2,295 research outputs found

    Assessing ATM performance with simulation and optimisation tools: The APACHE project

    Get PDF
    The work presented in this paper was partially funded by the SESAR Joint Undertaking under grant agreement No 699338, as part of the European Unions Horizon 2020 research and innovation programme: APACHE project (http://apache-sesar.barcelonatech-upc.eu/en).This paper describes the objectives and methodology of the APACHE project, a SESAR Exploratory Research project proposing a new framework to assess European air traffic management (ATM) performance. This framework integrates an ATM simulator prototype used to synthesise scenarios for preops performance assessment, but also needed to compute some novel performance indicators, which require from optimisation or simulation capabilities. This simulator embeds a trajectory planner; an airspace planner; a traffic and capacity planner; and finally, a performance analyser module. An illustrative example is given, showing the successful integration of all these modules, where an initial performance assessment is done for a realistic data set of 24h of traffic over the FABEC airspace.Peer ReviewedPostprint (published version

    Training of Crisis Mappers and Map Production from Multi-sensor Data: Vernazza Case Study (Cinque Terre National Park, Italy)

    Get PDF
    This aim of paper is to presents the development of a multidisciplinary project carried out by the cooperation between Politecnico di Torino and ITHACA (Information Technology for Humanitarian Assistance, Cooperation and Action). The goal of the project was the training in geospatial data acquiring and processing for students attending Architecture and Engineering Courses, in order to start up a team of "volunteer mappers". Indeed, the project is aimed to document the environmental and built heritage subject to disaster; the purpose is to improve the capabilities of the actors involved in the activities connected in geospatial data collection, integration and sharing. The proposed area for testing the training activities is the Cinque Terre National Park, registered in the World Heritage List since 1997. The area was affected by flood on the 25th of October 2011. According to other international experiences, the group is expected to be active after emergencies in order to upgrade maps, using data acquired by typical geomatic methods and techniques such as terrestrial and aerial Lidar, close-range and aerial photogrammetry, topographic and GNSS instruments etc.; or by non conventional systems and instruments such us UAV, mobile mapping etc. The ultimate goal is to implement a WebGIS platform to share all the data collected with local authorities and the Civil Protectio

    MODELS AND SOLUTION ALGORITHMS FOR EQUITABLE RESOURCE ALLOCATION IN AIR TRAFFIC FLOW MANAGEMENT

    Get PDF
    Population growth and economic development lead to increasing demand for travel and pose mobility challenges on capacity-limited air traffic networks. The U.S. National Airspace System (NAS) has been operated near the capacity, and air traffic congestion is expected to remain as a top concern for the related system operators, passengers and airlines. This dissertation develops a number of model reformulations and efficient solution algorithms to address resource allocation problems in air traffic flow management, while explicitly accounting for equitable objectives in order to encourage further collaborations by different stakeholders. This dissertation first develops a bi-criteria optimization model to offload excess demand from different competing airlines in the congested airspace when the predicted traffic demand is higher than available capacity. Computationally efficient network flow models with side constraints are developed and extensively tested using datasets obtained from the Enhanced Traffic Management System (ETMS) database (now known as the Traffic Flow Management System). Representative Pareto-optimal tradeoff frontiers are consequently generated to allow decision-makers to identify best-compromising solutions based on relative weights and systematical considerations of both efficiency and equity. This dissertation further models and solves an integrated flight re-routing problem on an airspace network. Given a network of airspace sectors with a set of waypoint entries and a set of flights belonging to different air carriers, the optimization model aims to minimize the total flight travel time subject to a set of flight routing equity, operational and safety requirements. A time-dependent network flow programming formulation is proposed with stochastic sector capacities and rerouting equity for each air carrier as side constraints. A Lagrangian relaxation based method is used to dualize these constraints and decompose the original complex problem into a sequence of single flight rerouting/scheduling problems. Finally, within a multi-objective utility maximization framework, the dissertation proposes several practically useful heuristic algorithms for the long-term airport slot assignment problem. Alternative models are constructed to decompose the complex model into a series of hourly assignment sub-problems. A new paired assignment heuristic algorithm is developed to adapt the round robin scheduling principle for improving fairness measures across different airlines. Computational results are presented to show the strength of each proposed modeling approach

    Environmentally-Aware and Energy-Efficient Multi-Drone Coordination and Networking for Disaster Response

    Get PDF
    In a Disaster Response Management (DRM) Scenario, Communication and Coordination Are Limited, and Absence of Related Infrastructure Hinders Situational Awareness. Unmanned Aerial Vehicles (UAVs) or Drones Provide New Capabilities for DRM to Address These Barriers. However, There is a Dearth of Works that Address Multiple Heterogeneous Drones Collaboratively Working Together to Form a Flying Ad-Hoc Network (FANET) with Air-To-Air and Air-To-Ground Links that Are Impacted By: (I) Environmental Obstacles, (Ii) Wind, and (Iii) Limited Battery Capacities. in This Paper, We Present a Novel Environmentally-Aware and Energy-Efficient Multi-Drone Coordination and Networking Scheme that Features a Reinforcement Learning (RL) based Location Prediction Algorithm Coupled with a Packet Forwarding Algorithm for Drone-To-Ground Network Establishment. We Specifically Present Two Novel Drone Location-Based Solutions (I.e., Heuristic Greedy, and Learning-Based) in Our Packet Forwarding Approach to Support Application Requirements. These Requirements Involve Improving Connectivity (I.e., Optimize Packet Delivery Ratio and End-To-End Delay) Despite Environmental Obstacles, and Improving Efficiency (I.e., by Lower Energy Use and Time Consumption) Despite Energy Constraints. We Evaluate Our Scheme with State-Of-The-Art Networking Algorithms in a Trace-Based DRM FANET Simulation Testbed Featuring Rural and Metropolitan Areas. Results Show that Our Strategy overcomes Obstacles and Can Achieve 81-To-90% of Network Connectivity Performance Observed under No Obstacle Conditions. in the Presence of Obstacles, Our Scheme Improves the Network Connectivity Performance by 14-To-38% While Also Providing 23-To-54% of Energy Savings in Rural Areas; the Same in Metropolitan Areas Achieved an Average of 25% Gain When Compared with Baseline Obstacle Awareness Approaches with 15-To-76% of Energy Savings

    Robust aircraft trajectory optimization under meteorological uncertainty

    Get PDF
    Mención Internacional en el título de doctorThe Air Traffic Management (ATM) system in the busiest airspaces in the world is currently being overhauled to deal with multiple capacity, socioeconomic, and environmental challenges. One major pillar of this process is the shift towards a concept of operations centered on aircraft trajectories (called Trajectory-Based Operations or TBO in Europe) instead of rigid airspace structures. However, its successful implementation (and, thus, the realization of the associated improvements in ATM performance) rests on appropriate understanding and management of uncertainty. Due to its complex socio-technical structure, the design and operations of the ATM system are heavily impacted by uncertainty, proceeding from multiple sources and propagating through the interconnections between its subsystems. One major source of ATM uncertainty is weather. Due to its nonlinear and chaotic nature, a number of meteorological phenomena of interest cannot be forecasted with complete accuracy at arbitrary lead times, which leads to uncertainty or disruption in individual air and ground operations that propagates to all ATM processes. Therefore, in order to achieve the goals of SESAR and similar programs, it is necessary to deal with meteorological uncertainty at multiple scales, from the trajectory prediction and planning processes to flow and traffic management operations. This thesis addresses the problem of single-aircraft flight planning considering two important sources of meteorological uncertainty: wind prediction error and convective activity. As the actual wind field deviates from its forecast, the actual trajectory will diverge in time from the planned trajectory, generating uncertainty in arrival times, sector entry and exit times, and fuel burn. Convective activity also impacts trajectory predictability, as it leads pilots to deviate from their planned route, creating challenging situations for controllers. In this work, we aim to develop algorithms and methods for aircraft trajectory optimization that are able to integrate information about the uncertainty in these meteorological phenomena into the flight planning process at both pre-tactical (before departure) and tactical horizons (while the aircraft is airborne), in order to generate more efficient and predictable trajectories. To that end, we frame flight planning as an optimal control problem, modeling the motion of the aircraft with a point-mass model and the BADA performance model. Optimal control methods represent a flexible and general approach that has a long history of success in the aerospace field. As a numerical scheme, we use direct methods, which can deal with nonlinear systems of moderate and high-dimensional state spaces in a computationally manageable way. Nevertheless, while this framework is well-developed in the context of deterministic problems, the techniques for the solution of practical optimal control problems under uncertainty are not as mature, and the methods proposed in the literature are not applicable to the flight planning problem as it is now understood. The first contribution of this thesis addresses this challenge by introducing a framework for the solution of general nonlinear optimal control problems under parametric uncertainty. It is based on an ensemble trajectory scheme, where the trajectories of the system under multiple scenarios are considered simultaneously within the same dynamical system and the uncertain optimal control problem is turned into a large conventional optimal control problem that can be then solved by standard, well-studied direct methods in optimal control. We then employ this approach to solve the robust flight plan optimization problem at the planning horizon. In order to model uncertainty in the wind and estimating the probability of convective conditions, we employ Ensemble Prediction System (EPS) forecasts, which are composed by multiple predictions instead of a single deterministic one. The resulting method can be used to optimize flight plans for maximum expected efficiency according to the cost structure of the airline; additionally, predictability and exposure to convection can be incorporated as additional objectives. The inherent tradeoffs between these objectives can be assessed with this methodology. The second part of this thesis presents a solution for the rerouting of aircraft in uncertain convective weather scenarios at the tactical horizon. The uncertain motion of convective weather cells is represented with a stochastic model that has been developed from the output of a deterministic satellite-based nowcast product, Rapidly Developing Thunderstorms (RDT). A numerical optimal control framework, based on the pointmass model with the addition of turn dynamics, is employed for optimizing efficiency and predictability of the proposed trajectories in the presence of uncertainty about the future evolution of the storm. Finally, the optimization process is initialized by a randomized heuristic procedure that generates multiple starting points. The combined framework is able to explore and as exploit the space of solution trajectories in order to provide the pilot or the air traffic controller with a set of different suggested avoidance trajectories, as well as information about their expected cost and risk. The proposed methods are tested on example scenarios based on real data, showing how different user priorities lead to different flight plans and what tradeoffs are then present. These examples demonstrate that the solutions described in this thesis are adequate for the problems that have been formulated. In this way, the flight planning process can be enhanced to increase the efficiency and predictability of individual aircraft trajectories, which would lead to higher predictability levels of the ATM system and thus improvements in multiple performance indicators.El sistema de gestión del tráfico aéreo (Air Traffic Management, ATM) en los espacios aéreos más congestionados del mundo está siendo reformado para lidiar con múltiples desafíos socioeconómicos, medioambientales y de capacidad. Un pilar de este proceso es el gradual reemplazo de las estructuras rígidas de navegación, basadas en aerovías y waypoints, hacia las operaciones basadas en trayectorias. No obstante, la implementación exitosa de este concepto y la realización de las ganancias esperadas en rendimiento ATM requiere entender y gestionar apropiadamente la incertidumbre. Debido a su compleja estructura socio-técnica, el diseño y operaciones del sistema ATM se encuentran marcadamente influidos por la incertidumbre, que procede de múltiples fuentes y se propaga por las interacciones entre subsistemas y operadores humanos. Uno de los principales focos de incertidumbre en ATM es la meteorología. Debido a su naturaleza no-linear y caótica, muchos fenómenos de interés no pueden ser pronosticados con completa precisión en cualquier horizonte temporal, lo que crea disrupción en las operaciones en aire y tierra que se propaga a otros procesos de ATM. Por lo tanto, para lograr los objetivos de SESAR e iniciativas análogas, es imprescindible tener en cuenta la incertidumbre en múltiples escalas espaciotemporales, desde la predicción de trayectorias hasta la planificación de flujos y tráfico. Esta tesis aborda el problema de la planificación de vuelo de aeronaves individuales considerando dos fuentes importantes de incertidumbre meteorológica: el error en la predicción del viento y la actividad convectiva. Conforme la realización del viento se desvía de su previsión, la trayectoria real se desviará temporalmente de la planificada, lo que implica incertidumbre en tiempos de llegada a sectores y aeropuertos y en consumo de combustible. La actividad convectiva también tiene un impacto en la predictibilidad de las trayectorias, puesto que obliga a los pilotos a desviarse de sus planes de vuelo para evitarla, cambiado así la situación de tráfico. En este trabajo, buscamos desarrollar métodos y algoritmos para la optimización de trayectorias que puedan integrar información sobre la incertidumbre en estos fenómenos meteorológicos en el proceso de diseño de planes de vuelo en horizontes de planificación (antes del despegue) y tácticos (durante el vuelo), con el objetivo de generar trayectorias más eficientes y predecibles. Con este fin, formulamos la planificación de vuelo como un problema de control óptimo, modelando la dinámica del avión con un modelo de masa puntual y el modelo de rendimiento BADA. El control óptimo es un marco flexible y general con un largo historial de éxito en el campo de la ingeniería aeroespacial. Como método numérico, empleamos métodos directos, que son capaces de manejar sistemas dinámicos de alta dimensión con costes computacionales moderados. No obstante, si bien esta metodología es madura en contextos deterministas, la solución de problemas prácticas de control óptimo bajo incertidumbre en la literatura no está tan desarrollada, y los métodos propuestos en la literatura no son aplicables al problema de interés. La primera contribución de esta tesis hace frente a este reto mediante la introducción de un marco numérico para la resolución de problemas generales de control óptimo no-lineal bajo incertidumbre paramétrica. El núcleo de este método es un esquema de conjunto de trayectorias, en el que las trayectorias del sistema dinámico bajo múltiples escenarios son consideradas de forma simultánea, y el problema de control óptimo bajo incertidumbre es así transformado en un problema convencional que puede ser tratado mediante métodos existentes en control óptimo. A continuación, empleamos este método para resolver el problema de la planificación de vuelo robusta. La incertidumbre en el viento y la probabilidad de ocurrencia de condiciones convectivas son modeladas mediante el uso de previsiones de conjunto o ensemble, compuestas por múltiples predicciones en lugar de una única previsión determinista. Este método puede ser empleado para maximizar la eficiencia esperada de los planes de vuelo de acuerdo a la estructura de costes de la aerolínea; además, la predictibilidad de la trayectoria y la exposición a la convección pueden ser incorporadas como objetivos adicionales. El trade-off entre estos objetivos puede ser evaluado mediante la metodología propuesta. La segunda parte de la tesis presenta una solución para reconducir aviones en escenarios tormentosos en un horizonte táctico. La evolución de las células convectivas es representada con un modelo estocástico basado en las proyecciones de Rapidly Developing Thunderstorms (RDT), un sistema determinista basado en imágenes de satélite. Este modelo es empleado por un método de control óptimo numérico, basado en un modelo de masa puntual en el que se modela la dinámica de viraje, con el objetivo de maximizar la eficiencia y predictibilidad de la trayectoria en presencia de incertidumbre sobre la evolución futura de las tormentas. Finalmente, el proceso de optimizatión es inicializado por un método heurístico aleatorizado que genera múltiples puntos de inicio para las iteraciones del optimizador. Esta combinación permite explorar y explotar el espacio de trayectorias solución para proporcionar al piloto o al controlador un conjunto de trayectorias propuestas, así como información útil sobre su coste y el riesgo asociado. Los métodos propuestos son probados en escenarios de ejemplo basados en datos reales, ilustrando las diferentes opciones disponibles de acuerdo a las prioridades del planificador y demostrando que las soluciones descritas en esta tesis son adecuadas para los problemas que se han formulado. De este modo, es posible enriquecer el proceso de planificación de vuelo para incrementar la eficiencia y predictibilidad de las trayectorias individuales, lo que contribuiría a mejoras en el rendimiento del sistema ATM.These works have been financially supported by Universidad Carlos III de Madrid through a PIF scholarship; by Eurocontrol, through the HALA! Research Network grant 10-220210-C2; by the Spanish Ministry of Economy and Competitiveness (MINECO)'s R&D program, through the OptMet project (TRA2014-58413-C2-2-R); and by the European Commission's SESAR Horizon 2020 program, through the TBO-Met project (grant number 699294).Programa de Doctorado en Mecánica de Fluidos por la Universidad Carlos III de Madrid; la Universidad de Jaén; la Universidad de Zaragoza; la Universidad Nacional de Educación a Distancia; la Universidad Politécnica de Madrid y la Universidad Rovira iPresidente: Damián Rivas Rivas.- Secretario: Xavier Prats Menéndez.- Vocal: Benavar Sridha
    corecore