10,847 research outputs found

    Fast iterative solution of reaction-diffusion control problems arising from chemical processes

    Get PDF
    PDE-constrained optimization problems, and the development of preconditioned iterative methods for the efficient solution of the arising matrix system, is a field of numerical analysis that has recently been attracting much attention. In this paper, we analyze and develop preconditioners for matrix systems that arise from the optimal control of reaction-diffusion equations, which themselves result from chemical processes. Important aspects in our solvers are saddle point theory, mass matrix representation and effective Schur complement approximation, as well as the outer (Newton) iteration to take account of the nonlinearity of the underlying PDEs

    Backstepping PDE Design: A Convex Optimization Approach

    Get PDF
    Abstract\u2014Backstepping design for boundary linear PDE is formulated as a convex optimization problem. Some classes of parabolic PDEs and a first-order hyperbolic PDE are studied, with particular attention to non-strict feedback structures. Based on the compactness of the Volterra and Fredholm-type operators involved, their Kernels are approximated via polynomial functions. The resulting Kernel-PDEs are optimized using Sumof- Squares (SOS) decomposition and solved via semidefinite programming, with sufficient precision to guarantee the stability of the system in the L2-norm. This formulation allows optimizing extra degrees of freedom where the Kernel-PDEs are included as constraints. Uniqueness and invertibility of the Fredholm-type transformation are proved for polynomial Kernels in the space of continuous functions. The effectiveness and limitations of the approach proposed are illustrated by numerical solutions of some Kernel-PDEs
    • …
    corecore