5 research outputs found

    Towards Efficient and Scalable Data-Intensive Content Delivery: State-of-the-Art, Issues and Challenges

    Get PDF
    This chapter presents the authors’ work for the Case Study entitled “Delivering Social Media with Scalability” within the framework of High-Performance Modelling and Simulation for Big Data Applications (cHiPSet) COST Action 1406. We identify some core research areas and give an outline of the publications we came up within the framework of the aforementioned action. The ease of user content generation within social media platforms, e.g. check-in information, multimedia data, etc., along with the proliferation of Global Positioning System (GPS)-enabled, always-connected capture devices lead to data streams of unprecedented amount and a radical change in information sharing. Social data streams raise a variety of practical challenges: derivation of real-time meaningful insights from effectively gathered social information, a paradigm shift for content distribution with the leverage of contextual data associated with user preferences, geographical characteristics and devices in general, etc. In this article we present the methodology we followed, the results of our work and the outline of a comprehensive survey, that depicts the state-of-the-art situation and organizes challenges concerning social media streams and the infrastructure of the data centers supporting the efficient access to data streams in terms of content distribution, data diffusion, data replication, energy efficiency and network infrastructure. The challenges of enabling better provisioning of social media data have been identified and they were based on the context of users accessing these resources. The existing literature has been systematized and the main research points and industrial efforts in the area were identified and analyzed. In our works, in the framework of the Action, we came up with potential solutions addressing the problems of the area and described how these fit in the general ecosystem

    High-Performance Modelling and Simulation for Big Data Applications

    Get PDF
    This open access book was prepared as a Final Publication of the COST Action IC1406 “High-Performance Modelling and Simulation for Big Data Applications (cHiPSet)“ project. Long considered important pillars of the scientific method, Modelling and Simulation have evolved from traditional discrete numerical methods to complex data-intensive continuous analytical optimisations. Resolution, scale, and accuracy have become essential to predict and analyse natural and complex systems in science and engineering. When their level of abstraction raises to have a better discernment of the domain at hand, their representation gets increasingly demanding for computational and data resources. On the other hand, High Performance Computing typically entails the effective use of parallel and distributed processing units coupled with efficient storage, communication and visualisation systems to underpin complex data-intensive applications in distinct scientific and technical domains. It is then arguably required to have a seamless interaction of High Performance Computing with Modelling and Simulation in order to store, compute, analyse, and visualise large data sets in science and engineering. Funded by the European Commission, cHiPSet has provided a dynamic trans-European forum for their members and distinguished guests to openly discuss novel perspectives and topics of interests for these two communities. This cHiPSet compendium presents a set of selected case studies related to healthcare, biological data, computational advertising, multimedia, finance, bioinformatics, and telecommunications

    Energy-optimal collaborative file distribution in wired networks

    Get PDF
    The impact of the ICT sector in worldwide power consumption is an increasing concern, motivating the research community to devote an important effort to define novel energy efficient networking solutions. Despite file distribution is responsible for a major portion of the current Internet traffic, little effort has been dedicated to address the issue of its energy efficiency so far. Most of the previous literature focuses on optimizing the download time of file distribution schemes (e.g. centralized server-based or distributed peer-to-peer solutions) while it is yet unclear how to optimize file distribution schemes from the point of view of energy consumed. In this paper, we present a general modelling framework to analyze the energy consumption of file distribution systems. First, we show that the general problem of minimizing energy consumption in file distribution is NP-hard. Then, for restricted versions of the problem, we establish theoretical bounds to minimal energy consumption. Furthermore, we define a set of optimal algorithms for a variety of system settings, which exploit the service capabilities of hosts in a P2P fashion. We show that our schemes are capable of reducing at least 50 % of the energy consumed by traditional (yet largely used) centralized distribution schemes even when considering effects such as network congestion and heterogeneous access speed across nodes.Supported in part by Ministerio de Economia y Competitividad grant TEC2014- 55713-R, the DRONEXT project (TEC2014-58964-C2-1-R), Regional Government of Madrid (CM) grant Cloud4BigData (S2013/ICE-2894, co- funded by FSE & FEDER), and BRADE Project (P2013/ICE-2958), NSF of China grant 61520106005, and European Commission H2020 grants ReCred and NOTRE

    High-Performance Modelling and Simulation for Big Data Applications

    Get PDF
    This open access book was prepared as a Final Publication of the COST Action IC1406 “High-Performance Modelling and Simulation for Big Data Applications (cHiPSet)“ project. Long considered important pillars of the scientific method, Modelling and Simulation have evolved from traditional discrete numerical methods to complex data-intensive continuous analytical optimisations. Resolution, scale, and accuracy have become essential to predict and analyse natural and complex systems in science and engineering. When their level of abstraction raises to have a better discernment of the domain at hand, their representation gets increasingly demanding for computational and data resources. On the other hand, High Performance Computing typically entails the effective use of parallel and distributed processing units coupled with efficient storage, communication and visualisation systems to underpin complex data-intensive applications in distinct scientific and technical domains. It is then arguably required to have a seamless interaction of High Performance Computing with Modelling and Simulation in order to store, compute, analyse, and visualise large data sets in science and engineering. Funded by the European Commission, cHiPSet has provided a dynamic trans-European forum for their members and distinguished guests to openly discuss novel perspectives and topics of interests for these two communities. This cHiPSet compendium presents a set of selected case studies related to healthcare, biological data, computational advertising, multimedia, finance, bioinformatics, and telecommunications

    Descoberta de recursos para sistemas de escala arbitrarias

    Get PDF
    Doutoramento em InformáticaTecnologias de Computação Distribuída em larga escala tais como Cloud, Grid, Cluster e Supercomputadores HPC estão a evoluir juntamente com a emergência revolucionária de modelos de múltiplos núcleos (por exemplo: GPU, CPUs num único die, Supercomputadores em single die, Supercomputadores em chip, etc) e avanços significativos em redes e soluções de interligação. No futuro, nós de computação com milhares de núcleos podem ser ligados entre si para formar uma única unidade de computação transparente que esconde das aplicações a complexidade e a natureza distribuída desses sistemas com múltiplos núcleos. A fim de beneficiar de forma eficiente de todos os potenciais recursos nesses ambientes de computação em grande escala com múltiplos núcleos ativos, a descoberta de recursos é um elemento crucial para explorar ao máximo as capacidade de todos os recursos heterogéneos distribuídos, através do reconhecimento preciso e localização desses recursos no sistema. A descoberta eficiente e escalável de recursos ´e um desafio para tais sistemas futuros, onde os recursos e as infira-estruturas de computação e comunicação subjacentes são altamente dinâmicas, hierarquizadas e heterogéneas. Nesta tese, investigamos o problema da descoberta de recursos no que diz respeito aos requisitos gerais da escalabilidade arbitrária de ambientes de computação futuros com múltiplos núcleos ativos. A principal contribuição desta tese ´e a proposta de uma entidade de descoberta de recursos adaptativa híbrida (Hybrid Adaptive Resource Discovery - HARD), uma abordagem de descoberta de recursos eficiente e altamente escalável, construída sobre uma sobreposição hierárquica virtual baseada na auto-organizaçãoo e auto-adaptação de recursos de processamento no sistema, onde os recursos computacionais são organizados em hierarquias distribuídas de acordo com uma proposta de modelo de descriçãoo de recursos multi-camadas hierárquicas. Operacionalmente, em cada camada, que consiste numa arquitetura ponto-a-ponto de módulos que, interagindo uns com os outros, fornecem uma visão global da disponibilidade de recursos num ambiente distribuído grande, dinâmico e heterogéneo. O modelo de descoberta de recursos proposto fornece a adaptabilidade e flexibilidade para executar consultas complexas através do apoio a um conjunto de características significativas (tais como multi-dimensional, variedade e consulta agregada) apoiadas por uma correspondência exata e parcial, tanto para o conteúdo de objetos estéticos e dinâmicos. Simulações mostram que o HARD pode ser aplicado a escalas arbitrárias de dinamismo, tanto em termos de complexidade como de escala, posicionando esta proposta como uma arquitetura adequada para sistemas futuros de múltiplos núcleos. Também contribuímos com a proposta de um regime de gestão eficiente dos recursos para sistemas futuros que podem utilizar recursos distribuíos de forma eficiente e de uma forma totalmente descentralizada. Além disso, aproveitando componentes de descoberta (RR-RPs) permite que a nossa plataforma de gestão de recursos encontre e aloque dinamicamente recursos disponíeis que garantam os parâmetros de QoS pedidos.Large scale distributed computing technologies such as Cloud, Grid, Cluster and HPC supercomputers are progressing along with the revolutionary emergence of many-core designs (e.g. GPU, CPUs on single die, supercomputers on chip, etc.) and significant advances in networking and interconnect solutions. In future, computing nodes with thousands of cores may be connected together to form a single transparent computing unit which hides from applications the complexity and distributed nature of these many core systems. In order to efficiently benefit from all the potential resources in such large scale many-core-enabled computing environments, resource discovery is the vital building block to maximally exploit the capabilities of all distributed heterogeneous resources through precisely recognizing and locating those resources in the system. The efficient and scalable resource discovery is challenging for such future systems where the resources and the underlying computation and communication infrastructures are highly-dynamic, highly-hierarchical and highly-heterogeneous. In this thesis, we investigate the problem of resource discovery with respect to the general requirements of arbitrary scale future many-core-enabled computing environments. The main contribution of this thesis is to propose Hybrid Adaptive Resource Discovery (HARD), a novel efficient and highly scalable resource-discovery approach which is built upon a virtual hierarchical overlay based on self-organization and self-adaptation of processing resources in the system, where the computing resources are organized into distributed hierarchies according to a proposed hierarchical multi-layered resource description model. Operationally, at each layer, it consists of a peer-to-peer architecture of modules that, by interacting with each other, provide a global view of the resource availability in a large, dynamic and heterogeneous distributed environment. The proposed resource discovery model provides the adaptability and flexibility to perform complex querying by supporting a set of significant querying features (such as multi-dimensional, range and aggregate querying) while supporting exact and partial matching, both for static and dynamic object contents. The simulation shows that HARD can be applied to arbitrary scales of dynamicity, both in terms of complexity and of scale, positioning this proposal as a proper architecture for future many-core systems. We also contributed to propose a novel resource management scheme for future systems which efficiently can utilize distributed resources in a fully decentralized fashion. Moreover, leveraging discovery components (RR-RPs) enables our resource management platform to dynamically find and allocate available resources that guarantee the QoS parameters on demand
    corecore