27,821 research outputs found

    Discovering the Impact of Knowledge in Recommender Systems: A Comparative Study

    Get PDF
    Recommender systems engage user profiles and appropriate filtering techniques to assist users in finding more relevant information over the large volume of information. User profiles play an important role in the success of recommendation process since they model and represent the actual user needs. However, a comprehensive literature review of recommender systems has demonstrated no concrete study on the role and impact of knowledge in user profiling and filtering approache. In this paper, we review the most prominent recommender systems in the literature and examine the impression of knowledge extracted from different sources. We then come up with this finding that semantic information from the user context has substantial impact on the performance of knowledge based recommender systems. Finally, some new clues for improvement the knowledge-based profiles have been proposed.Comment: 14 pages, 3 tables; International Journal of Computer Science & Engineering Survey (IJCSES) Vol.2, No.3, August 201

    Ontology-based data semantic management and application in IoT- and cloud-enabled smart homes

    Get PDF
    The application of emerging technologies of Internet of Things (IoT) and cloud computing have increasing the popularity of smart homes, along with which, large volumes of heterogeneous data have been generating by home entities. The representation, management and application of the continuously increasing amounts of heterogeneous data in the smart home data space have been critical challenges to the further development of smart home industry. To this end, a scheme for ontology-based data semantic management and application is proposed in this paper. Based on a smart home system model abstracted from the perspective of implementing users’ household operations, a general domain ontology model is designed by defining the correlative concepts, and a logical data semantic fusion model is designed accordingly. Subsequently, to achieve high-efficiency ontology data query and update in the implementation of the data semantic fusion model, a relational-database-based ontology data decomposition storage method is developed by thoroughly investigating existing storage modes, and the performance is demonstrated using a group of elaborated ontology data query and update operations. Comprehensively utilizing the stated achievements, ontology-based semantic reasoning with a specially designed semantic matching rule is studied as well in this work in an attempt to provide accurate and personalized home services, and the efficiency is demonstrated through experiments conducted on the developed testing system for user behavior reasoning

    Context Aware Computing for The Internet of Things: A Survey

    Get PDF
    As we are moving towards the Internet of Things (IoT), the number of sensors deployed around the world is growing at a rapid pace. Market research has shown a significant growth of sensor deployments over the past decade and has predicted a significant increment of the growth rate in the future. These sensors continuously generate enormous amounts of data. However, in order to add value to raw sensor data we need to understand it. Collection, modelling, reasoning, and distribution of context in relation to sensor data plays critical role in this challenge. Context-aware computing has proven to be successful in understanding sensor data. In this paper, we survey context awareness from an IoT perspective. We present the necessary background by introducing the IoT paradigm and context-aware fundamentals at the beginning. Then we provide an in-depth analysis of context life cycle. We evaluate a subset of projects (50) which represent the majority of research and commercial solutions proposed in the field of context-aware computing conducted over the last decade (2001-2011) based on our own taxonomy. Finally, based on our evaluation, we highlight the lessons to be learnt from the past and some possible directions for future research. The survey addresses a broad range of techniques, methods, models, functionalities, systems, applications, and middleware solutions related to context awareness and IoT. Our goal is not only to analyse, compare and consolidate past research work but also to appreciate their findings and discuss their applicability towards the IoT.Comment: IEEE Communications Surveys & Tutorials Journal, 201

    City Data Fusion: Sensor Data Fusion in the Internet of Things

    Full text link
    Internet of Things (IoT) has gained substantial attention recently and play a significant role in smart city application deployments. A number of such smart city applications depend on sensor fusion capabilities in the cloud from diverse data sources. We introduce the concept of IoT and present in detail ten different parameters that govern our sensor data fusion evaluation framework. We then evaluate the current state-of-the art in sensor data fusion against our sensor data fusion framework. Our main goal is to examine and survey different sensor data fusion research efforts based on our evaluation framework. The major open research issues related to sensor data fusion are also presented.Comment: Accepted to be published in International Journal of Distributed Systems and Technologies (IJDST), 201

    Continuous Improvement Through Knowledge-Guided Analysis in Experience Feedback

    Get PDF
    Continuous improvement in industrial processes is increasingly a key element of competitiveness for industrial systems. The management of experience feedback in this framework is designed to build, analyze and facilitate the knowledge sharing among problem solving practitioners of an organization in order to improve processes and products achievement. During Problem Solving Processes, the intellectual investment of experts is often considerable and the opportunities for expert knowledge exploitation are numerous: decision making, problem solving under uncertainty, and expert configuration. In this paper, our contribution relates to the structuring of a cognitive experience feedback framework, which allows a flexible exploitation of expert knowledge during Problem Solving Processes and a reuse such collected experience. To that purpose, the proposed approach uses the general principles of root cause analysis for identifying the root causes of problems or events, the conceptual graphs formalism for the semantic conceptualization of the domain vocabulary and the Transferable Belief Model for the fusion of information from different sources. The underlying formal reasoning mechanisms (logic-based semantics) in conceptual graphs enable intelligent information retrieval for the effective exploitation of lessons learned from past projects. An example will illustrate the application of the proposed approach of experience feedback processes formalization in the transport industry sector

    User-centered visual analysis using a hybrid reasoning architecture for intensive care units

    Get PDF
    One problem pertaining to Intensive Care Unit information systems is that, in some cases, a very dense display of data can result. To ensure the overview and readability of the increasing volumes of data, some special features are required (e.g., data prioritization, clustering, and selection mechanisms) with the application of analytical methods (e.g., temporal data abstraction, principal component analysis, and detection of events). This paper addresses the problem of improving the integration of the visual and analytical methods applied to medical monitoring systems. We present a knowledge- and machine learning-based approach to support the knowledge discovery process with appropriate analytical and visual methods. Its potential benefit to the development of user interfaces for intelligent monitors that can assist with the detection and explanation of new, potentially threatening medical events. The proposed hybrid reasoning architecture provides an interactive graphical user interface to adjust the parameters of the analytical methods based on the users' task at hand. The action sequences performed on the graphical user interface by the user are consolidated in a dynamic knowledge base with specific hybrid reasoning that integrates symbolic and connectionist approaches. These sequences of expert knowledge acquisition can be very efficient for making easier knowledge emergence during a similar experience and positively impact the monitoring of critical situations. The provided graphical user interface incorporating a user-centered visual analysis is exploited to facilitate the natural and effective representation of clinical information for patient care

    Applying semantic web technologies to knowledge sharing in aerospace engineering

    Get PDF
    This paper details an integrated methodology to optimise Knowledge reuse and sharing, illustrated with a use case in the aeronautics domain. It uses Ontologies as a central modelling strategy for the Capture of Knowledge from legacy docu-ments via automated means, or directly in systems interfacing with Knowledge workers, via user-defined, web-based forms. The domain ontologies used for Knowledge Capture also guide the retrieval of the Knowledge extracted from the data using a Semantic Search System that provides support for multiple modalities during search. This approach has been applied and evaluated successfully within the aerospace domain, and is currently being extended for use in other domains on an increasingly large scale
    corecore