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Environmentally-Aware and Energy-Efficient
Multi-Drone Coordination and Networking for

Disaster Response
Chengyi Qu , Francesco Betti Sorbelli , Member, IEEE, Rounak Singh,

Prasad Calyam , Senior Member, IEEE, and Sajal K. Das , Fellow, IEEE

Abstract—In a disaster response management (DRM) scenario,
communication and coordination are limited, and absence of
related infrastructure hinders situational awareness. Unmanned
aerial vehicles (UAVs) or drones provide new capabilities for
DRM to address these barriers. However, there is a dearth of
works that address multiple heterogeneous drones collaboratively
working together to form a flying ad-hoc network (FANET) with
air-to-air and air-to-ground links that are impacted by: (i) envi-
ronmental obstacles, (ii) wind, and (iii) limited battery capacities.
In this paper, we present a novel environmentally-aware and
energy-efficient multi-drone coordination and networking scheme
that features a Reinforcement Learning (RL) based location
prediction algorithm coupled with a packet forwarding algo-
rithm for drone-to-ground network establishment. We specifically
present two novel drone location-based solutions (i.e., heuristic
greedy, and learning-based) in our packet forwarding approach
to support application requirements. These requirements involve
improving connectivity (i.e., optimize packet delivery ratio and
end-to-end delay) despite environmental obstacles, and improving
efficiency (i.e., by lower energy use and time consumption) despite
energy constraints. We evaluate our scheme with state-of-the-art
networking algorithms in a trace-based DRM FANET simulation
testbed featuring rural and metropolitan areas. Results show that
our strategy overcomes obstacles and can achieve 81-to-90% of
network connectivity performance observed under no obstacle
conditions. In the presence of obstacles, our scheme improves
the network connectivity performance by 14-to-38% while also
providing 23-to-54% of energy savings in rural areas; the same
in metropolitan areas achieved an average of 25% gain when
compared with baseline obstacle awareness approaches with 15-
to-76% of energy savings.

Index Terms—drone mobility management, disaster response,
reliable network construction, learning-based scheduling

I. INTRODUCTION

Recently, unmanned aerial vehicles (UAVs) or drones have
gained attention from both government and industry com-
munities for a plethora of civil applications such as smart
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agriculture [1], traffic management [2], parcel delivery [3],
and disaster response [4]. In these application scenarios,
multiple drones with specific capabilities can execute complex
and critical tasks, such as: detecting bugs in orchards [5],
regulating the traffic in smart cities, delivering small parcels to
customers, and saving lives in search and rescue operations. To
accomplish these tasks, drones utilize a flying ad-hoc network
(FANET), which involves them to be flying nodes within a
network controlled by a ground control station (GCS). The
GCS acts as a main stationary node that also guides the
communication and coordination between the fleet of drones
to meet application demands.

Barring FAA or local authorities restrictions [6], drones can
potentially fly almost everywhere, and execute challenging
tasks in a cooperative fashion [7] in order to, e.g., deliver
first-aid and relief goods to first responders, capture images
and videos above affected areas of interest, and update maps
of disaster scenes. However, drones are energy-constrained
vehicles and can only operate for a limited amount of time
due to the small capacity of batteries, and hence they can-
not continuously perform the assigned tasks. Therefore, their
flights should be carefully optimized taking into account their
number and the surrounding environment conditions (e.g.,
the terrain or current weather). Moreover, maintenance of
the connection between drones and the GCS, as well as the
FANET’s proper functioning are primary concerns in these
applications. State-of-the-art approaches aim to establish and
maintain the FANET within energy constraints [8], [9], com-
putation [10], [11], and communication [12], [13] capabilities.
However, they do not consider external weather factors such as
humidity or wind that could negatively influence the drones’
energy consumption during their flights [14]. These factors
could indirectly interrupt the air-to-air (A2A) and/or the air-to-
ground (A2G) network communications between drones and
the GCS. The interruption can be severe if, e.g., the drones
remain without available energy from their batteries or are
limited in their mobility due to wind conditions.

Another major challenge in the mobility management of
drones occurs due to possible obstacles (e.g., trees, buildings)
that can obstruct the radio signals and impact the FANET
operation/efficiency in terms of connectivity, throughput, and
latency. In other words, obstacles can influence the A2A and
the A2G network communications between drones and the
GCS, respectively, depending on their relative positions [15].
In fact, the presence of obstacles can disconnect the commu-
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nication links, increase the packet loss, and therefore increase
the drone’s energy wastage. In such cases, it is necessary to
suitably plan routes for drones in order to keep and maintain
reliable communications among the drones and the GCS.

In a disaster response management (DRM) scenario, it is
common to have a heterogeneous drone setup to handle differ-
ent tasks. For instance, large drones can carry goods to assist
the victims, small drones can monitor the terrain, and other
drones can bring network connectivity to the ground users
if the fixed ground infrastructure is destroyed. Basically, the
objective of drones in a DRM scenario is to adapt the ‘drone
assistance paradigm’ [16], where they monitor areas in order
to provide assistance to victims, and provide communications
when the existing infrastructure is damaged. Drones spend
energy not only to fly, but also to complete their assigned tasks.
In DRM scenarios, when earthquakes or tornadoes happen,
usually the terrain and/or the weather are not optimal for
assisting people, thus affecting the use of drones. Hence, in the
presence of obstacles and/or bad weather conditions, drones
also have to properly use their residual energy for network
establishment by acting as intermediate nodes to forward
packets. This is done to keep alive the whole FANET, which
is especially critical in DRM scenarios.

To the best of our knowledge, there is a dearth of works that
address networking problems of using heterogeneous drones
that cooperatively work in a DRM scene with environmental
awareness. Particularly, there is a pent-up need for works
on improving drones’ geographical obstacles avoidance and
efficient energy usage, while maintaining desired FANET
connection performance in DRM scenarios.

In this paper, we present a novel environmentally-aware
and energy-efficient multi-drone coordination and networking
scheme that features a location-aided prediction algorithm
coupled with a packet forwarding algorithm for drone-to-
ground network establishment. Our novelty is in the approach
of using Reinforcement Learning (RL) to estimate future
drones’ trajectories based on their coordination status and
their on-board sensors information. Specifically, once the
intermediate drone accurately predicts the position of the
destination drone, then a list of preliminary decisions on
where to forward packets is made. We consider various drone
mobility models such as Gaussian Markov Model (GMM),
Mission-Based Plan Model (MBPM), and Random Way Point
Model (RWPM) within our prediction technique to address
the DRM application requirements. Our packet forwarding
algorithm features two drone location-based solutions, i.e.,
heuristic greedy and learning-based that can support hetero-
geneous drone operation requirements under DRM scenarios.
The operation requirements involve improving A2A and A2G
network connectivity (i.e., optimized packet delivery ratio and
reduced end-to-end delay) despite environmental obstacles,
and improving efficiency (i.e., by lowering energy use and
time consumption) despite battery capacity limitations in re-
establishing network connectivity.

We evaluate our proposed scheme by extending the work
in [8], and comparing it with state-of-the-art multi-drone net-
working algorithms in a trace-based DRM FANET simulation
testbed [17]. To realize various DRM environment settings,

we simulate both rural and metropolitan areas in terms of the
relative height between drone swarms and the average physical
building height. We analyze the performance by evaluating
network (i.e., packet delivery ratio, end-to-end delay) and en-
ergy (i.e., energy usage proportion for communication) metrics
in diverse experimental settings in terms of different transmis-
sion range, amount of drones, physical obstacles densities and
heights. Lastly, we present results to show how our strategy
overcomes bottlenecks due to obstacles and can achieve better
network connectivity performance observed under obstacle-
free conditions. Further, we present results that show how our
scheme outperforms state-of-the-art algorithms in the presence
of obstacles in terms of improving network connectivity per-
formance while also providing significant energy savings.

The rest of the paper is organized as follows: Section II
presents related work. Section III provides an overview of our
DRM coordination and networking problem. Section IV intro-
duces the wind and obstacles models along with the solution
approach. Section V introduces our location prediction model.
Section VI details our heuristic-based and learning-based
algorithms. Section VII presents our performance evaluation
results. Section VIII concludes the paper.

II. RELATED WORK

A. UAV-based Schemes in DRM scenarios

Handling of DRM involves, e.g., search and rescue oper-
ations that must be managed as promptly and efficiently as
possible to save human lives. In this regard, the major problem
is the lack of technologies that can provide the necessary
situational awareness for the incident commanders making
decisions to deploy first responder resources [18], [19]. State-
of-the-art techniques deal with outdoor users assuming the
knowledge of their 2D coordinates. In DRM situations such
as floods, cyclones, or building fires, users are stuck in small
or tall buildings situated in a 3D space. In these cases, it
is possible to interact and rescue reliably, if the features are
known a priori [12], [20].

Drones, compared to ground-based vehicles such as robots
or cars, provide unique advantages such as the ability to ob-
serve devastated areas from the sky, flying above possible ruins
and avalanches. Additionally, drones can provide monitoring
and logistic services to address handling of DRM scenarios in
the absence of traditional communication infrastructure [21],
[22]. By utilizing a high definition camera on drone, works
in [23] utilized pre-and post-disaster images to validate floods
in a region to provide timely aid and relief to stranded people.
Moreover, with the help of multi-drone and ground devices,
works in [24] created a flight plan in the form of the Vehicle
Routing Problem (VRP) in order to solve a problem on quickly
and efficiently collecting messages for all refugees dispersed
in shelters after disasters occur. Our proposed communication
and networking scheme can be used in works such as [25],
[26] and help with achieving drones’ monitoring function in
order to provide situational awareness for rapid and effective
decision making to handle DRM. Although reliable commu-
nication architectures have been studied in [27], [28] in the
context of drones, they do not address the underlying multi-
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drone coordination and networking aspects that are necessary
to deploy DRM applications.

Another usage of drones in DRM scenarios are related to
the potential of extending the communication under situations
when network failure occurs or there is intermittent network
connectivity. Authors in [29] present an optimal model for
computing the trajectories of the drones while guaranteeing the
total coverage of the ground mobile sensors and connectivity
among the drones with a central base station dedicated to data
processing. In addition, investigations on efficiently placing
drones in affected area where infrastructure is partially broken
can be seen in [30], [31] as well. The whole problem is treated
as a multi-objective problem of UAV placement, users-UAV
connectivity, distance, and cost. Correspondingly, optimal and
heuristic approaches are then devised. Although the authors
pursue the objective to keep alive the connections among
drones, no any energy-efficient algorithms are proposed, as
considered in our work. In terms of the various communication
purposes, authors in [32] and [33] propose to use interme-
diate drones to transfer messages from ground-based Long
Range (LoRa) nodes to the remote BS. However, intensive
streaming data such as video and audio are not supported for
the implementation of energy-efficient routing protocols. In
our proposed scenario, we utilize embedded devices such as
Nvidia Jetson Nano and Raspberry Pi to generate a ac-hoc
network between A2A and A2G links.

B. UAV-based Routing Protocols

To achieve reliable GCS/drones communication in a DRM
scenario, a suitable packet forwarding algorithm is necessary.
In [34], authors proposed a strategy that salvages packets
in the presence of void nodes, providing a low-complexity
and low-overhead recovery for the Greedy Geographic For-
warding (GGF) failure. In a DRM scenario, it is crucial to
consider a location-based packet forwarding protocol that can
be used in ad hoc network deployments. The geographic
routing protocol, Greedy Perimeter Stateless Routing (GPSR)
protocol [35], utilizes GPS information to assist the packet
forwarding procedure. To this end, the GPSR algorithm could
be applied into every-day surveillance systems since uncertain
and unpredictable conditions are not commonly present.

Our work is highly related to studies in [36], [37], wherein
authors describe how a packet forwarding strategy can be
used inside these protocols for large density drone-network
deployments, through experiments in multi-drone settings.
Based on results in prior works, the packet forwarding al-
gorithm described in GPSR outperforms other state-of-the-art
packet forwarding strategies described in both proactive or
reactive-based protocols. Other solutions that consider only
the network traffic congestion based on GPSR utilizing multi-
drone orchestrations have been presented in [38], [39], [40]. In
these studies, constraints such as wind, and drone’s battery are
not fully considered in the objective function. Our proposed
approach takes environmental features (i.e., wind, obstacles)
into account providing solutions at earlier stages (i.e., pre-
flight) so that traffic congestion issues do not frequently occur
during the establishment of the network links.

The effect of the wind with regards to the A2G com-
munications between drones has been investigated in [41].
Specifically, they study how multiple drones can be effectively
used for providing wireless service to ground users. Given
the locations of drones, they must expend a control time to
adjust their positions dynamically so as to serve multiple
users. To minimize this control time, the speed of rotors
is optimally adjusted based on both the destinations of the
drones and external forces (e.g., wind and gravity). However,
no obstacles have been taken into account as done in our
work. The wind factor in a DRM scenario has been studied
in [42] similar to our work, however they do not consider the
presence of obstacles as accounted in our work. Our approach
is also motivated by the work in [43], where a suitable packet
forwarding algorithm for DRM operations is studied. The
authors proposed a Location-Aided Delay-Tolerant Routing
protocol (LADTR) that employs location-aided forwarding
combined with a Store-Carry-Forward (SCF) method. The goal
of the proposed strategy in this routing protocol is to guarantee
the connection rate between drone nodes and enable a high
packet delivery ratio.

In contrast to these prior works, our proposed approach
considers environmental awareness in terms of energy con-
sumption as well as the presence of obstacles in drone path
computations at the GCS for A2A and A2G links. To enhance
our packet forwarding algorithm by considering both energy
efficiency and obstacles awareness, we build upon the recent
prior work in [44]. In this work, authors studied energy
consumption issues for mobile devices management in the
context of a mobile edge computing paradigm; note that drone
and related edge device mobility use cases were not addressed
in this prior work. The only considered human mobility while
handling user requirements of energy conservation over low-
latency or vice versa in visual edge-based application data
processing. Specifically, they presented the SPIDER algorithm,
which was built upon recent advances in the geographic
routing area [45]. This study presented a novel AI-augmented
geographic routing approach (AGRA) that uses physical ob-
stacle information obtained from satellite imagery by applying
deep learning at a network-edge site. The SPIDER algorithm
is shown to perform better as a packet forwarding strategy
than other stateless geographic packet forwarding solutions,
as well as, stateful reactive mesh routing in terms of packet
delivery success ratio and path stretch. Our work builds on
the SPIDER algorithm, and is suitable for high-density drones
network deployments and considers environmental awareness
in terms of energy consumption and obstacle avoidance in
DRM scenarios.

In Table I we make a comparative study and summarize the
key differentiators and novelty of our work contributions in
contrast with prior related works.

III. DRM COORDINATION AND NETWORKING

In this section, we present the multi-drone coordination and
networking problem for DRM, describing the essential system
components, related requirements, and inherent assumptions.
Following this, we present our solution overview.
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TABLE I
COMPARISON BETWEEN THE EXISTING WORKS.

Work Comments
[18], [19] Objective: Determine the optimal number of drones and

drone chargers
Differences: No communications among drones

[21], [22] Objective: Compute a suitable path planning for drones
Differences: No communications

[12], [20] Objective: drones as communication devices in video
analytics scenario
Differences: No communications nor obstacles

[23], [24] Objective: drones aerial image recognition
Differences: Wind is considered, no communications nor
obstacles

[25], [26] Objective: drones aerial image recognition
Differences: No communications nor obstacles

[27], [28] Objective: Energy-efficient drones-IoT sensors data col-
lection
Differences: No communications

[29], [30],
[31]

Objective: Data collection problem using the minimum
number of drones
Differences: No obstacles and energy constrains

[32], [33] Objective: drones as relays for communications, use
LoRa
Differences: No obstacles, no wind, no streaming data
transmission

[34], [35] Objective: Computed a constrained path planning
Differences: In 2D, no drone related communications.

[36], [37] Objective: Architecture formed by IoT devices as edge
node carriers, and consider obstacles and energy
Differences: No multi-drone coordination

[38], [39],
[40]

Objective: Optimal elevation angle of drones among
rescuers
Differences: No wind and 3D models

[41], [42],
[43]

Objective: drones as flying base stations considering
wind and obstacle
Differences: Selected drones for network purpose only

[44], [45] Objective: IoT devices routing protocol considering
wind, obstacle and energy
Differences: No 3D models and cooperation with drones

A. Multi-Drone Networking System

We consider a DRM scenario that involves multiple critical
tasks (e.g., search and rescue after an earthquake, providing re-
lief goods to people) being executed by heterogeneous drones
on a given FANET topology. Figure 1 illustrates the system
setup including a GCS and three different types of drones [46]
i.e., delivery drones, monitoring drones, and map drones. The
delivery drones carry first aid (e.g., medicines) and relief goods
(e.g., water) to people at the disaster scenes, the monitoring
drones have embedded cameras used for searching for objects
and finding missing people, and finally the map drones are in
charge of keeping the rescue area map up-to-date. The GCS
sends requests to drones for executing specific tasks on certain
locations (e.g., video recording above ruins). Furthermore, the
drones will send back to the GCS the retrieved situational
awareness information.

B. System Requirements and Assumptions

The fundamental requirement that needs to be guaranteed
is the establishment of reliable communication links between
the drones and GCS. In general, the communication radius is
not sufficiently large for allowing single-hop links, due to the
fact that the topology can be arbitrary, and also the presence of
obstacles can make the links unstable or even blocked. Hence,

GCS

Delivery Drone

Monitoring Drone

Map Drone

Fig. 1. Coordination of drones in the proposed DRM scenario. Delivery
drones carry first aid and relief goods, monitoring drones search for missing
people or objects, and map drones keep the rescue area map up-to-date.

communication links should be built according to a multi-
hop paradigm. In our DRM scenario, high-throughput links
are required only when data transmission is in process. To
save energy, delivery drones could individually deliver goods
without further notice to the GCS [47], monitoring drones can
perform pre-processing functions on-board without guidance
from the GCS, and map drones can cache the image/video
data inside the embedded storage until the queue is full.

In our scenario, the GCS is not an energy-constrained
device and also its computational performance outperforms
that of the drones. We assume our system to be comprised of
heterogeneous drones with knowledge of their global positions
because they are enabled with GPS capability. Delivery drones
have pre-computed routes for carrying goods to locations and
move with respect to the MBPM [48]. They have sufficient
energy for executing delivery tasks and flying safely back to
the ground. They can act as forwarding drones for generating
connection links only if they have residual energy. Moreover,
they can lose the connectivity with GCS due to network
bandwidth and flying range constraints. Monitoring drones
initially move according to the RWPM [49] flying through
many pre-determined points of interest (PoIs). Once they
discover objects or people on the ground, they change their
mobility model following the GMM when executing tasks on
specified target areas, as explored in [50]. Map drones fly at
higher altitudes and over longer distances than the other ones,
having more computation resources for executing pre-stage
map generation and image mosaicing tasks. However, it is not
required by them to constantly transmit back the captured data
to the GCS, because severe and adverse weather conditions
or other unexpected events may result in task failure. Thus,
we propose a periodic communication scheme between map
drones and the GCS for transferring the stored data on drones
to the GCS according to a suitable queuing mechanism for
the data (see Section VII-A). Similarly, since the purpose of
map drones is to cover the whole area in a short amount of
time, a GMM or a MBPM is used to achieve the related task.
We assume the delivery and monitoring drones’ height to be
100m, while the same for map drones is 200m. Also, we
consider the average obstacles’ height to be 100m.
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IV. ENVIRONMENTALLY-AWARE MODELING

In this section, we first detail our novel drone energy model
influenced by the wind factor i.e., the wind factor affecting
the drone’s energy consumption during the flight. Following
this, we investigate how the presence of obstacles in the area
can affect the wind itself, and in turn the drone’s energy
consumption. Lastly, we present the obstacles model which
influences the network communications between drones.

A. Drone Energy Model

In the following, we discuss how the wind influences the
drone’s energy consumption during the flight. This model has
been adapted from [14], [51] and can be applied to calculate,
in real-time, the energy consumption of the drone in a given
environmentally-aware DRM scenario.

Let the global wind ω = (ωs, ωo) be the wind in the rescue
area, where ωs and ωo are, respectively, the speed and the
direction (orientation) of ω. While at any instant the entire
rescue area is subject to the same wind, the conditions of
the global wind can change over time. To define the relative
wind direction ωo(e) experienced by the drone while traversing
edge e = (u, v), we build a Cartesian coordinate system with
origin in u (two examples are depicted in Figure 2). Let
−90◦ ≤ arctan(x) < 90◦, for any x ∈ R. On the straight
line e traversed by the drone from u = (xu, yu) towards
v = (xv, yv), the relative wind direction is ωo(e) = ωo−ψ(e),
where:

ψ(e) =

{
arctan( yv

xv
) mod 360◦ if xv > 0

180◦ + arctan( yv

xv
) if xv < 0

(1)

is the angle direction of edge e. Flying along routes with dif-
ferent angle directions, the drone experiences different relative
wind directions. Note that, ψ(e) and ψ(e′) differ by 180◦ be-
cause ωo(e

′) = ωo−ψ(e′) = ωo−ψ(e)−180◦ = ωo(e)−180◦.
For simplicity, while traversing e the relative wind ωo(e) is
assumed stable.

x

y
N

E

S

W u

v

e

ψ(e)

ωo

ωo(e)

•

•

(a) ωo(e).

x

y
N

E

S

W u

v
e′

ψ(e′)
ωo

ωo(e
′)

•

•

(b) ωo(e′).

Fig. 2. Relative wind directions of an edge e (solid blue (a)) and e′ (dashed
blue (b)), and the global wind direction (red). Note ψ(e′) = ψ(e) + 180◦.

The motion of drones is regulated by physical properties,
such as the gravity and forces due to forward motion and
wind [52], [53]. The total required thrust is T = Wg + FD,
where W is the total weight of the drone which includes the
payload weight (mass) mp, g = 9.81m/s2 is the gravitational
constant, and the total drag force FD. The drag force FD

depends on the properties of the fluid and on the size, shape,
speed, and direction of the movement of the drone, and can
be estimated as follows: FD = 1

2ρ sa(e)
2
CDA, where ρ is the

air density, sa(e) is the drone’s relative air speed, A = πR2 is
the cross sectional area (R is the rotor radius), and CD is the
drag coefficient. The air speed sa(e) depends on the global
wind speed ωs and the relative wind direction ωo(e). The air
speed sa(e) can be calculated as:

sa(e) =
√
s2N + s2E , (2)

where:
sN = sd − ωs cos(ωo(e)) (3)
sE = −ωs sin(ωo(e)), (4)

while sd is the drone speed. Note that when ωs = 0, i.e., no
wind, sa(e) is the same for every drone direction e. Instead, if
ωs ̸= 0, when ωo(e) = 0◦, i.e., when the global wind direction
and the drone direction have the same orientation, the East
component sE of the friction is null, and the North component
sN has the minimum value, implying sa(e) is minimum. Also,
when ωo(e) = 180◦, i.e., when wind and drone direction are
opposite, sE is null, and sN is maximum, and thus sa(e) is
maximum.

Having computed the value of the total thrust T , it is
possible to estimate the required power P for a steady flight.
The theoretical minimum power depends on the area swept by
the rotors, which in turn depends on the diameter D of the n
rotors. So, given the previous computed values and parameters,
the hovering power PH can be calculated as follows [54]:

PH =
T 3/2√
1
2πnD

2ρ
. (5)

With forward motion, the motion power PM can be calculated
from conservation of momentum and thrust T as follows [55]:

PM = T (sd sin(α) + si), (6)

where α = arctan
(

FD
Wg

)
is the pitch angle [55], and si is the

induced velocity required for a given thrust T . Then, si can
be obtained by solving the implicit equation [55]:

si =
s2h√

(sd cos(α))2 + (sd sin(α) + si)2
, (7)

where sh =
√

T
2ρA is the induced velocity at hover [55]. Note

that, even not made explicit in the notation, FD and so α and
PM depend on the drone’s direction e. Hence, fixed a global
wind ω = (ωs, ωo), the energy efficiency (or, unitary energy)
µ(e) of travel along a segment e is calculated as the ratio
between motion power consumption PM and average ground
speed sd of the drone, i.e.,

µω(e) = PM/sd. (8)
Therefore, the energy consumption for motion EM

ω along one
edge e of length λ(e) can be expressed as:

EM
ω (e) = µω(e) · λ(e). (9)

Finally, the energy consumption for hovering EH
ω , which

depends on the time t the drones hovers at a particular position,
and on the hovering power PH previously calculated, can be
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expressed as:
EH
ω (t) = PH · t. (10)

So, with the energy consumption for motion EM
ω and the

energy consumption for hovering EH
ω we can estimate, in real-

time, the drone’s energy consumption when it is employed in
a DRM scenario.

B. Wind-Awareness in Energy Consumption

In the previous section, we introduced the wind model
which can be used in an obstacle-free environment. However,
possible obstacles can influence the drone’s energy consump-
tion. Therefore, in this section, we discuss this scenario when
physical obstacles could influence the wind direction as well
as obstruct the A2A and A2G communication links.

To better formulate this problem, we describe a wind Com-
putational Fluid Dynamics (CFD) model which can be applied
in metropolitan areas. The wind CFD model attempts to simu-
late the interaction of the wind where the surfaces are defined
by boundary conditions. State-of-the-art CFD models employ
the principles of the Navier-Stokes equations. Simulations are
then conducted by solving the equations iteratively in steady-
state or transient conditions. There is a dearth of works that
consider drone swarm applications applied in metropolitan ar-
eas where the average height of drones, during their missions,
is lower than the height of the building [56]. In such cases,
once the drones fly across a group of skyscrapers, the energy
consumption will be locally recalculated according to the wind
speed. In addition, the directions experienced by the drones in
these places are computed by the adopted (and simulated) wind
CFD model. Figure 3 shows the result of a simulation by using
the open-source wind CFD model simulator “SimScale” [57]
to simulate the local wind directions and speed in a given
metropolitan area.

Fig. 3. Results of a simulation when the wind CFD model simulator SimScale
is employed in a metropolitan area at run 0 (left) and run 1000 (right).

Figure 3 (left) shows the initial wind direction (orientation
of lines) and speed (brightness of lines) at time 0, while
Figure 3 (right) shows the results after 10mins of simulation
(100 runs each minute). As we can observe, the global wind
(i.e., direction and speed) is defined to be a constant for
an observed time instance on a particular area of the map,
and can change along the time/area. Consequently, the local
wind direction and speed will also change according to the
elapsed time and the drones’ positions. For example, if one
drone is hovering at a particular position capturing a video
for monitoring purposes, the energy consumption will be
calculated and estimated under two circumstances (either with

global wind or with local wind) based on the relative height
between the flight height and the height of the closest obstacle
buildings. To this end, it is necessary to predict the real-
time location of the monitoring drones and map drones to
update the energy consumption and to re-establish continuous
network communications once interrupted (details can be seen
in Section V).

To simplify our energy consumption calculation, we assume
that: i) the average flight height of the monitoring drones will
be fixed as 50m while the average flight height of the map
drones will be fixed as 100m if no addition information is
given, and ii) the projection along the z-axis of the wind
direction and speed will be ignored, and therefore only 2
dimensions concerning the drone’s flight will be considered.
Moreover, for simplicity, we consider the wind as an external
factor when computing the drone’s energy consumption. In
fact, the drones’ routes are pre-planned in advance, and these
cannot be dynamically modified even if the drones have to
fly against the wind i.e., when the wind is a “head-wind”.
Therefore, the wind energy model is only taken into account
for computing the residual energy of the drones, and the pro-
posed packet forwarding algorithms only check that residual
energy in order to determine suitable solutions. Thus, our
proposed packet forwarding algorithms are indirectly affected
by the wind because the residual energy of drones can change
according to a given situation.

C. Obstacle-Awareness in Communication

In our proposed scenario, monitoring drones and map
drones have to request the re-establishment of the packet
forwarding path in order to maintain the connection to the
GCS. Once this request is initiated, a packet forwarding proce-
dure is performed. Notice that, a discontinued communication
can be notified by the WiFi chip board embedded on each
drone, rather than by the physical communication channel
between them. That is to say, there is a situation when the
communication tasks discontinue (e.g., no video transmission
between links), while the GCS can still have a drone within
the line-of-sight. To simplify our experiments, we do not
consider the situation when drones are beyond the line-of-
sight. The detailed distance choice between drones is reported
in Section VII-A. Let us consider a node n that forwards a
packet p towards a destination d for re-establishing A2A and
A2G communication links. The node n has to decide which
neighbor must receive the packet p to progress towards d. Such
a decision also needs to balance the neighbor’s residual energy
and the total throughput of packet p, and should minimize the
following weighted energy function f as follows:

f(n, d, θ) = θ · τ(n, d) + (1− θ) · ϵ (11)
where, τ(n, d) is the normalized updated shortest path en-
ergy [45] with respect to the obstacle blockage, ϵ is the average
residual energy at node n, and θ ∈ [0, 1] is the balancing
parameter.

The purpose is to find the best θ value which gives the
minimum energy consumption from node n, and keeps the
network connection continuous and stable by calculating the

This article has been accepted for publication in IEEE Transactions on Network and Service Management. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2023.3243543

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Missouri University of Science and Technology. Downloaded on March 22,2023 at 12:48:45 UTC from IEEE Xplore.  Restrictions apply. 



QU et al.: ENVIRONMENTALLY-AWARE AND ENERGY-EFFICIENT MULTI-DRONE COORDINATION AND NETWORKING FOR DISASTER RESPONSE 7

path. Once n is aware of its propagation Fresnel zone radius
and the ith obstacle’s center Ci, it computes τ(n, d) as follows:

τ(n, d) =

M∑
i=1

Oi − 1/ δ
√
∥n− d∥2

∥n− Ci∥δ2
(12)

where ∥ · ∥2 represents the Euclidean distance, δ is the
attenuation order of obstacles’ potential field [45], M is the
number of obstacles, and Oi is the intensity of ith obstacle
induced by the destination node d, calculated as follows:

Oi =
F δ
i

δ(∥d− Ci∥2 + Fi)2
(13)

where Fi represents the ith Fresnel zone in 3D. We suppose
that two devices can communicate if the blockage, due to the
presence of obstacles, is up to 20% of the Fresnel zone [58],
otherwise, the communication is obstructed.

D. Solution Overview

As shown in Figure 4, our multi-drone coordination and net-
work strategy consists of two main stages i.e., data collection
(shown left) and data transmission (shown right). The DRM
application starts with either one map drone (e.g., generating
and storing data) or monitoring drone (e.g., flying for PoIs)
acting as a target drone. When it requires to communicate with
the GCS, a request for establishing a connection is created. At
this point, if the GCS is in range, the target drone will finish
the packet forwarding and the link is established; otherwise, a
list of candidate drones in the neighborhood is generated. From
this list, the target drone can use a simple packet forwarding
algorithm (SPF algorithm, Section VI-A) to establish links.
Alternatively, a more accurate packet forwarding algorithm
(HGPF algorithm, Section VI-B) is used to optimally balance
the connection link quality and energy consumption. Finally,
if there is no restricted task execution time requirement on
the target drone, an integrated RL based packet forwarding
algorithm (IRLPF algorithm, Section VI-C) is applied. In this
case, the system not only achieves the balance on network
connection quality and energy consumption, but also schedules
task execution such that the optional forwarding drone for the
neighbor drone candidate list will appear in the right position
when the target drone makes a request.

DATA TRANSMISION

Neighbor drone 
candidate list

Location prediction 
model enabled

Yes

GCS in
range?

 IRLPF

DATA COLLECTION

Request for
connection to GCS

Map Drone Monitoring Drone

Task execution
time flexible?

Yes

Link restablished 

HGPF

SPF

No

Yes

No

Fig. 4. Obstacle-aware and energy-efficient multi-drone coordination and
networking solution steps overview.

V. LOCATION PREDICTION MODELING

As discussed earlier, we assume that all the drones are
connected forming a FANET. By this, they communicate the
mapping and monitoring information over the same network
to the delivery drones in order to carry out a delivery task.
Consequently, the network topology of the multi-drone system
keeps on changing based on the mobility of the drones.

{ C

{ C {

{
h2

h1
dronen

drone1

drone2

drone3

Fig. 5. Multi-drone distribution in the environment state space.

A. The Position Estimation of Drones

The position estimation of the drones must be performed in
very short intervals of time using the new coordinates being
updated rapidly within the FANET. Each drone in the FANET
is considered to have a GPS module and an Inertial Mea-
surement Unit to record its current location. This information
is broadcast to the FANET so that the other drones in the
vicinity are recognized for packet or information transfers
when needed. In prior works such as [59], the Extended
Kalman Filter was considered as the best algorithm choice
to predict the location coordinates of a drone. However, the
location information of the drones can be misleading if the
sensors malfunction or the accuracy of the information gets
compromised. Therefore, we have developed a novel multi-
agent deep RL approach that predicts the drones’ coordinates
in the FANET for effective communication and packet transfer.

We allot a hexagonal area as in [60] of side C for each
drone as shown in Figure 5, in order to maneuver inside
them and change their heading to any direction to efficiently
cover a surveillance area and discover PoIs. For initiating a
packet transfer between the drones in the environment, we
consider the location of them as Pn = (xn, yn, hn), where xn,
yn are the location coordinates, and hn denotes the altitude.
Moreover, Dij is the distance among any two drones i ̸= j.

Actor

Critic

π(at/bt)

Vπ(bt)

Agent 1

Agent 2

Agent n

Actor  π(at/bt)

Critic Vπ(bt)

Critic Vπ(bt)

Critic Vπ(bt)

Actor π(at/bt)

Actor  π(at/bt)

Master Network

Environment

Delivery DroneMonitoring Drone Map Drone

Fig. 6. Location prediction using multi-agent A3C network.

Due to the potential uncertainties in the environment that
affect the drones’ localization and orientation, the location

This article has been accepted for publication in IEEE Transactions on Network and Service Management. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2023.3243543

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Missouri University of Science and Technology. Downloaded on March 22,2023 at 12:48:45 UTC from IEEE Xplore.  Restrictions apply. 



8 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. X, NO. Y, MONTH 2023

prediction of the drones can be formulated as a Partially-
Observable Markov Decision Process (POMDP) defined by
the tuple [S,A, P, Z,O,R], where S, A, P , Z, O, and R
denote the states, actions, probability of transition, probability
distribution function for observing states, observations, and
rewards, respectively. The environment states are defined as
st = (Pi, ϕi, Pj , ϕj , Dij) where Pi and Pj are the positions,
while ϕi and ϕj are the headings of the packet transferring and
receiving drones. The actions performed by the drones (agents)
are defined as a set of 7 flight operations at, i.e., hover,
forward, backward, up, down, yaw-left, and yaw-right. More-
over, the rewards Rt are defined as follows: +100: successful
packet transfer; +10: every drone action; −50: going out of
Hexagonal cell; and −100: collision with obstacles/drones;

Let T be the episode in which the agent performs action
in the state space. The agent does not track the exact states
st ∈ S, but uses the observations o ∈ O in any given episode
T . Therefore, it has to rely on the history of actions and
observations St = (at, ot; at−1, ot−1; . . . ; a0, o0) to perform
intelligent actions that allow higher rewards. However, this
history St exponentially grows with every action taken and
every state observed. The agent rather chooses to utilize the
belief states b which are single valued and represent the
probability distribution Z = p(ot|st, at) over all possible
states st in a given episode. These belief states are a sufficient
measure of history, and given the current belief state bt, the
POMDP aims to find an optimal policy π∗ that maximizes a
value function V π while following a sequence of actions and
observations. The value function V π is thus given by:

V π(b) = E[
∞∑
i=0

γi−tRi|b, π]. (14)

Our approach, aims to solve the POMDP problem using
a multi-agent Asynchronous Advantage Actor Critic (A3C)
Network such that the best possible actions are chosen in given
states, and the cumulative reward Gt (i.e., the accumulated
discounted return) gets maximized, as follows:

Gt = E[
∞∑
t=0

γtR(bt, at)] (15)

where γ is the discount factor. Finally, the action value
function is given by:

Qπ(bt, at) = E[
∞∑

n=0

γnR(bt, at)|bt, at] (16)

B. A3C based solution
Compared to other deep RL approaches, an A3C network

allows multiple agents to interact in a parallel fashion with the
environment in order to generate individual policies that are
the outputs. Each episode in the A3C network stochastically
progresses, and each corresponding action is probabilistically
sampled. The actor and related critic networks within the
A3C network are deep neural networks (DNNs) and have
target networks. In the following, we detail the proposed A3C
network functioning. A master network has an actor network
that generates a policy π(at|bt; θa) = P (at|bt; θa) and a critic
network that generates the state value function to test the
expected return under belief state Vπ(bt; θv), where, bt is the

belief state of an episode, θa denotes weights of actor network,
and θv denotes the weight of critic network. The weights in
these cases are updated using back-propagation. Each copy of
the Master Network is sent to the agents as shown in Figure 6.
The actor network is trained with the loss function:

L(θa) =
1

Nbatch

n∑
i=1

[−Q(bt(i), πb(i); θa)]
2 (17)

where, Nbatch is the batch size and the critic network is
trained with the loss function given by:

L(θv) =
1

Nbatch

n∑
i=1

[yt(i)−Q(bt(i), at(i); θv)]
2 (18)

where yt(i) = Rt + γ ·Q′
(bt+1, π

′
(bt+1; θ

′

a)|θ
′

v) and π
′
(b|θ′

a)
and Q

′
(b, a|θ′

v) are target networks of actor and critic net-
works. Due to the fact that gradient methods are used to
optimize the network weights, there are chances of high
variance occurrence in the critic network. Therefore, we em-
ploy an advantage function Ω(bt, at) = Q(b, a) − V π(bt, θv)
to overcome this high variance problem. Upon solving the
POMDP using the proposed A3C network, we get a policy
π : b→ a that maps the actions to belief states b. The optimal
policy obtained from the actor and critic network operations
is given by: π∗(b) = argmaxb V

π(b).
As detailed earlier in Section IV-C, an RL technique is used

along with a FANET through which the drones communicate
their mapping and monitoring information. The location es-
timates Pn = (xn, yn, hn) of two drones are provided as
state constraints in the A3C Network that generates a policy;
following this policy, the cumulative reward Gt increases. This
results in each drone’s location getting updated to follow an
optimized path in their own trajectory. As the update happens
very rapidly, the optimized path information of each drone
changes in the FANET in very short intervals of time. The
optimized location information of the drones along with the
previous location information is broadcast in the FANET.
Thereby, the drones place themselves in close proximity to
transfer information packets among themselves. Hence, our
RL technique (A3C) predicts the mobility of drones by using
the location information.

VI. PACKET FORWARDING SOLUTION APPROACH

In this section, we initially describe a simple technique
called Simple Packet Forwarding (SPF), and two novel al-
gorithms called Heuristic Greedy Packet Forwarding (HGPF)
and Integrated RL-based Packet Forwarding (IRLPF).

A. The SPF Algorithm

To address the trade-off in energy-efficiency versus contin-
uous connection, there is a need for flexible packet forwarding
algorithms among the drones and GCS. A choice among
stateful and stateless packet forwarding design has to be care-
fully determined based on the cost of maintaining forwarding
paths or infinite loops in paths [44]. Consequently, we rely
on a stateless instead of stateful design, and we consider on-
demand communications when requested. By design of SPF,
if any drone is within the transmission range of a target drone,
then it will be selected as a candidate forwarding drone for
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forwarding packets. If there are no candidate drones, the target
drone will hover and wait in the current position, thus pausing
the task. As a second attempt, if no forwarding drone candidate
is within the transmission range, the target drone forwards
the data to the farthest drone in range. Note that any drone
can act as an intermediate or forwarding drone. The data will
be transferred through multi-hop drones to the GCS. Since
SPF does not use any predicted drones’ positions, it can be
implemented in any drone.

TABLE II
SPF ALGORITHM PERFORMANCE COMPARISON

Throughput (Mbps) Energy (J)
GPSR AODV HWMP Our GPSR Our

lo
w 2.48±1.7 1.94±1.8 0.84±0.2 2.18±0.6 522±46 519±42

2.35±0.9 0.87±0.3 0.77±0.2 2.26±0.6 515±13 506±18

hi
gh 2.06±1.8 1.26±1.5 0.77±0.3 2.05±1.1 497±47 498±40

1.95±0.8 0.62±0.4 0.72±0.2 2.32±0.5 499±16 495±40

Despite its simplicity, it outperforms in terms of energy
consumption and network throughput, other existing stateless
algorithms which do not rely on predictions. As a baseline, we
have chosen Greedy Perimeter Stateless Routing (GPSR) [61],
Ad-Hoc On Demand Distance Vector (AODV) [62], and the
Hybrid Wireless Mesh Network (HWMP) [63]. Table II shows
the average throughput and energy consumption on target
drone for link establishment with different density of obstacles
(10%: low, 60%: high) and number of drones (10, 30) with
the simulation settings described in Section VII. Since each
protocol follows different path forwarding strategies (e.g.,
AODV and HWMP do not consider energy constraints), it is
hard to compare side-by-side performance with each of these
approaches. Hence, in this comparison, some part of the results
are omitted. However, if we do not consider predicting the
future positions of drones, both SPF and GPSR are Pareto-
optimal, i.e., they have no alternative solutions. In order to
have improvements, more features need to be considered with
additional information as detailed in the following algorithms.

B. The HGPF Algorithm

As we can observe from SPF, if the prediction of the future
position of the drones is not used, the target drone may have
a lesser chance to find the potential candidate forwarding
drone when it flies beyond the GCS’s transmission range.
Consequently, in HGPF design we use the RL-based location
prediction A3C method to enhance the packet forwarding
performance in the presence of environmental obstacles, while
using the residual energy from the forwarding drone candi-
dates. Based on the drone position prediction information, we
can obtain the local relative distance between the drones in
advance. Thus, to increase the accuracy of the drone path com-
putation procedure, we use HGPF that proactively performs a
greedy calculation of the local-optimal path solutions.

To simplify our algorithm and save time in real-world
experiments, we periodically run the RL location prediction
every 10 s according to state-of-the-art drone position model
evaluation metrics [64]. For every 10 s, we found that the cor-
responding time is within acceptable range (2.20±0.05 s), and
the estimation error of the model is relatively small (0.43m).

Therefore, for each time slot, we can estimate the f(n, d, θ)
results given θ ∈ {0, 0.2, 0.5, 0.8, 1} values. Corresponding to
these results, we select the minimum value f with the related
θ value to guide the next 10 s flight. Thus, by such a greedy
finding of the discrete local minimum value, we enhance the
overall performance in terms of the total residual energy and
overall throughput.

The main purpose of HGPF is to utilize the drone position
model for predicting the relative position of drones. The time
period t in the algorithm is by default set to 10 s. For each time
period, all θ values are calculated for each alternate neighbor
node. Following this, we calculate the performance gain on
the drone (i.e., throughput gain by processed energy) of each
θ, and perform a greedy select of the highest performance
gain. In addition, we will use this θ until the next time period
t, when HGPF is invoked again. Consequently, HGPF will
always select the local optimal choice, which however may
not be the overall best for the entire system.

C. The IRLPF Algorithm

Since HGPF provides the local optimal choice by time
period, it may lack information on the global optimal perfor-
mance gain over the entire system. However, during DRM, the
position of the geographical obstacle may change frequently.
In this case, it is not reasonable to obtain predictions of exact
positions of obstacles that may block the connection. Thus, we
propose an alternative way to indirectly provide forwarding
drone candidates to target drone positions by scheduling
the take-off time for different tasks. For example, once a
monitoring drone takes off and starts the task, it will require
a connection when PoIs are in sight. If we plan to take-off a
delivery drone in the monitoring drone’s transmission range,
the monitoring drone will have a higher chance to search and
find the delivery drone and select it as a forwarding drone.
To achieve this, we abstract the multi-drone multi-task packet
forwarding procedure as a Markov-decision process (MDP),
which can provide a mechanism to evaluate and learn the
potential take-off time and the θ value by using rewards. Thus,
the optimization problem can be redefined as: find the optimal
task schedule which minimizes the global performance gain for
the packet forwarding link generation. This finite-time MDP
problem can be expressed as M = (S,A, P,R, T ) where S
is the state space, A is the action space, P is the probability
function that indicates the probability of action a ∈ A in state
s ∈ S at time t ≥ 0 will lead to state s′ ∈ S at time t + 1,
R is a reward function, and T represents the last acceptable
time when the drone has to take-off and process the task.

To ensure that the near optimal θ can be chosen at every
step, we consider the dynamic decision-making problem to
be used for downstream tasks at time t. The situation will
turn to an energy-oriented case, when action goes to −1. At
the same time, the situation will turn to a throughput-oriented
case, when action goes to 1 in terms of the chosen step size
δ value. In the case where the δ value is small, the system
will take more resources (i.e., energy and time) to calculate
the optimal value, and each action change may only produce
small reward gains. Thus, we require the δ value selected to
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be at most 0.5, and greater than 0.15 to prevent the void and
eliminate redundant calculations.

Specifically, we obtain the state s in the MDP problem using
information about the actions a with a given time period t. The
state s thus contains the stored previous prediction f results,
and the remaining query budget on both energy-oriented as
well as throughput-oriented cases. The state will also record
the time when the potential forwarding drone takes-off and
starts the task. Thus, the state s for a given time period t can
be formalized as follows: st = [θt, fprevious, f(θ−δ,θ+δ), T − t].

The reward function is given to minimize the cost of
drone-based flight energy ϵ and obstacle-awareness recovery
time τ given in Equation (11). Consequently, we considered
the reward function to be the same as in Equation (11),
with respect to the energy consumption on a single drone
and considering theoretical guarantees on packet delivery in
obstacle situations. Thus, we can ultimately define the reward
function as follows:

Rt(st, at) = −α · ϵ(f t, f̂ t)︸ ︷︷ ︸
residual energy

−β · τ(cost(at))︸ ︷︷ ︸
obstacle

(19)

Having defined the obstacle-aware drone delivery scenario
as an MDP, we can evaluate the overall performance by
minimizing the expected total reward the system achieves.
In this context, we can state: Given the choice of optimized
θ values for highest gains of f , a finite horizon of T time
slot, and an MDP problem M , find the optimal routing policy
π : s→ a that maximizes the expected cumulative reward R:

π ∈ argmaxE
(∑

T

R(s, a)
)

(20)

Although we framed this problem as an MDP, it is not easy
to apply conventional techniques such as dynamic program-
ming for solving the problem. This is because, many of the
aspects of this problem are hard to analytically characterize,
especially the dynamics of the sensory input stream (e.g.,
GPS, obstacle, energy). This motivates our integration of a
soft optimal solution that uses a model-free RL technique. The
reason to use such a technique is as follows: it is capable of
learning optimal discrete policies based solely on the features
included in the state, and avoids the need to predict the future
states (as considered in HGPF). Specifically, we use the state-
of-the-art Q-learning algorithm [65], which is easy to deploy,
efficient to evaluate in terms of dynamics, and is amenable to
effectively perform optimization-based action selection.

VII. PERFORMANCE EVALUATION

In this section, we first discuss our experiments setup, then
we discuss the baseline approaches used for comparison, and
finally we present the detailed performance results.

A. Experiment Setup

We initialized a simulation environment using 3D building
models in the ns-3 simulator based on a set of rural and
metropolitan road maps. The simulation script randomly gen-
erates task locations in the range of the simulated DRM scene.
The simulator scripts can change the density of the buildings to
simulate various DRM scenarios i.e., from rural areas (with the

average height < 50m) to metropolitan areas (with the average
height < 100m), with different building obstacle densities.
Table III shows the simulation settings including both the
application-side and network-side settings. The flying altitudes
vary from 50m for delivery drones and monitoring drones, and
100m for map drones. In terms of the drones’ parameters, we
considered uniform speed of either 0m/s or 20m/s depending
on the circumstances when a drone is assigned to be hovering
or in motion, with the various payloads of 2 kg, 7 kg, and
10 kg for delivery drones, monitoring drones, and map drones,
respectively.

Before starting the simulation experiments, we first evaluate
the network parameters in realistic experiments between real
drones and flights. The parameters are listed in Table III under
network settings. To ensure the accuracy, security and speed,
we utilize RUDP and QUIC for the video data transmission.
More specifically, for the delivery drone and monitoring drone,
we choose QUIC as the transport protocol, and for the map
drone, we choose RUDP. The reason for why we choose QUIC
on small devices is that QUIC can provide encryption by
default during streaming, and provides high-speed connections
even in cases where there are network failures or links
experience low throughputs [66], [67]. On the other hand, for
the map drone, we choose the RUDP for delivering continuous
video streaming without the need for data encryption.

For the choice of the delivery drones and monitoring
drones, we considered realistic flights pertaining to off-the-
shelf drones i.e., the three DJI Mavic drones in our study. Each
of them, is independently deployed in regions of the emulated
disaster field. For the map drones, we assume settings from a
commercial UAV, i.e., the DJI Matrice 600 equipped with a
multispectral camera RedEdge (Micasense), an RGB camera
(Sony a6300), a thermal image ICI 8640P (ICI company), a
high-performance Real-Time Kinematic (RTK)-GPS receiver,
and a light sensor. Each drone is assumed to be controlled
by Android tablets running SoftwarePilot to manage all the
drone flights. The tablets are connected via a 1GB/s router to
our GCS. In our experiments, the GCS is a Lenovo Thinkpad
T470 computer running Ubuntu 18.04, which has been used
to plan each mission, dispatch swarm members, and aggregate
swarm results. We also provisioned a custom desktop PC with
an Intel Xeon processor and Nvidia 2070TI GPU for offline
RL purposes. Transmission data types are categorized as video
stream data and text-based stream data. In most cases, video
stream data is transmitted from the drone to the ground, and
text-based stream data is transmitted oppositely.

For the wind parameters, we generate the global wind
speeds at random among three distinct values, i.e., 0m/s,
5m/s, and 10m/s, which correspond to the usual wind speed
according to the weather forecast [68]. Global wind direction
is generated according to the uniform distribution from 0° to
359°. Although official weather stations report the recorded
wind speed and direction with a granularity of 1 hour [69],
in this article the experiment time-slot is 15mins, and within
each time-slot, the global wind directions and speed will be
kept the same. The wind CFD model will create local wind
properties specifically for a height of 50m and 100m. The
changes of the wind above these two heights will be ignored.
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Figure 7 shows an example of the two types of experiments
(i.e., rural and metropolitan experiments).

Fig. 7. Rural and Metropolitan experiment types illustration showing the
differences in obstacle heights and wind conditions.

To run the experiments in a reproducible and reliable
testbed, we leverage a trace-based drone-edge simulation plat-
form on top of ns-3 [17]. This platform integrates simulation
of both drones and networks for DRM scenarios, and provides
flexibility in adding plugins, e.g., changing the mobility model
of the drones, adding multi-sensor simulations, and applying
realistic map interfaces. As mentioned in Section IV-C, the
physical communication channel between the drones follows
a simplistic “disk model”, meaning that 100%of the communi-
cations succeed if the distance between the two nodes is ≤ R,
and 0% succeed if the distance > R. We set R = 300m
according to the guidance in [70], [71]. To this end, the
transmission range for A2A and A2G links is selected between
50–250m to avoid to beyond the line of sight for each drone.

To achieve a real-time energy consumption ϵ, we provide
CFD models to mark out the various wind features on differ-
ent Cartesian coordinates (with the precision of 1m2), and
calculate the energy consumption on that coordinate based
on the wind model we provided in Section IV-A. After all
the calculations, we get the residual energy of the specific
drone in that location, and then apply our packet forwarding
algorithms for the reestablishment of communications. To this
end, in the ns-3 simulator, we do not directly use the original
CFD model and only use the energy consumption from that
CFD model. For each setting, we run the experiments in: (i)
5 different transmission settings ranging from 50–250m, (ii)
various number of drones ranging from 10–30, and (iii) various
density percentages of obstacles in DRM ranging from 0–60%.
Settings are summarized in Table III.

TABLE III
ENVIRONMENT SETTINGS USED IN THE SIMULATION EXPERIMENTS

Application Settings Network Settings
Number of drones: 10–30 Trans Protocol: RUDP, QUIC
Disaster area: 7–10 km Bit rate: 6Mbps
Obstacle height: ≤ 50–100m Tx power: 32–48 dBm
Transmission range: 50–250m Tx/Rx gain: 3 dB
Simulation time: 1000–3000 s WiFi protocol 802.11 ax
Avg. drone speed: 10m/s Modulation: OFDM
Prop. Model: TWO RAY Data rate: 65Mbps

For evaluating our algorithms in contrast with state-of-the-
art energy-aware or location-aware packet forwarding algo-
rithms. In this context, we used the following performance
metrics in our simulation environment:

Packet Delivery Ratio: Defined by the ratio of the packets
that are successfully delivered to the target. A higher packet
delivery ratio means a more reliable network connection.
End-to-end Delay: Calculated as the sum of the link re-
establishment duration when a drone carries its generated data,
and the data transmission time to the GCS. A lower end-to-end
delay implies better performance on network links.
Energy Usage Proportion: For the energy measurement,
we check the distribution of the average residual energy
percentage used for the networking procedure of all drones in
the DRM scenario. Given that the total energy usage varies for
each kind of drone, we calculate the energy usage proportion
in order to normalize the metrics. A lower energy usage
proportion means the drone could use more energy for its task.

B. Baseline Solution Approaches

To design a better packet forwarding approach for the
multi-drone coordination problem, we compare both HGPF
and IRLPF algorithms with several existing state-of-the-art
algorithms. All experiments use the same settings previously
detailed. We used three different baselines (BLs) approaches
detailed below based on their different perspectives:
BL 1 – TQNGPSR [39]: Similar to how we considered GPSR
with SPF in Section VI, we selected one variant of the GPSR
based on a location-aided and traffic-awareness approach,
which is called TQNGPSR. Compared to the traditional GPSR,
this new variant enforces a traffic balancing strategy using the
congestion information of neighbors, and evaluates the quality
of a wireless link by applying a Q-learning algorithm. Both
TQNGPSR and our proposed approach use RL when applied
in experiments on drone networks. However, TQNGPSR does
not provide solutions when wind and obstacles could directly
influence the drone communications, whereas in our proposed
solution we considered both the wind and obstacle factors.
BL 2 – SPIDER [44]: This algorithm solves the packet
forwarding problem by considering edge devices’ energy
consumption as well as presence of obstacles, in a manner
that is very close to our system formulation. However, in
terms of obstacle awareness, our approach considers three
dimensional obstacles with consideration of the Fresnel Zone
on communication blockage, which is not involved in the
design of the SPIDER algorithm.
BL 3 – LADTR [43]: It consists of a location-aided drone
packet forwarding algorithm design. One difference between
LADTR and our location prediction model is that LADTR
only considers GMM, while ours considers various drone mo-
bility models and uses RL to enhance the location prediction
precision. In addition, LADTR does not consider obstacles that
may block the communication, whereas we consider obstacles
in our DRM packet forwarding solutions.

C. Performance Results

In this section, we evaluate the performances under two
metrics, i.e., network quality and energy usage. In addition,
two types of experiment environments are considered, i.e.,
with an average building height of h ≤ 50 meters (rural area),
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Fig. 8. Performance metrics on packet delivery ratio (a,b,c) and average end-to-end delay (d,e,f) in terms of varying: 1) transmission range, 2) amount of
drones, and 3) percentage of physical obstacles in a realistic DRM scenario (with h ≤ 50m).
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Fig. 9. Performance results based on packet delivery ratio (a), and average
end-to-end delay (b), under conditions of various percentage of physical
obstacles in a realistic DRM scenario (with 50 < h ≤ 100m).

and with an average building height of 50 < h ≤ 100 meters
(metropolitan area).
Network Quality: Figure 8 shows the results on the network
performance for all the algorithms in a rural area environment.
Considering various transmission ranges of the nodes (Fig-
ures 8a and 8d), we can see that all the algorithms perform
better in larger range cases. This is because a large range
provides more contact opportunities for creating transmission
links, which will in turn increase the packet delivery ratio and
decrease the delay. HGPF and IRLPF outperform TQNGPSR
and SPIDER under all transmission settings. LADTR performs
better than other state-of-the-art strategies due to its use of
ferrying drones that use up all of their energy on networking
procedures instead of focusing on their own tasks. On the con-
trary, IRLPF which only uses residual energy on transmission,
achieves ≈ 90% of the performance of LADTR. This result
shows that the performance of IRLPF is comparable to the
LADTR, which although it has a better performance, has the
problem of energy wastage in drone ferrying. From Figure 8b
it is possible to observe that when the number of drones
increases, SPIDER and GPSR do not provide better results due
to the unpredictable drone positions and unplanned forwarding
node selection. By combining Figures 8d and 8e, we can state
that LADTR’s results do not provide lower end-to-end delay
when the transmission range increases or when more drones
are added. This is because LADTR follows a stateful setting
rather than a stateless one, which is used in other approaches.
Thereby, the forwarding node for transmission will not change
once selected, and the delay for LADTR remains unchanged
once a network connection is established.

Both the above experiments do not consider any obstacles

in the DRM application scenario in a given rural environment
setting. However, if we consider obstacle blockage of the
connections, both HGPF and IRLPF outperform the other
baseline approaches. Figures 8f and 8c depict the network
performance with the increase in the percentage of obstacles
in the DRM scenario. Note that, under the conditions in
which the average obstacle building heights is less than the
average drone swarm flight height, there still exist continuous
interruption of networks due to the fixed ground control station
and the existence of the Fresnel zone. In Figures 8f and 8c,
it is remarkable to observe that - with the increase of the
density of the obstacles, the network quality decreases, and this
aspect influences all the algorithms. Given that we considered
algorithms that can deal with obstacles, other solutions without
obstacle awareness (e.g., LADTR and TQNGPSR) experience
poor performance than HGPF or IRLPF. Although LADTR
can achieve similar end-to-end delay under low obstacle
settings, this condition is not always promising in complex
metropolitan DRM scenarios with high building obstacle den-
sities as seen in Figure 9. To conclude, without considering
obstacles, LADTR achieves better network performance due
to its stateful connection settings, while our solutions can
achieve ≈ 81–90% of the LADTR performance. However,
LADTR is not robust considering that obstacle blockage is
very common in DRM scenarios even under rural environment
settings, where the average obstacle objects height is less than
or equal to 50m. In such situations, an increase of ≈ 14–
38% of network performance is obtained by using our baseline
approaches.

The second experiment considers the situation when the
height of the obstacle is between 50m and 100m. We assume
this setup as a metropolitan area according to the average
roof height in major cities around the world [72]. Figure 9
shows the results on the network performance for all the
algorithms in various metropolitan areas. We simulate a default
transmission range of 150m for each drone, and employ a total
of 30 drones to run this set of experiments. From the results,
we can observe that generally the network quality decreases
significantly, thus influencing all the algorithms. This trend
can be especially observed when density of the obstacles
increases (compared with the rural area environments). This is
because - unlike the experiments in a rural area environment, a
network interruption situation happens frequently according to
the uncertain conditions when the A2A link may be blocked by
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(a) (b) (c) (d)

Fig. 10. Energy usage proportion for communication in 40% of obstacles (with h ≤ 50m)) with four different experiments with varying transmission range
and drone amounts for the cases: a) 50m, 10 drones; b) 50m, 30 drones; c) 250m, 10 drones, and d) 250m, 30 drones.

(a) (b) (c) (d)

Fig. 11. Energy usage proportion for communication in 40% of obstacles (with 50 < h ≤ 100 meters) with four different experiments with varying
transmission range and drone amounts for the cases: a) 50m, 10 drones; b) 50m, 30 drones; c) 250m, 10 drones, and d) 250m, 30 drones.

the skyscrapers (with ≈ 60% higher chance based on our trace-
based simulator). As discussed earlier, LADTR can no longer
achieve similar end-to-end delay under low obstacle density
circumstances as it does in rural environment experiments.
The reason is due to the election of the ferrying drone in
LADTR that requires the knowledge of all the neighbour
drones’ positions. However, such information is not always
obtainable if any obstacles are present between the drones.
Similar suboptimal results are given by TQNGPSR due to
the fact that unreliable congestion information is generated
before the network interruption. This information will result
in the Q-learning procedure given by the TQNGPSR algo-
rithm trapping into the local optimizer according to the QoS
requirements without querying for the alternative route. On
the contrary, since the SPIDER algorithm applies shortest
path approximation procedures with respect to the obstacle
blockage regardless of the A2A or A2G link, it achieves
≈ 85–95% of performance compared with rural environment
experiments. By only comparing HGPF and IRLPF, we can
observe that IRLPF always performs better than HGPF in
both rural and metropolitan settings. On the other hand, HGPF
provides a network performance of ≈ 12–18% lower than
IRLPF while comparing with other baseline approaches, while
other baseline approaches can only achieve ≈ 75% of the
network performance of IRLPF at the most. When considering
the obstacle densities, we can derive the same conclusion as
we did in the rural experiments. In summary, when consid-
ering obstacles that may block the A2A communication, our
solutions can achieve an average gain of ≈ 25% compared
with the other baseline obstacle awareness approaches.

Energy Usage: The violin distribution diagrams shown in
Figures 10 and 11 depict the results concerning the four
experiments with varying transmission ranges (50m, 250m),
40% of obstacle settings, and varying number of drones (10
drones, 30 drones), under two types of obstacle heights (either
within 50m or between 50 to 100m). Notice that, under these

circumstances where the average obstacle height is less than
50m, the energy consumption calculation will only consider
the global wind properties. This directly comes from the
assumption that the height of the drone swarm is always
higher than the physical obstacles. From all four experiments
in Figure 10, we can observe that both HGPF and IRLPF
save ≈ 23–54% of energy. This is due to the fact that the
establishment of network connectivity is not performed if there
are no transmission tasks, and only residual energy is used
to establish network links for generating forwarding drone
candidates. Moreover, as we can observe from Figures 10b
and 10d, HGPF saves more energy in larger drone number
situations. Due to the fact that IRLPF presents more for-
warding drone candidates by intelligently scheduling the task
execution in presence of increasing number of drones, an
increased energy consumption occurs while simultaneously
providing guarantees on better network connection quality in
comparison with HGPF. In terms of the scenario when the
energy consumption is calculated based on the local wind
according to the wind CFD model, we conclude that both
HGPF and IRLPF save ≈ 15–76% of energy. This comes by
utilizing the wind CFD model where we can achieve more
precise wind directions and speeds information than utilizing
the static global wind model. Those wind properties, provided
by the wind CFD model, are given in real-time to update
the original energy consumption for each in-flight drone.
As a result, the required energy consumption is decreased
when there is a need to re-establish the A2A or A2G links.
In addition, as we can observe from Figures 10 and 11,
the baseline methods perform much worse in a metropolitan
environment than in a rural environment due to the lack of
strategies to handle the uncertainty of the local wind change
influenced by the physical obstacle buildings.

Execution Time: Figure 12 shows the results in terms of
experimental running time of all the compared packet for-
warding algorithms. The y-axis (logarithmic scale in this

This article has been accepted for publication in IEEE Transactions on Network and Service Management. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2023.3243543

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Missouri University of Science and Technology. Downloaded on March 22,2023 at 12:48:45 UTC from IEEE Xplore.  Restrictions apply. 



14 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. X, NO. Y, MONTH 2023

case) represents the average CPU time (in seconds) for each
drone on-board. Specifically, Figure 12a describes several
experiments with various number of drones (10-30) under a
DRM scenario with no obstacles, while Figure 12b shows the
CPU time with a group of 20 drones under various percentage
of obstacles in the environment.

Under the simplest scenario with no obstacles, our proposed
algorithms HGPF and IRLPF execute quickly, varying from
0.2–1.0 s when the number of drones varies from 10 to 30.
Recalling that these algorithms also exhibit good performance
in terms of latency and throughput, we can say that both HGPF
and IRLPF can be easily performed on board on off-the-shelf
drones. Also the TQNGPSR algorithm quickly executes as the
previous two. LADTR seems to have a constant experimental
running time regardless of the number of drones (i.e., ≈ 4 s,
while the worst algorithm here is SPIDER, whose CPU time
rapidly grows when the number of employed drones increases
(i.e., up to ≈ 16 s with 30 drones). Obviously, this makes
the use of these last two algorithms unfeasible on-board the
drones. On the other hand, by fixing the number of drones to
20 and varying the number of obstacles, we see that our two
HGPF and IRLPF outperform TQNGPSR in terms of CPU
time. In fact, in a relatively sparse environment, with 20–
40% of obstacles, our proposed algorithms take < 3 s, while
TQNGPSR takes ≈ 5× more. When the environment changes
to dense, i.e., with 60–80% of obstacles, HGPF and IRLPF
take < 15 s, while the others take up to 1min. Hence, in
a DRM scenario that is full of obstacles, algorithms such as
SPIDER, LADTR, and TQNGPSR are not particularly suitable
to be performed on off-the-shelf drones.
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Fig. 12. CPU time (seconds) on average per embedded device (on each
drone) in terms of: (a) various number of drones (with no obstacles), (b) and
percentage of obstacles (with 20 drones).

Discussion of Results: Herein, we discuss the choice for
the most appropriate packet forwarding algorithm in realistic
DRM scenarios in terms of the rural area and the metropolitan
area. First, if drones have no restrictions on take-off time,
IRLPF is the most suitable because it will find the optimal
task schedule. Consequently, it provides better network perfor-
mance compared to HGPF, while also saving energy. Second,
if drones need to be scheduled in advance for accomplishing
specific tasks in accordance with a restricted time table while
saving energy, HGPF is preferred. This is because HGPF
can provide acceptable network quality performance with
considerable energy savings. Third, as the number of drones
increases, both HGPF or IRLPF are acceptable in terms of

conserving energy usage, irrespective of the number of drones.
Consequently, they can provide a pertinent solution for DRM
application operations involving large number of drones in the
presence of obstacles. Lastly, in DRM scenarios where there
are no obstacle blockages and energy consumption is not an
issue, LADTR will be the best one in terms of network perfor-
mance. However, the links generated by LADTR are unstable
and unreliable when they are blocked due to obstacles. Thus,
in cases where the environmental condition of a DRM scenario
is unknown, HGPF or IRLPF algorithm are more pertinent for
DRM application operations.

VIII. CONCLUSION

In this paper, we proposed a novel environmentally-aware
packet forwarding scheme for multi-drone cooperation in
various applications related to disaster response management
(DRM). We also considered dynamics of wind conditions
integrated via a wind model into the obstacles formulation. Our
contributions advance current knowledge on the design and
development of location-aided packet forwarding for FANETs
with consideration of geographical obstacles blockage, and
energy efficiency for coordinated drone flights in DRM ap-
plication scenarios. Specifically, we devised an accurate drone
location position prediction method using the deep RL to suit
multi-drone DRM application scenarios.

We also proposed two different algorithms, i.e., HGPF
and IRLPF algorithms that utilized the drone location pre-
dictions for improving the network connectivity, while also
providing better energy efficiency compared to state-of-the-art
approaches such as TQNGPSR, SPIDER, and LADTR. Specif-
ically, our proposed schemes outperformed the state-of-the-
art approaches in terms of network connectivity performance
(e.g., packet delivery ratio, end-to-end delay) and energy
usage (i.e., energy usage proportion for communication) in
experiments with a trace-based drone-edge simulation platform
featuring different transmission ranges, amount of drones, and
obstacle density. In terms of the algorithm execution time, our
HGPF and IRLPF algorithms are also comparable with RL-
based multi-drone routing algorithms and outperform all other
state-of-the-art approaches in the scenario where obstacles
exist.

In practice, our proposed architecture can be potentially
implemented in real-world DRM scenarios due to its relative
simplicity. Nowadays, commercial top-tier drones have im-
pressive characteristics in terms of flight time endurance, com-
putational edge capabilities, additional weight to be carried,
and extremely powerful cameras. These aspects make them
suitable for being employed in assisting a team of rescuers in
a DRM scenario. Moreover, our proposed packet forwarding
algorithms (that deal with wind and obstacles) are effective
and lightweight, and can be easily run on the edge, or even
on-board of drones.

Future work can consider DRM applications that require
sustained video throughput in A2G links, while also avoiding
disruptions in A2A and A2G connectivity. Study of scenarios
where wheeled vehicles assist the drones in DRM applications
can also be considered in the design of extended multi-drone
coordination and networking schemes.
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