178 research outputs found

    Bisection of Bounded Treewidth Graphs by Convolutions

    Get PDF
    In the Bisection problem, we are given as input an edge-weighted graph G. The task is to find a partition of V(G) into two parts A and B such that ||A| - |B|| <= 1 and the sum of the weights of the edges with one endpoint in A and the other in B is minimized. We show that the complexity of the Bisection problem on trees, and more generally on graphs of bounded treewidth, is intimately linked to the (min, +)-Convolution problem. Here the input consists of two sequences (a[i])^{n-1}_{i = 0} and (b[i])^{n-1}_{i = 0}, the task is to compute the sequence (c[i])^{n-1}_{i = 0}, where c[k] = min_{i=0,...,k}(a[i] + b[k - i]). In particular, we prove that if (min, +)-Convolution can be solved in O(tau(n)) time, then Bisection of graphs of treewidth t can be solved in time O(8^t t^{O(1)} log n * tau(n)), assuming a tree decomposition of width t is provided as input. Plugging in the naive O(n^2) time algorithm for (min, +)-Convolution yields a O(8^t t^{O(1)} n^2 log n) time algorithm for Bisection. This improves over the (dependence on n of the) O(2^t n^3) time algorithm of Jansen et al. [SICOMP 2005] at the cost of a worse dependence on t. "Conversely", we show that if Bisection can be solved in time O(beta(n)) on edge weighted trees, then (min, +)-Convolution can be solved in O(beta(n)) time as well. Thus, obtaining a sub-quadratic algorithm for Bisection on trees is extremely challenging, and could even be impossible. On the other hand, for unweighted graphs of treewidth t, by making use of a recent algorithm for Bounded Difference (min, +)-Convolution of Chan and Lewenstein [STOC 2015], we obtain a sub-quadratic algorithm for Bisection with running time O(8^t t^{O(1)} n^{1.864} log n)

    An FPT 2-Approximation for Tree-Cut Decomposition

    Full text link
    The tree-cut width of a graph is a graph parameter defined by Wollan [J. Comb. Theory, Ser. B, 110:47-66, 2015] with the help of tree-cut decompositions. In certain cases, tree-cut width appears to be more adequate than treewidth as an invariant that, when bounded, can accelerate the resolution of intractable problems. While designing algorithms for problems with bounded tree-cut width, it is important to have a parametrically tractable way to compute the exact value of this parameter or, at least, some constant approximation of it. In this paper we give a parameterized 2-approximation algorithm for the computation of tree-cut width; for an input nn-vertex graph GG and an integer ww, our algorithm either confirms that the tree-cut width of GG is more than ww or returns a tree-cut decomposition of GG certifying that its tree-cut width is at most 2w2w, in time 2O(w2logw)n22^{O(w^2\log w)} \cdot n^2. Prior to this work, no constructive parameterized algorithms, even approximated ones, existed for computing the tree-cut width of a graph. As a consequence of the Graph Minors series by Robertson and Seymour, only the existence of a decision algorithm was known.Comment: 17 pages, 3 figure

    A Polynomial-time Bicriteria Approximation Scheme for Planar Bisection

    Full text link
    Given an undirected graph with edge costs and node weights, the minimum bisection problem asks for a partition of the nodes into two parts of equal weight such that the sum of edge costs between the parts is minimized. We give a polynomial time bicriteria approximation scheme for bisection on planar graphs. Specifically, let WW be the total weight of all nodes in a planar graph GG. For any constant ε>0\varepsilon > 0, our algorithm outputs a bipartition of the nodes such that each part weighs at most W/2+εW/2 + \varepsilon and the total cost of edges crossing the partition is at most (1+ε)(1+\varepsilon) times the total cost of the optimal bisection. The previously best known approximation for planar minimum bisection, even with unit node weights, was O(logn)O(\log n). Our algorithm actually solves a more general problem where the input may include a target weight for the smaller side of the bipartition.Comment: To appear in STOC 201

    Modularity of regular and treelike graphs

    Full text link
    Clustering algorithms for large networks typically use modularity values to test which partitions of the vertex set better represent structure in the data. The modularity of a graph is the maximum modularity of a partition. We consider the modularity of two kinds of graphs. For rr-regular graphs with a given number of vertices, we investigate the minimum possible modularity, the typical modularity, and the maximum possible modularity. In particular, we see that for random cubic graphs the modularity is usually in the interval (0.666,0.804)(0.666, 0.804), and for random rr-regular graphs with large rr it usually is of order 1/r1/\sqrt{r}. These results help to establish baselines for statistical tests on regular graphs. The modularity of cycles and low degree trees is known to be close to 1: we extend these results to `treelike' graphs, where the product of treewidth and maximum degree is much less than the number of edges. This yields for example the (deterministic) lower bound 0.6660.666 mentioned above on the modularity of random cubic graphs.Comment: 25 page
    corecore