SAFENET--A navy approach to computer networking," Proc. IEEE
Conf. Local Computer. Net., pp. 268-273, Sept. 1990.

[64] A. Parekh and R. G. Gallager, “A generalized processor sharing approach to flow
control in integrated services networks: the single node case,” IEEE/ACM Trans.
Networking, vol. 1, no. 3, pp. 344–357, Jun. 1993.

[65] D.-W. Park, S. Natarajan, A. Kanevsky, and M. J. Kim, “A generalized utilization
bound test for fixed-priority real-time scheduling," Proc. 2nd International
Workshop on Real-Time Computing Systems and Applications, pp. 73-79, Oct.
1995.

[66] D.-T. Peng and K.G. Shin, “A new performance measure for scheduling
independent real-time tasks,” J. Parallel Distributing Computing, vol. 19, no. 12,
pp. 11–16, Sept. 1993.

136

[67] H. Sariowan, “A service curve approach to performance guarantees in integrated
service networks,” Ph.D. dissertation, Dept. Electrical and Computer Engineering,
Univ. California, San Diego, 1996.

[68] H. Sariowan, R. L. Cruz, and G. C. Polyzos, “Scheduling for quality of service
guarantees via service curves,” Proc. 1995 Int. Conf. Computer Communications
and Networks, pp. 512-520, Sept. 1995.

[69] K. G. Shin and Q. Zheng, “FDDI-M: a scheme to double FDDI's ability of
supporting synchronous traffic,” IEEE Transactions on Parallel and Distributed
Systems, vol. 6, no. 11, pp. 1125-1131, Nov. 1995.

[70] J. K. Strosnider, J. Lehoczky, and L. Sha, "Advanced real-time scheduling using
the IEEE 802.5 token ring," Proc. IEEE Real-Time Systems Symposium, pp. 42-52,
Dec. 1988.

[71] A. Valenzano, P. Montuschi, and L. Ciminiera, "Some properties of timed token
medium access protocols," IEEE Trans. Software Eng., vol. 16, no. 8, pp. 858-869,
Aug. 1990.

[72] S. Wang, D. Xuan, R. Bettati, and W. Zhao, “Providing absolute differentiated
services for real-time application in static-priority scheduling networks,” Proc.
IEEE INFOCOM, pp. 669–678, Apr. 2001.

[73] J. Wu, J.-C. Liu, and W. Zhao, “On schedulability bounds of static priority
schedulers,” Proc. 11th IEEE Real-Time and Embedded Technology and
Applications Symposium, pp. 529-540, Mar. 2005.

[74] D. Xuan, C. Li, R. Bettati, J. Chen, and W. Zhao, “Utilization-based admission
control for real-time applications,” Proc. 2000 Int. Conf. Parallel Processing, pp.
251–262, Aug. 2000.

[75] S. Zhang and A. Burns, “An optimal synchronous bandwidth allocation scheme for
guaranteeing synchronous message deadlines with the timed-token MAC
protocol,” IEEE/ACM Trans. Networking, vol. 3, no. 6, pp. 729-741, Dec. 1995.

[76] S. Zhang and A. Burns, “Timing properties of the timed token MAC protocol,”
Proc. 6th International Conference on Computer Communications and Networks,
pp. 481-487, Sept. 1997.

[77] S. Zhang, A. Burns, and T.-H. Cheng, “Cycle-time properties of the timed token
medium access control protocol,” IEEE Transactions on Computers, vol. 51, no.
11, pp. 1362-1367, Nov. 2002.

[78] S. Zhang, A. Burns, J. Chen, and E. S. Lee, “Hard real-time communication with
the timed token protocol: current state and challenging problems,” Real-Time
System, vol. 27, no. 3, pp. 271-295, Sept. 2004.

[79] S. Zhang, A. Burns, A. Mehaoua, E. S. Lee, and H. Yang, “Testing the
schedulability of synchronous traffic for the timed token medium access control
protocol,” Real-Time Systems, vol. 22, no. 3, pp. 251-280, May 2002.

[80] S. Zhang and E. S. Lee, “Efficient global allocation of synchronous bandwidths for
hard real-time communication with the timed token MAC protocol,” Proc. 6th Int.
Conf. Real-Time Computing Systems and Applications, pp. 472-479, Dec. 1999.

137

[81] S. Zhang and E. S. Lee, “Determining the worst-case synchronous message
response time in FDDI networks,” Computer Journal, vol. 44, no. 1, pp. 31-41,
Nov. 2001.

[82] S. Zhang, X. Liu, and E. S. Lee, "Effect of nodes reordering on the schedulability
of real-time messages in timed token networks," IEEE Communications Letters,
vol. 4, no. 12, pp. 420-422, Dec. 2000.

[83] Q. Zheng and K. G. Shin, “Synchronous bandwidth allocation in FDDI networks,”
IEEE Transactions on Parallel and Distributed Systems, vol. 6 no. 12, pp.1332-
1338, Dec. 1995.

138

APPENDIX A

LIST OF LEMMAS

Several supporting lemmas are needed in the proofs of the major theorems.

Lemma A-1. Given s-shaped functions 1 2 , hF F F, , ... ,

 () ()0 () 01 1
max () (1) max ()h h

x a b i x ab ii i
x F x x F x≤ ≤ + ≤ ≤= =
− ≥ + ⋅ −∑ ∑ , (A-1)

where a and b are positive real numbers, a≤1, and is a non-negative integer.

Proof. First we claim that for any positive integer and s-shaped workload constraint

function F

 () ()F x F x≤ . (A-2)

Let S be the segment length of F , and let x mS ω= − , where 0 Sω≤ < , and m is

an integer. Then by (II-11),

 ()()F x F mS= . (A-3)

Since ()x mS mSω= − ≤ , we have

 () ().F x F mS≤ (A-4)

By Lemma 2-1,

139

 () ().F mS F mS≤ (A-5)

By substituting (A-4) and (A-3) into (A-5), we have (A-2) and thus the claim.

For convenience, we define

()0 () 1

max ()
.

1

h
x a b ii

x F x
Z

≤ ≤ + =
−

=
+

∑
 (A-6)

Since 1a < , we can rewrite (A-6) as

 1
0 ()

()
max .

1 1

h
ii

x a b

F xxZ =
≤ ≤ +

⎛ ⎞
⎜ ⎟= −
⎜ ⎟+ +⎝ ⎠

∑ (A-7)

Let ' /(1)x x= + . By (A-2),

 ()() (1) ' (1) (')i i iF x F x F x= + ≤ + . (A-8)

By substituting (A-8) into (A-7) and rearranging it, we get

 ()10 '
1

max ' (') .h
a iix b

Z x F x+ =≤ ≤
+

≥ −∑ (A-9)

Because () /(1)a a+ + ≥ , and because reducing the range the max operation of the

right hand side of (A-9) will not increase its value, we have

 ()()0 ' 1
max ' ' .h

x ab ii
Z x F x≤ ≤ =
≥ −∑ (A-10)

Substituting (A-10) into (A-6), we have (A-2) established. □

140

Lemma A-2. Given positive real numbers 1 2 , hx x x, ..., , and a

1 1

1 1

1

h
i h

i i h

x xa ha
x x

−
+

=

+ ≥∑ . (A-11)

Proof. Let ()
1

1 1
1 2

1
, , ...,

h
i

h
i i h

x xR x x x a
x x

−
+

=

= +∑ . Solving 0
i

R
x
∂

=
∂

 for 1, 2, ..., i h= , we can

verify that R will be minimized when
1

/1
h

i ix x a+ = . □

Lemma A-3. Consider positive real numbers 1 2 1 2, , , h hx x x y y y, ..., , ..., . If 1 0i ix x +≥ ≥ ,

for 1, 2, , 1i h= ... − , and
1

0j
ii

y
=

≥∑ , for 1, 2, , j h= ... , then

 ()
1

0
h

i i
i

x y
=

≥∑ . (A-12)

Proof. We will prove the lemma by induction on h. It is obvious that the lemma holds for

1h = . Assume that the lemma holds for h m= . We need to show that when 1h m= + ,

the lemma also holds. First, we note

 () ()
1

1 1
1 1

.
m m

i i i i m m
i i

x y x y x y
+

+ +
= =

= +∑ ∑ (A-13)

Since 1

1
0m

ii
y+

=
≥∑ , we have

 1
1

.
m

m i
i

y y+
=

≥ −∑ (A-14)

141

By substituting (A-14) into (A-13) and after some algebraic rearrangement, we get

 () ()
1

1
1 1

() .
m m

i i i m i
i i

x y x x y
+

+
= =

≥ −∑ ∑ (A-15)

Let 1'i i mx x x += − , and since 1 0i ix x +≥ ≥ , we know that 1' ' 0i ix x +≥ ≥ ,

1, 2, ..., i m= . Then, by the induction hypothesis,

 () ()1
1 1

() ' 0.
m m

i m i i i
i i

x x y x y+
= =

− = ≥∑ ∑ (A-16)

By substituting (A-16) into (A-15), we establish (A-12) for 1h m= + . Then the

lemma is proven. □

Lemma A-4. Consider positive real numbers 1 2 1 2, , , h hx x x y y y, ..., , ..., , a, and b. If

10 i ix x +≤ ≤ for 1, 2, , 1i h= ... − and (1 1/)i ix a b x≤ ≤ + for 1, 2, , i h= ... , then

 ()1
1, 2, ..., 1

1 1

1 max 0.
h h

ji i
j n ii

i i i

y y y
a x ab

−

= =
= =

− + ≥∑ ∑ ∑ (A-17)

Proof. Let

 ()1
1, 2, ..., 1

1 1

1 max .
h h

ji i
j n ii

i i i

y yZ y
a x ab

−

= =
= =

= − +∑ ∑ ∑ (A-18)

Let be the value such that

142

 ()1 1
1, 2, , 1 1

max j
i n i ii i

y y− −

= ... = =
=∑ ∑ . (A-19)

Then, must satisfy, for 1, 2, ..., m = ,

 0ii m
y

=
≥∑ (A-20)

and, for 1, 2, ..., m h= + + ,

1

0m
ii

y
= +

<∑ . (A-21)

By substituting (A-19) into (A-18), we have

 1

1
1 1

1 .
h h

i i
ii

i i i

y yZ y
a x ab

−

=
= =

= − +∑ ∑ ∑ (A-22)

Rewrite (A-22) as

1

1

1 1 1 1 () .
h

i i
i ii i

bZ y y
ab x x a

−

= =

⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎛ ⎞+
= − + − −⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠
∑ ∑ (A-23)

Let 1 1'i
i

bx
ab x
+

= − . Since 1
i i

bx a x
b
+

≤ ≤ and 1i ix x +≤ , we have

 1 ' ' 0i ix x+ ≥ ≥ . (A-24)

From (A-24), (A-20), and Lemma A-3, we have

143

 ()
1 1

1 1

1 1 ' 0.i i i
i ii

b y x y
ab x

− −

= =

⎛ ⎞⎛ ⎞+
− = ≥⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

∑ ∑ (A-25)

Similarly, we can show

 1 1 () 0.
h

i
i i

y
x a=

⎛ ⎞
− − ≥⎜ ⎟

⎝ ⎠
∑ (A-26)

By substituting (A-26) and (A-25) into (A-20), we get 0Z ≥ , where Z is defined in

(A-18). □

Lemma A-5. Consider s-shaped functions 1 2 1 hF F F −, , ..., , and positive real numbers a

and b . If a b≥ and ja S≥ , for 1, 2, ..., 1j h= − , then

()1
1 10 1

1

max ()() 1min , () 1 1

h
h x b jjj j h

j j

x F xF S b q b bq h
S a a q a a

−
− ≤ ≤ =

=

− ⎛ ⎞⎛ ⎞⎛ ⎞+
+ ≥ − + −⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠⎝ ⎠

∑
∑ , (A-27)

where ()()1, 2, ..., -1max 1, / max j h jb P=
⎢ ⎥= ⎣ ⎦ , and

1, 2, , 1

()
((1)) ()

j j
j h

j j j i

F S
q min F S F S= ... −

⎛ ⎞
= ⎜ ⎟+ −⎝ ⎠

.

Proof. By a careful observation of (A-27), we notice that (A-27) does not depend on the

labeling order of jF s . Thus, we can re-label the jF such that, for 1, 2, ..., 2j h= − ,

 1j jS S +≤ . (A-28)

144

For the purpose of convenience, we define

()1

1 0 1
1 2 1

1

max ()()
(, , ..., , ,) .

h
h x b jjj j

h
j j

x F xF S
Z F F F a b

S a

−
− ≤ ≤ =

−
=

−
= +

∑
∑ (A-29)

In the following proof, when the context is clear, we may use Z to denote

1 2 1(, , ..., , ,)hZ F F F a b− . Now we will prove the lemma in two cases, namely, 1hb S −≥

and 1hb S −< .

Case 1: 1hb P −≥ . First, we define a new variable

 /hS b= . (A-30)

From the definition of , we know that for j h<

 h jS S≥ . (A-31)

A challenge in deriving a lower bound for Z is to remove the ceiling operations in

the s-shaped functions iF s. To do so, we will first impose a tighter restriction on the

periods of iF s, namely,

1

11 hS
S

+
≤ < . (A-32)

This restriction will be removed later. Now, let us define jq , j = 1, 2, …, h,

145

()

.
((1)) ()

j j
j

j j j j

F S
q

F S F S
=

+ −
 (A-33)

By definitions of jq and q ,

 ()1, 2 ..., 1min 1.j h jq q= −= ≥ (A-34)

Now, if we let x in (A-29) take only the values of jS , 1, 2, ..., j h= , then the

value of the right hand side of (A-29) will not increase. Thus,

()1

1 1, 2, , 1

1

max ()() .

h
h j h j i jii i

i i

S F SF SZ
S a

−
− = ... =

=

−
≥ +

∑
∑ (A-35)

By (A-28) and (A-32), we have, for i j≥ ,

 () ()i j i iF S F S≤ (A-36)

and, for i j< ,

 ()() (1)i j i iF S F S≤ + . (A-37)

Substituting (A-36) and (A-36) into (A-35), we get

()1 1

1 1, 2, , 1

1

max ((1)) ()() .

j h
h j h j i i i ii i ji i

i i

S F S F SF SZ
S a

− −
− = ... = =

=

− + −
≥ +

∑ ∑
∑ (A-38)

146

Now, we will prove (A-38) for three sub-cases: 1(1 1/)a q S≤ + ,

1 1(1 1/) (1 1/) hq S a q S −+ < ≤ + , 1(1 1/) ha q S −> + .

Case 1.a: 1(1 1/)a q S≤ + . Due to the facts that a b≥ and hb S= ,

 ha S≥ . (A-39)

We can rewrite (A-38) by moving ()i iF S out of the max operation and adding a

term 1S into the max operation (with adding a term 1 /S a outside the max operation to

balance). That is,

()

1

1

1

11, 2, , 1 1

() ()

max () (((1)) ())
.

h
i i i i

i i

j

i i i i i ij h i

F S F SZ
S a

S S F S F S
S

a a

−

=

−

+= ... =

⎛ ⎞
≥ −⎜ ⎟

⎝ ⎠
⎛ ⎞

− − + −⎜ ⎟
⎝ ⎠+ +

∑

∑
 (A-40)

Let us define iε

 1() (((1)) ()).i i i i i i iS S F S F Sε += − − + − (A-41)

Substituting (A-41) into (A-40), we have

()1

1 11, 2, , 1
1

max() () .
j

n ij n ii i i i
i

i

F S F S SZ S a a a
ε−− == ...

=

∑⎛ ⎞≥ − + +⎜ ⎟
⎝ ⎠

∑ (A-42)

By (A-39), (A-28), and () 0i iF S ≥ , we have

147

 () () 0i i i i

i

F S F S
P a− ≥ . (A-43)

By (A-34), we know that / 1iq q ≤ . Thus, by (A-43), we have

 () () () ()i i i i i i i i

i i i

F S F S F S F S q
S a S a q

⎛ ⎞ ⎛ ⎞− ≥ −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

. (A-44)

Now let us substitute (A-44) into (A-42) and rearrange it as follows:

()1

1 11, 2, , 1
1

max()1 .
j

h ij h ii i
i

i i

F S SqZ S a q a a
ε−∑− == ...

=

⎛ ⎞⎛ ⎞≥ − + +⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

∑ (A-45)

By (A-33) and (A-41), we can rewrite ()i iF S as

 () ()1() ((1)) () () .i i i i i i i i i i iF P q F S F S q S S ε+= + − = − − (A-46)

Substituting (A-46) into (A-45) and rearranging it, we have

 1 1
11

1()() ,n
i ii

i

SZ q S SS a qa ω−

+=

⎛ ⎞⎛ ⎞≥ − − + +⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

∑ (A-47)

where

1

1 1 1, 2, , 1

1 1

max
.i

i

j
h h j h iii
i i

q q
S aa

εε εω
−⎛ ⎞

⎜ ⎟− − = ... =⎝ ⎠
= =

∑
= − +∑ ∑ (A-48)

Now we will show 0ω ≥ by using Lemma A-4. Let i ix S= , i iy qε= , 'a a= ,

'b q= , and 'h h= . As such, (A-48) can be rewritten as follows:

148

1

' 1 ' 1 1, 2, , ' 1

1 1

max
.' ''

i
i

i

j yh h j h ii
i i

y y
x a baω

−⎛ ⎞
⎜ ⎟− − = ... =⎝ ⎠

= =

∑
= − +∑ ∑ (A-49)

By (A-28) we have 1i ix x +≤ and 'ix a≤ . By 1(1 1/)nS a q S≤ ≤ + (the assumption

of Case 1.a) and (A-28), we have ' (1 1/ ') ia b x≤ + . Then by Lemma A-4, we have

 0.ω ≥ (A-50)

Substituting (A-50) into (A-47), we get

 1 1
11

1()() .h
i ii

i

SZ q S SS a qa
−

+=

⎛ ⎞⎛ ⎞≥ − − +⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

∑ (A-51)

We rewrite (A-51) as follows:

 1
1 1
1

(1) 1 .h i h h
i

hi

S q S SSZ q hSS a q a
− +
=

⎛ ⎞+
≥ + − − +⎜ ⎟

⎝ ⎠
∑ (A-52)

From Lemma A-2, we have

 1

1

1 1
1

(1) (1) .
hh i n h

i
hi

S q S q SS hSS a q qa
− +
=

⎛ ⎞+ +
+ ≥ ⎜ ⎟

⎝ ⎠
∑ (A-53)

By substituting (A-53) into (A-52), we get

1

(1) 1 .
h

h hq S SZ q h h
qa a

⎛ ⎞
⎛ ⎞+⎜ ⎟≥ − − +⎜ ⎟⎜ ⎟⎝ ⎠⎜ ⎟

⎝ ⎠

 (A-54)

149

Per our definition of hS in (A-30), we have hb S= . Thus, (A-54) becomes,

1

1 1 1 .
hq b bZ q h

q a a

⎛ ⎞⎛ ⎞
⎛ ⎞+⎜ ⎟⎜ ⎟≥ − + −⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

 (A-55)

(A-55) is equivalent to (A-38). Thus, we establish the lemma for Case 1.a.

Case 1.b: 1 1(1 1/) (1 1/) hq S a q S −+ < ≤ + . Let us first rewrite (A-38) as

1 1
1, 2, , 1

() ((1)) () () .j hj i i i i i i i i
j h i i j

i i

S F S F S F S F SZ max
a S a S a

− −

= ... = =

⎛ ⎞⎛ ⎞ ⎛ ⎞+
≥ + − + −⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠

∑ ∑ (A-56)

Define

 1
i

i i
i

qF S aq
⎧ ⎫Π ≡ | ≤⎨ ⎬+⎩ ⎭

, (A-57)

where iq is defined in (A-33). Π is a set of iF s whose periods are no less than

()/ (1)i iaq q + . We can rewrite (A-33) as

 () ((1)).1
i

i i i i
i

qF S F Sq= +
+

 (A-58)

By dividing iS on both sides of (A-58), we get

 () ((1)) .1
i i i i i

ii i

F S q F S
qS S

+
=

+
 (A-59)

150

By (A-57), we have, for iF ∈Π ,

 1
i i

i

q S
q a

≥
+

. (A-60)

By substituting (A-60) into (A-59) , we have, for iF ∈Π ,

 () ((1)) .i i i i

i

F S F S
S a

+
≥ (A-61)

Since

1

1

, 1 , 1

() ((1))

() ((1)) () ((1))
i i

j i i i i
i

i

i i i i i i i i

F i j F i ji i

F S F S
S a

F S F S F S F S
S a S a

−

=

∉Π ≤ < ∈Π ≤ <

⎛ ⎞+
− =⎜ ⎟

⎝ ⎠
⎛ ⎞ ⎛ ⎞+ +

− + −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

∑

∑ ∑
 (A-62)

From (A-61), we have, for iF ∈Π ,

 () ((1)) 0.i i i i

i

F S F S
S a

+
− ≥ (A-63)

By substituting (A-63) to (A-62), we have

 1

1
, 1

() ((1)) () ((1))

i

j i i i i i i i i
i

F i ji i

F S F S F S F S
S a S a

−

=
∉Π ≤ <

⎛ ⎞ ⎛ ⎞+ +
− ≥ −⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
∑ ∑ . (A-64)

By (A-61) we have, for iF ∈Π ,

151

 () ((1)) () .i i i i i i

i

F S F S F S
S a a

+
≥ ≥ (A-65)

Similarly, we have

 1

1
, 1

() () () ()

i

j i i i i i i i i
i

F i ji i

F S F S F S F S
S a S a

−

=
∉Π ≤ <

⎛ ⎞ ⎛ ⎞
− ≥ −⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
∑ ∑ . (A-66)

By substituting (A-64) and (A-66) into (A-56), we get

, 1

1, 2, ,

, 1

() ((1))

max .
() ()

i

i

j i i i i

F i j i
j h

i i i i

F i j i

S F S F S
a S a

Z
F S F S

S a

∉Π ≤ <

= ...

∉Π ≤ <

⎛ ⎞⎛ ⎞+
+ −⎜ ⎟⎜ ⎟

⎝ ⎠⎜ ⎟≥ ⎜ ⎟⎛ ⎞⎜ ⎟+ −⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

∑

∑
 (A-67)

As reducing the range of the max operation in (A-67) will not increase its value, we

have

,

,

,

() ((1))

max .
() ((1))

i

j

i

j i i i i

F i j i
j F

i i i i

F i j i

S F S F S
a S a

Z
F S F S

S a

∉Π <

∉Π

∉Π <

⎛ ⎞⎛ ⎞+
+ −⎜ ⎟⎜ ⎟

⎝ ⎠⎜ ⎟≥ ⎜ ⎟⎛ ⎞+⎜ ⎟+ −⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

∑

∑
 (A-68)

We can rewrite (A-68) as follows:

,

, ,
max ((1)) ()

() .
i

i i

i

j F j i i i i
F i j F i ji i

F i

S F S F S
F SZ

S a

∉Π
∉Π < ∉Π <

∉Π

⎛ ⎞
− + −⎜ ⎟

⎝ ⎠≥ +
∑ ∑

∑ (A-69)

152

Note that for any iF ∉Π , 1 1
i

i
i

q qP a aq q> ≥
+ +

. That is (1 1/) ia q S≤ + . In

comparison of (A-69) with (A-38), we see that (A-69) meets the requirements of Case

1.a (i.e. (1 1/) ia q S≤ +). Furthermore, the number of summation reduces from h to h -

m where m = Π is the size of Π . Then, following the same argument we made for

Case 1.a, we have,

1

1() 1 1
h mq b bZ q h m

q a a

−
⎛ ⎞⎛ ⎞

⎛ ⎞+⎜ ⎟⎜ ⎟≥ − − + −⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

, (A-70)

It can be verified that the right hand side of (A-70) is an increasing function of m .

Then by substituting 0m ≥ into (A-70), we establish the lemma for Case 1.b.

Case 1.c: 1(1 1/) na q S −> + . The proof of this sub-case is similar to the proof of Case

1.b. The difference is that in this sub-case,

 m = Π = h, (A-71)

where Π is defined in (A-57). Then (A-67) becomes

 1, 2, , max .j h
j h

S S bZ
a a a= ...

⎛ ⎞
≥ = =⎜ ⎟

⎝ ⎠
 (A-72)

Thus, we establish the lemma for Case 1.c.

153

We have proved the lemma for Case 1 with the constraint of 1 / 1 1/ .h iS S≤ ≤ +

Now, let us remove this constraint. Suppose / 1 1/hS S > + , and iF has period iS and

increments 1
iC , 2

iC , ..., L
iC , iC . Let /i h iS S= ⎢ ⎥⎣ ⎦ . Note that hS is defined in (A-30). By

(A-30), we have i ≥ . We construct 'iF with periods 'iS and increments '1
iC , '2

iC , ...,

'L
iC , '

iC , where ' (/)i i iSS = , ' (/)j j
i i iC C= , 1, 2, ..., j L= , and ' (/)i i iC C= .

Furthermore, we define 'h hS S= . Then, it can be verified that, for 1, 2, ..., -1i h= ,

 ' 11
'

h

i

S
S

+
≤ < (A-73)

and

 '(') () .'
i i i i

i i

F S F S
S S= (A-74)

Based on Lemma 2-1, and by the fact that i ≥ , we know that if (,]i i hx S S∈ ,

 1() ((1)) ((1)) ((1)) ()
1

i i
ii i i i i i iF x F S F S F S xF

+
≤ + ≤ + ≤ + = ′

+
 (A-75)

and if ((1) ,]h i ix S S∈ − ,

 () () ((1)) ()i
ii i i i i iF x F S F S xF≤ ≤ + = ′ (A-76)

Combining (A-76), (A-75) and (A-74) with (A-38), we have for all x ,

(1) h hS x S− ≤ ≤ ,

154

 1 2 1 1 2(, , ..., , ,) (', ', ..., ', ,).h hZ F F F a b Z F F F a b− ≥ (A-77)

By the results of Case 1.a, 1.b, 1.c, we have

1

1 2 1
1(', ', ..., ', ,) min , () 1 1 .h

h
b q b bZ F F F a b q h
a q a a−

⎛ ⎞⎛ ⎞⎛ ⎞+
≥ − + −⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠⎝ ⎠

 (A-78)

 By substituting (A-78) into (A-29), we complete the proof for this case.

Case 2: 1hb S −< . By definition, we have

 1= . (A-79)

 If 1b S< , then (A-38) can be verified by letting x b= . Now we will focus on the

case 1 1hS b S −< < . Let ()1, 2, ..., 1max |i h im i S b= −= ≤ . Recall that ia S≥ . Consequently, for

i m≥ and [0,]x b∈ , we have ib S< and

 () () () .i i i i

i

F x F b F S
a a S

≤ ≤ (A-80)

By substituting (A-80) into (A-29), we have

()0 1

1

max ()() .

m
m x b iii i

j i

x F xF SZ
S a

≤ ≤ =

=

−
≥ +

∑
∑ (A-81)

The right hand side of (A-81) satisfies the constraint of Case 1 for m s-shaped

functions. Thus, we have

155

11min , () 1 1m

b q b bZ q m
a q a a

⎛ ⎞⎛ ⎞⎛ ⎞+
≥ − + −⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠⎝ ⎠

 (A-82)

Since the right hand side of the above inequality is a non-increasing function of m ,

we rewrite it into

11min , () 1 1n

b q b bZ q n
a q a a

⎛ ⎞⎛ ⎞⎛ ⎞+
≥ − + −⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠⎝ ⎠

. (A-83)

Lemma A-5 now is established. □

156

APPENDIX B

PROOF OF THEOREM 3-4

Theorem 3-4. Given a static priority scheduler, a schedulability bound with 1/θ λ= is

given by

()()
()

1

1

* 1

1

1 1
1 () 1 1 11

() 1 2 3

n

n

r r
h r

r
r

rh r
rW n h h hr

rn h
λ

+

+

⎧ ≤
+⎪

⎪⎛ ⎞ = − + − < ≤⎨⎜ ⎟ +⎝ ⎠ ⎪
⎪ − = , ,...
⎩

 (B-1)

where k is the normalized deadline defined in (III-8), r kη= , η is the heterogeneity of

tasks defined in (III-11), and h is

 kh
λ

= . (B-2)

Proof. From Theorem 2-3, we have

 ()()()1
1, 2, , 0 1, min (, ,)i n mW min min Z i m

λ
⎛ ⎞∗
⎜ ⎟ Γ∈Ω = ... = , ...⎝ ⎠

≥ Γ , (B-3)

where

() ()

()

1
1 0 1

, 1

()
(, ,) .

min

j
i i

j i i

iDi x mS kS jj j
D D D

j i

max x F xF
Z i m

m S
λ

λ λ λ

−
− ≤ ≤ + =

=

−
Γ = +

+ ⋅

∑
∑ (B-4)

157

When the context of discussion in the following proof is clear, we will use Z to stand

for (, ,)Z i m Γ . In the rest of the proof, we will try to derive a lower bound of (B-4) in

form of (B-1). We will consider for two cases: k λ≤ and k λ= ∆ , separately.

Case 1: k λ≤ . Since / /i i iD kS Sλ λ= ≤ , we have ()/ ()j j j jF D F Sλ = and we can

rewrite (B-4) as

()1

1 0 () 1

1

()()
.

(1)
i

i
i x m k S jjj j

jj i

max x F xF S
Z Sk m P

λ
−

− ≤ ≤ + =

=

⎛ ⎞−⎜ ⎟= +⎜ ⎟+⎜ ⎟
⎝ ⎠

∑
∑ (B-5)

There will be three sub-cases here, depending on the value of k .

Case 1.a: 1k ≤ . By substituting the a , b , , and h in Lemma A-1 with k , iS , m , and

1i − , respectively, we have

() ()1 1

0 () 01 1
() ()

.
(1)

i i

i i
x m k P j x kS jj j

i i

max x F x max x F x

m S S

− −
≤ ≤ + ≤ ≤= =

− −
≥

+

∑ ∑
 (B-6)

Since 1λ ≥ , we have i iS Sλ ≥ . Hence,

() ()1 1

0 () 01 1
() ()

.
(1)

i i

i i
x m k P j x kS jj j

i i

max x F x max x F x

m S Sλ

− −
≤ ≤ + ≤ ≤= =

− −
≥

+

∑ ∑
 (B-7)

Substituting (B-7) into (B-5), we have

158

()1

1 0 1

1

()()
.i

i
i x kS jjj j

jj i

max x F xF S
Z Sk S

λ
λ

−
− ≤ ≤ =

=

⎛ ⎞−⎜ ⎟≥ +⎜ ⎟⎜ ⎟
⎝ ⎠

∑
∑ (B-8)

Now let us define

 ()()1, 2, , 1max 1, / max .i i j i jkS S= ... −
⎢ ⎥= ⎣ ⎦ (B-9)

By Lemma 2-1, we have for j = 1, 2, …, n,

 () () /j j j i j iF S F S≥ . (B-10)

Substituting (B-10) into (B-8), we get

()1

1 0 1

1

()()
.i

i
i x kS jjj i j

j i j i

max x F xF S
Z

k S S
λ

λ

−
− ≤ ≤ =

=

⎛ ⎞−⎜ ⎟≥ +⎜ ⎟⎜ ⎟
⎝ ⎠

∑
∑ (B-11)

By definition of priority inversion ratio, we know that

 i i iS Sλ λ≥ . (B-12)

Substituting (III-8) into the right hand side of (B-12), we have, for j = 1, 2, …, i,

 i jS Sλ ≥ . (B-13)

We would like to use Lemma A-5 to find a lower bound of (B-11) by substituting a,

b, h, and in Lemma A-5 with iSλ , ikS , i, and i , respectively. After doing that, we

159

need to verify the conditions of Lemma A-5 hold. By (B-13), we know that

i ja S Sλ= ≥ , 1, 2, ..., 1j h= − . Since k < 1 (assumption of Case 1) and 1λ ≥ , we

have a b≥ . By (B-9), we get ()()1, 2, ..., -1max 1, / maxi i h ib S=⎢ ⎥= = ⎣ ⎦ . Then, by Lemma

A-5, we get

11min () 1 1 ,ik k kqZ q i qk

λ
λ λ λ

⎛ ⎞⎛ ⎞+⎛ ⎞≥ , − + −⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠⎝ ⎠
 (B-14)

where

 1, 2, , 1

()
min .((1)) ()

j j
j i

j j j j

F S
q F S F S= ... −

⎛ ⎞
= ⎜ ⎟+ −⎝ ⎠

 (B-15)

By definition of η , (III-11), (III-10), and k < λ , we have,

 1, 2, , 1

()
min .(2) ()

j j
j i

j j j j

F S
F S F Sη = ... −

⎛ ⎞
= ⎜ ⎟−⎝ ⎠

 (B-16)

Since 1≥ , we get

 () ()j j j jF S F S≥ (B-17)

By (II-12), we have

 ((1)) () (2) ()j j j j j j j jF S F S F S F S+ − ≤ − (B-18)

 Substituting (B-17) and (B-18) into (B-15), we get

160

 q η≥ . (B-19)

It can be verified that the right hand side of (B-14) is an increasing function of q ,

but a decreasing function of i . Hence, by substituting (B-19) and i n≤ into (B-14) we

get

11min 1, min () 1 1nk k kZ n

k
λ ηη ηλ λ λ

⎛ ⎞⎛ ⎞⎛ ⎞+⎛ ⎞≥ , − + −⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠⎝ ⎠⎝ ⎠
. (B-20)

Substituting (B-20) into (B-3), we have

1

* 1(1/) min 1, min () 1 1nk k kW n
k
λ ηλ η ηλ λ λ

⎛ ⎞⎧ ⎫⎛ ⎞+⎛ ⎞≥ , − + −⎜ ⎟⎨ ⎬⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠⎩ ⎭⎝ ⎠
. (B-21)

This establishes (B-1)-(a) for Case 1.a.

Case 1.b: 1 k λ< ≤ , and there exists an h such that () i hm k S S+ < . By a similar

argument made for (B-13), we have

 () (1)i i i h i iS S S m k S m Sλ λ≥ ≥ ≥ + ≥ + . (B-22)

By substituting (B-22) into (B-5), we have

() ()1

1 0 1

1

max ()
.i

i
i x kS jjj j

jj i

x F xF S
Z Sk S

λ
λ

−
− ≤ ≤ =

=

⎛ ⎞−⎜ ⎟≥ +⎜ ⎟⎜ ⎟
⎝ ⎠

∑
∑ (B-23)

161

Note that (B-23) has exactly the same form as (B-8). Then following the same

argument made for deriving (B-20) from(B-8) , we have

11min () 1 1ik k kZ i

k
λ ηη ηλ λ λ

⎛ ⎞⎛ ⎞+⎛ ⎞≥ , − + −⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠⎝ ⎠
. (B-24)

Thus, (B-1)-(a) is established for this sub-case as well.

Case 1.c: 1 k λ< ≤ , and () i jm k S S+ ≥ , 1, 2, ..., j i= . Since 1k > , we have

() ()1 1

0 () 0 ()1 1
max () max ()

.
(1) ()

i i

i i
x m k S j x m k S jj j

i i

x F x x F x

m S m k S

− −
≤ ≤ + ≤ ≤ += =

− −
≥

+ +

∑ ∑
 (B-25)

Substituting (B-25) into (B-5), we have

()1

1 0 () 1

1

max ()()
.

()
i

i
i x m k S jjj j

jj i

x F xF S
Z Sk m k S

λ
−

− ≤ ≤ + =

=

⎛ ⎞−⎜ ⎟≥ +⎜ ⎟+⎜ ⎟
⎝ ⎠

∑
∑ (B-26)

Now let us define

 (), 1, 2, , 1min () / .i m j i i jm k S S= ... − ⎢ ⎥= +⎣ ⎦ (B-27)

Note that , 1i m ≥ . By Lemma 2-1, we have

 , , () () /i i i i m i i mF S F S≥ . (B-28)

Substituting (B-28) into (B-23), we get

162

()1

1 0 () 1,

1 ,

max ()()
.

()
i

i
i x m k S jjj i m j

j i m j i

x F xF S
Z

k S m k S
λ

−
− ≤ ≤ + =

=

⎛ ⎞−⎜ ⎟≥ +⎜ ⎟+⎜ ⎟
⎝ ⎠

∑
∑ (B-29)

We would like to use Lemma A-5 to find a lower bound of (B-29) by substituting the

a, b, h, and in Lemma A-5 with () im k S+ , () im k S+ , i, and , i m , respectively. Again,

it is easy to verify that the conditions of Lemma A-5 hold after the substitution. Thus, by

Lemma A-5, we get

11min 1 () 1 ,iqZ qi qk

λ ⎛ + ⎞⎛ ⎞≥ , −⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠
 (B-30)

where

 1, 2, , 1

()
min .((1)) ()

j j
j i

j j j j

F S
q F S F S= ... −

⎛ ⎞
= ⎜ ⎟+ −⎝ ⎠

 (B-31)

Following the same argument we made when deriving (B-19) from (B-15), we have

 q η≥ . (B-32)

Note that the right hand side of (B-30) is an increasing function of q , but a

decreasing function of i. Thus, by substituting (B-32) and i ≤ n into (B-30), we have

1 11 1min () 1 min 1 () 1 .n nZ n n

k k k
λ λ λη ηη ηη η

⎛ ⎞ ⎛ ⎞+ +⎛ ⎞ ⎛ ⎞≥ , − ≥ , −⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠
 (B-33)

163

By calculating the derivative of
11() 1 1nk kn η

η λ λ
+⎛ ⎞− + −⎜ ⎟

⎝ ⎠
 for /k λ , one can find that

it is an increasing function of /k λ . Since k λ≤ , we have

1 11 1() 1 1 () 1n nk kn nη η

η ηλ λ
+ +⎛ ⎞ ⎛ ⎞− + − ≤ −⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠

. (B-34)

By substituting (B-34) into (B-33), we have

11min 1 () 1 1 .nk kZ n

k
λ ηη η λ λ

⎛ ⎞⎛ ⎞+⎛ ⎞≥ , − + −⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠⎝ ⎠
 (B-35)

This establishes (B-1)-(a) for Case 1.c.

Case 2: k λ= ∆ , where ∆ is a positive integer, 1∆ ≥ . We can rewrite (B-4) as

() ()1

1 0 () 1

1

max ()

()
i

i
i x m k S jjj j

jj i

x F xF S
Z S m S

−
− ≤ ≤ + =

=

−∆
= +∆ + ∆

∑
∑ . (B-36)

Since 1λ ≥ and /k λ∆ = , we have k ≥ ∆ . Substituting k ≥ ∆ into (B-36), we have

() ()1

1 0 () 1

1

max ()

()
i

i
i x m k S jjj j

jj i

x F xF S
Z S m k S

−
− ≤ ≤ + =

=

−∆
≥ +∆ +

∑
∑ . (B-37)

Let us define

 (), 1, 2, ..., 1() / max .i m i j i jm k S S= −
⎢ ⎥= +⎣ ⎦ (B-38)

Knowing that iD = ikS , we know that i jS Sλ ≥ . Hence, for all 1, 2, ..., 1j i= − ,

164

 () i i i jm k S kS S Sλ+ ≥ = ∆ ≥ ∆ . (B-39)

By substituting (B-39) into (B-38), we get

 , i m ≥ ∆ . (B-40)

Note that ∆ is a positive integer, per the assumption of this case. Then by Lemma

2-1, we have

() ()

,

1 1
,

1 1

.
i m

i i
j j j i m j

j jj j

F S F S
S S

− −

= =

∆
≥∆∑ ∑ (B-41)

By substituting (B-41) into (B-37), we get

() ()

,

1
1 0 () 1,

1

max ()
.

()
i

i m

i
i x m k S jjj i m j

jj i

x F xF S
Z S m k S

−
− ≤ ≤ + =

=

−
≥ +

+

∑
∑ (B-42)

Following the same argument we made when deriving (B-30) from (B-29), we get

1 1

1 1min 1, 1 1 ,
i iq qZ qi qiq q

⎛ ⎞⎛ ⎞ ⎛ ⎞+ +⎛ ⎞ ⎛ ⎞⎜ ⎟⎜ ⎟ ⎜ ⎟≥ − ≥ −⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠⎝ ⎠
 (B-43)

where

 ,
1, 2, , 1

, ,

()
min .((1)) ()

j i m j
j i

j i m j j i m j

F S
q F S F S= ... −

⎛ ⎞
= ⎜ ⎟+ −⎝ ⎠

 (B-44)

By definition of η , (III-11), and (III-10), we have

165

 1, 2, , 1

()1 min .((1)) ()
j j

j i
j j j j

F S
F S F Sη = ... −

∆⎛ ⎞
= ⎜ ⎟∆ + − ∆∆ ⎝ ⎠

 (B-45)

Following the same argument we made when deriving (B-19) from (B-15), we have

 .q η≥ ∆ (B-46)

It can be verified that the right hand side of (B-43) is an increasing function of q ,

but a decreasing function of i . Thus, by substituting (B-47) and i n≤ into (B-43), we

have

1

1 1 .
n

Z n ηη
η

⎛ ⎞⎛ ⎞∆ +⎜ ⎟≥ ∆ −⎜ ⎟⎜ ⎟∆⎝ ⎠⎝ ⎠
 (B-47)

By substituting /k λ∆ = into (B-47), we establish (B-1)-(b). □

166

APPENDIX C

PROOF OF COROLLARY 3-4

Corollary 3-4. Given a non-preemptive static priority scheduler and a task set Γ with s-

shaped workload constraint functions, Γ is schedulable if

1
'

*
*

* *
*

* ** 1
'

*

1min 1 ' () 1 1 ;
1

, and
' () 1

is a positive integer.

n

n

k kn k
k

W
kk kn k

λ ηη λη λ λ
λ λη λη ηλ

⎧ ⎛ ⎞⎛ ⎞+⎛ ⎞, − + − ≤⎪ ⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠⎪⎛ ⎞ ⎝ ⎠= ⎨⎜ ⎟
⎝ ⎠ = ∆ ∆⎛ ⎞+⎪ −⎜ ⎟⎪ ⎝ ⎠⎩

 (C-1)

where *
1, 2, ..., 1, 2, ..., max { }/ min { }i n i i n iD Dλ = == and 'n is the number tasks with non-

dividable segment lengths.

Proof. From Theorem 2-3, we have

 ()()()*
1

1, 2, , 0 1, min (, ,)i n mW min min Z i m
λ

⎛ ⎞∗
⎜ ⎟⎜ ⎟ Γ∈Ω = ... = , ...⎝ ⎠

≥ Γ , (C-2)

where

() ()

()* * *

1
1 0 1

, 1

()
(, ,) .

min

j
i i

j i i

iDi x mS kS jj j
D D D

j i

max x F xF
Z i m

m S
λ

λ λ λ

−
− ≤ ≤ + =

=

−
Γ = +

+ ⋅

∑
∑ (C-3)

Then by following the same argument we proving Corollary 3-4, we can merge the

tasks with divisible segment lengths and reduce the task number from n to 'n . Then, on

167

the merged task set, we can follow the same argument in proving Theorem 3-4 to reach

(C-1). □

168

APPENDIX D

DERIVATION OF LEOHCZKY’S BOUND

In CHAPTER III, during parametric fitting of several existing bounds, we pointed

out that one of the bounds obtained from Theorem 3-4 is not exactly the same as the one

derived by Leohczky in [34] (n v.s. 1n −). This difference is due to the fact that

Theorem 3 is derived for general static priority schedulers without using the case

specific information. Here, we show how to derive the exact Leohczky’s bound by using

Theorem 3-4. Recall that in [34], the real-time system has a rate monotonic scheduler, n

periodic tasks (iS = iP), and iD = k iP , for i = 1, 2, …, n. With this model we can

establish the following Theorem.

Theorem D-6. Given a rate monotonic scheduler with set of periodic tasks, a

schedulability bound with 1/ kθ = is given by

 ()
1

11(1/) (1) .nkW k k n k
−∗ +≥ − (D-1)

Proof. From Theorem 2-3,

 ()()()1, 2, , 0 1, (1/) min min min (, ,) ,i n mW k Z i m∗
Γ∈Ω = ... = , ...≥ Γ (D-2)

where

169

() ()1

1 0 () 1

1

max ()
(, ,) .

(1)
i

i
i x m k P jjj j

jj i

x F xF P
Z i m P m P

−
− ≤ ≤ + =

=

−
Γ = +

+

∑
∑ (D-3)

When the context of discussion is clear, we will use Z to stand for (, ,)Z i m Γ in the

following proof. Let us define j , j = 1, 2, …, i – 1, as

 () .i
j

j

m k P
P

⎢ ⎥+= ⎢ ⎥⎣ ⎦
 (D-4)

Then we have

 1 1() (1)i i im k P P− −+ ≤ + . (D-5)

(D-5) can be rewritten as

 1 1 1()i i i iP m k P P− − −≥ + − . (D-6)

Recall that for a rate monotonic scheduler, the task priorities are assigned in the

descending order of periods. That is,

 1 1...i iP P P−≥ ≥ ≥ . (D-7)

Hence,

 1 1 (1)i i iP m k P− − ≥ + − . (D-8)

By substituting k ≥ 2 into (D-8), we have

170

 1 1 (1)i i iP m P− − ≥ + . (D-9)

Substituting (D-9) into (D-3), we get

() ()1

1 0 () 1

1 1 1

max ()
.i

i
i x m k P jjj j

jj i i

x F xF P
Z P P

−
− ≤ ≤ + =

= − −

−
≥ +

∑
∑ (D-10)

By (D-4),

 1 1 ()i i iP m k P− − ≤ + . (D-11)

Reducing the range of the max operation in (D-10) does not increase its value. As a

result, we have

() ()1 1

1
1 0 1

1 1

max ()
.i i

i
i x P jjj j

jj i

x F xF P
Z P P

− −

−
− ≤ ≤ =

= −

−
≥ +

∑
∑ (D-12)

Since 1 1i ix P− −≤ ,

 1 1 1 1() ()i i i iF x F P− − − −≤ . (D-13)

Substituting (D-13) into (D-12), we have

() ()1 1

2
1 0 1 1 11

1 1 1

max () ()
.i i

i
i x P j i i ijj j

jj i i

x F x F PF P
Z P P

− −

−
− ≤ ≤ − − −=

= − −

− −
≥ +

∑
∑ (D-14)

Rewrite (D-14) into

171

() ()1 1

2
2 0 1 1 1 1 1 1

1 1 1 1 1 1

max () () () .i i

i
i x P jjj j i i i i i

jj i i i i i

x F xF P F P F PZ P P P P
− −

−
− ≤ ≤ = − − − − −

= − − − − −

− ⎛ ⎞
≥ + + −⎜ ⎟

⎝ ⎠

∑
∑ (D-15)

Since the tasks are periodic, () ()1 1 11 1 1i i ii i iF P F P− − −− − −= . Hence,

() ()1 1

2
2 0 1

1 1 1

max ()
.i i

i
i x P jjj j

jj i i

x F xF P
Z P P

− −

−
− ≤ ≤ =

= − −

−
≥ +

∑
∑ (D-16)

Then by Lemma A-5, we have

1
11(1) () 1 ,iZ i −⎛ + ⎞⎛ ⎞≥ − −⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

 (D-17)

where

 ()1 1 1, 2, ..., - 2/ maxi i j i jP P− − =
⎢ ⎥= ⎣ ⎦ . (D-18)

By (D-4) and (D-7), k≥ . Since the right hand side of (D-17) is an increasing

function of , but a decreasing function of i . By substituting k≥ and i n≤ into

(D-17), we have

 ()
1

11(1) .nkZ k n k
−+≥ − (D-19)

Then, the theorem follows. □

172

APPENDIX E

PROOF OF COROLLARY 3-5

Corollary 3-5. Given a static priority scheduler and a task set Γ with s-shaped workload

constraint functions, Γ is schedulable if

1
'

*

1
'

1min 1 ' () 1 1 ;
1

, and is a
' () 1

positive integer.

n

n

k kn k
k

W
kk kn k

λ ηη λη λ λ
λ λη λη ηλ

⎧ ⎛ ⎞⎛ ⎞+⎛ ⎞, − + − ≤⎪ ⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎪⎛ ⎞ ⎝ ⎠⎝ ⎠= ⎨⎜ ⎟
⎝ ⎠ = ∆ ∆+⎛ ⎞⎪ −⎜ ⎟⎪ ⎝ ⎠⎩

 (E-1)

where 'n is the number tasks with non-dividable segment lengths.

Proof. From Theorem 2-3, we have

 ()()()1
1, 2, , 0 1, min (, ,)i n mW min min Z i m

λ
⎛ ⎞∗
⎜ ⎟ Γ∈Ω = ... = , ...⎝ ⎠

≥ Γ , (E-2)

where

() ()1

1 0 1

1
,

()
(, ,) .

min

j i i

j

i
ki S x mS kS jj j

k Sj
j j i

max x F xF
Z i m

k kS m S S

λ

λ

λ λ

−
− ≤ ≤ + =

=

−
Γ = +

⎛ ⎞+ ⋅ ⎜ ⎟
⎝ ⎠

∑
∑ (E-3)

When the context of discussion in the following proof is clear, we will use Z to

denote (, ,)Z i m Γ .

173

Let construct a new task set 'Γ , by merging iT , and jT , where iS = imS , m is an

integer, into 'iT with 'iS = iS , '(') () ()i i i i j jF S F S F m S= + , 1, 2, ...= . It can be

verified that

 () () ()'() () ' .j j j
k kk k k

i i j i i j jF S mF S F S F mS F Sλ λλ λ λ
+ ≥ + = (E-4)

and

 () () ' ().i j iF x F x F x+ ≥ (E-5)

So we have

 (, ,) (, , ').Z i m Z i mΓ ≥ Γ (E-6)

By continuing this process, we can find a task set *Γ with 'n tasks with 'n periods

that are non-dividable each other, yet

 *(, ,) (, ,).Z i m Z i mΓ ≥ Γ (E-7)

Then follow the same procedure in proving the Theorem 3-4, we have the theorem. □

174

VITA

Jianjia Wu was born in Inner Mongolia, the People's Republic of China. He received

his Bachelor of Science degree from Tianjin University, Tianjin, China, in July 1997,

and Master of Science degree from the Beijing University of Aeronautics and

Astronautics, Beijing, China, in March 2000, both in computer science. His research

interests include Real-Time Systems, Grid Computing, and Network Security. He can be

reached care of Dr. Wei Zhao, Department of Computer Science, Texas A&M

University, College Station, TX, 77845. His email address is jianjiawu@tamu.edu.

