207 research outputs found

    MEET: Mobility-Enhanced Edge inTelligence for Smart and Green 6G Networks

    Full text link
    Edge intelligence is an emerging paradigm for real-time training and inference at the wireless edge, thus enabling mission-critical applications. Accordingly, base stations (BSs) and edge servers (ESs) need to be densely deployed, leading to huge deployment and operation costs, in particular the energy costs. In this article, we propose a new framework called Mobility-Enhanced Edge inTelligence (MEET), which exploits the sensing, communication, computing, and self-powering capabilities of intelligent connected vehicles for the smart and green 6G networks. Specifically, the operators can incorporate infrastructural vehicles as movable BSs or ESs, and schedule them in a more flexible way to align with the communication and computation traffic fluctuations. Meanwhile, the remaining compute resources of opportunistic vehicles are exploited for edge training and inference, where mobility can further enhance edge intelligence by bringing more compute resources, communication opportunities, and diverse data. In this way, the deployment and operation costs are spread over the vastly available vehicles, so that the edge intelligence is realized cost-effectively and sustainably. Furthermore, these vehicles can be either powered by renewable energy to reduce carbon emissions, or charged more flexibly during off-peak hours to cut electricity bills.Comment: This paper has been accepted by IEEE Communications Magazin

    A survey of multi-access edge computing in 5G and beyond : fundamentals, technology integration, and state-of-the-art

    Get PDF
    Driven by the emergence of new compute-intensive applications and the vision of the Internet of Things (IoT), it is foreseen that the emerging 5G network will face an unprecedented increase in traffic volume and computation demands. However, end users mostly have limited storage capacities and finite processing capabilities, thus how to run compute-intensive applications on resource-constrained users has recently become a natural concern. Mobile edge computing (MEC), a key technology in the emerging fifth generation (5G) network, can optimize mobile resources by hosting compute-intensive applications, process large data before sending to the cloud, provide the cloud-computing capabilities within the radio access network (RAN) in close proximity to mobile users, and offer context-aware services with the help of RAN information. Therefore, MEC enables a wide variety of applications, where the real-time response is strictly required, e.g., driverless vehicles, augmented reality, robotics, and immerse media. Indeed, the paradigm shift from 4G to 5G could become a reality with the advent of new technological concepts. The successful realization of MEC in the 5G network is still in its infancy and demands for constant efforts from both academic and industry communities. In this survey, we first provide a holistic overview of MEC technology and its potential use cases and applications. Then, we outline up-to-date researches on the integration of MEC with the new technologies that will be deployed in 5G and beyond. We also summarize testbeds and experimental evaluations, and open source activities, for edge computing. We further summarize lessons learned from state-of-the-art research works as well as discuss challenges and potential future directions for MEC research

    Vehicle as a Service (VaaS): Leverage Vehicles to Build Service Networks and Capabilities for Smart Cities

    Full text link
    Smart cities demand resources for rich immersive sensing, ubiquitous communications, powerful computing, large storage, and high intelligence (SCCSI) to support various kinds of applications, such as public safety, connected and autonomous driving, smart and connected health, and smart living. At the same time, it is widely recognized that vehicles such as autonomous cars, equipped with significantly powerful SCCSI capabilities, will become ubiquitous in future smart cities. By observing the convergence of these two trends, this article advocates the use of vehicles to build a cost-effective service network, called the Vehicle as a Service (VaaS) paradigm, where vehicles empowered with SCCSI capability form a web of mobile servers and communicators to provide SCCSI services in smart cities. Towards this direction, we first examine the potential use cases in smart cities and possible upgrades required for the transition from traditional vehicular ad hoc networks (VANETs) to VaaS. Then, we will introduce the system architecture of the VaaS paradigm and discuss how it can provide SCCSI services in future smart cities, respectively. At last, we identify the open problems of this paradigm and future research directions, including architectural design, service provisioning, incentive design, and security & privacy. We expect that this paper paves the way towards developing a cost-effective and sustainable approach for building smart cities.Comment: 32 pages, 11 figure

    Project BeARCAT : Baselining, Automation and Response for CAV Testbed Cyber Security : Connected Vehicle & Infrastructure Security Assessment

    Get PDF
    Connected, software-based systems are a driver in advancing the technology of transportation systems. Advanced automated and autonomous vehicles, together with electrification, will help reduce congestion, accidents and emissions. Meanwhile, vehicle manufacturers see advanced technology as enhancing their products in a competitive market. However, as many decades of using home and enterprise computer systems have shown, connectivity allows a system to become a target for criminal intentions. Cyber-based threats to any system are a problem; in transportation, there is the added safety implication of dealing with moving vehicles and the passengers within

    End-to-End Data Analytics Framework for 5G Architecture

    Get PDF
    Data analytics can be seen as a powerful tool for the fifth-generation (5G) communication system to enable the transformation of the envisioned challenging 5G features into a reality. In the current 5G architecture, some first features toward this direction have been adopted by introducing new functions in core and management domains that can either run analytics on collected communication-related data or can enhance the already supported network functions with statistics collection and prediction capabilities. However, possible further enhancements on 5G architecture may be required, which strongly depend on the requirements as set by vertical customers and the network capabilities as offered by the operator. In addition, the architecture needs to be flexible in order to deal with network changes and service adaptations as requested by verticals. This paper explicitly describes the requirements for deploying data analytics in a 5G system and subsequently presents the current status of standardization activities. The main contribution of this paper is the investigation and design of an integrated data analytics framework as a key enabling technology for the service-based architectures (SBAs). This framework introduces new functional entities for application-level, data network, and access-related analytics to be integrated into the already existing analytics functionalities and examines their interactions in a service-oriented manner. Finally, to demonstrate predictive radio resource management, we showcase a particular implementation for application and radio access network analytics, based on a novel database for collecting and analyzing radio measurements
    corecore