research

Regge's Einstein-Hilbert Functional on the Double Tetrahedron

Abstract

The double tetrahedron is the triangulation of the three-sphere gotten by gluing together two congruent tetrahedra along their boundaries. As a piecewise flat manifold, its geometry is determined by its six edge lengths, giving a notion of a metric on the double tetrahedron. We study notions of Einstein metrics, constant scalar curvature metrics, and the Yamabe problem on the double tetrahedron, with some reference to the possibilities on a general piecewise flat manifold. The main tool is analysis of Regge's Einstein-Hilbert functional, a piecewise flat analogue of the Einstein-Hilbert (or total scalar curvature) functional on Riemannian manifolds. We study the Einstein-Hilbert-Regge functional on the space of metrics and on discrete conformal classes of metrics

    Similar works

    Full text

    thumbnail-image

    Available Versions