2 research outputs found

    DVB-NGH: the Next Generation of Digital Broadcast Services to Handheld Devices

    Full text link
    This paper reviews the main technical solutions adopted by the next-generation mobile broadcasting standard DVB-NGH, the handheld evolution of the second-generation digital terrestrial TV standard DVB-T2. The main new technical elements introduced with respect to DVB-T2 are: layered video coding with multiple physical layer pipes, time-frequency slicing, full support of an IP transport layer with a dedicated protocol stack, header compression mechanisms for both IP and MPEG-2 TS packets, new low-density parity check coding rates for the data path (down to 1/5), nonuniform constellations for 64 Quadrature Amplitude Modulation (QAM) and 256QAM, 4-D rotated constellations for Quadrature Phase Shift Keying (QPSK), improved time interleaving in terms of zapping time, end-to-end latency and memory consumption, improved physical layer signaling in terms of robustness, capacity and overhead, a novel distributed multiple input single output transmit diversity scheme for single-frequency networks (SFNs), and efficient provisioning of local content in SFNs. All these technological solutions, together with the high performance of DVB-T2, make DVB-NGH a real next-generation mobile multimedia broadcasting technology. In fact, DVB-NGH can be regarded the first third-generation broadcasting system because it allows for the possibility of using multiple input multiple output antenna schemes to overcome the Shannon limit of single antenna wireless communications. Furthermore, DVB-NGH also allows the deployment of an optional satellite component forming a hybrid terrestrial-satellite network topology to improve the coverage in rural areas where the installation of terrestrial networks could be uneconomical.Gómez Barquero, D.; Douillard, C.; Moss, P.; Mignone, V. (2014). DVB-NGH: the Next Generation of Digital Broadcast Services to Handheld Devices. IEEE Transactions on Broadcasting. 60(2):246-257. doi:10.1109/TBC.2014.2313073S24625760

    DVB-S2 Experiment over NASA's Space Network

    Get PDF
    The commercial DVB-S2 standard was successfully demonstrated over NASAs Space Network (SN) and the Tracking Data and Relay Satellite System (TDRSS) during testing conducted September 20-22nd, 2016. This test was a joint effort between NASA Glenn Research Center (GRC) and Goddard Space Flight Center (GSFC) to evaluate the performance of DVB-S2 as an alternative to traditional NASA SN waveforms. Two distinct sets of tests were conducted: one was sourced from the Space Communication and Navigation (SCaN) Testbed, an external payload on the International Space Station, and the other was sourced from GRCs S-band ground station to emulate a Space Network user through TDRSS. In both cases, a commercial off-the-shelf (COTS) receiver made by Newtec was used to receive the signal at White Sands Complex. Using SCaN Testbed, peak data rates of 5.7 Mbps were demonstrated. Peak data rates of 33 Mbps were demonstrated over the GRC S-band ground station through a 10MHz channel over TDRSS, using 32-amplitude phase shift keying (APSK) and a rate 89 low density parity check (LDPC) code. Advanced features of the DVB-S2 standard were evaluated, including variable and adaptive coding and modulation (VCMACM), as well as an adaptive digital pre-distortion (DPD) algorithm. These features provided additional data throughput and increased link performance reliability. This testing has shown that commercial standards are a viable, low-cost alternative for future Space Network users
    corecore