1,006 research outputs found

    Regge's Einstein-Hilbert Functional on the Double Tetrahedron

    Full text link
    The double tetrahedron is the triangulation of the three-sphere gotten by gluing together two congruent tetrahedra along their boundaries. As a piecewise flat manifold, its geometry is determined by its six edge lengths, giving a notion of a metric on the double tetrahedron. We study notions of Einstein metrics, constant scalar curvature metrics, and the Yamabe problem on the double tetrahedron, with some reference to the possibilities on a general piecewise flat manifold. The main tool is analysis of Regge's Einstein-Hilbert functional, a piecewise flat analogue of the Einstein-Hilbert (or total scalar curvature) functional on Riemannian manifolds. We study the Einstein-Hilbert-Regge functional on the space of metrics and on discrete conformal classes of metrics

    Canonical quantum gravity in the Vassiliev invariants arena: II. Constraints, habitats and consistency of the constraint algebra

    Get PDF
    In a companion paper we introduced a kinematical arena for the discussion of the constraints of canonical quantum gravity in the spin network representation based on Vassiliev invariants. In this paper we introduce the Hamiltonian constraint, extend the space of states to non-diffeomorphism invariant ``habitats'' and check that the off-shell quantum constraint commutator algebra reproduces the classical Poisson algebra of constraints of general relativity without anomalies. One can therefore consider the resulting set of constraints and space of states as a consistent theory of canonical quantum gravity.Comment: 20 Pages, RevTex, many figures included with psfi

    Exact Results for Perturbative Chern-Simons Theory with Complex Gauge Group

    Get PDF
    We develop several methods that allow us to compute all-loop partition functions in perturbative Chern-Simons theory with complex gauge group G_C, sometimes in multiple ways. In the background of a non-abelian irreducible flat connection, perturbative G_C invariants turn out to be interesting topological invariants, which are very different from finite type (Vassiliev) invariants obtained in a theory with compact gauge group G. We explore various aspects of these invariants and present an example where we compute them explicitly to high loop order. We also introduce a notion of "arithmetic TQFT" and conjecture (with supporting numerical evidence) that SL(2,C) Chern-Simons theory is an example of such a theory.Comment: 60 pages, 9 figure

    Quantum Tetrahedra

    Full text link
    We discuss in details the role of Wigner 6j symbol as the basic building block unifying such different fields as state sum models for quantum geometry, topological quantum field theory, statistical lattice models and quantum computing. The apparent twofold nature of the 6j symbol displayed in quantum field theory and quantum computing -a quantum tetrahedron and a computational gate- is shown to merge together in a unified quantum-computational SU(2)-state sum framework

    Conformal variations and quantum fluctuations in discrete gravity

    Full text link
    After an overview of variational principles for discrete gravity, and on the basis of the approach to conformal transformations in a simplicial PL setting proposed by Luo and Glickenstein, we present at a heuristic level an improved scheme for addressing the gravitational (Euclidean) path integral and geometrodynamics.Comment: 11 pages, 3 figure
    • …
    corecore