34 research outputs found

    Generic PLM system for SMEs: Application to an equipment manufacturer

    Get PDF
    For several years, digital engineering has increasingly taken a more important place in the strategic issues of mechanical engineering companies. Our proposition is an approach that enables technical data to be managed and used throughout the product life-cycle. This approach aims to provide assistance for costing, development and industrialization of the product, and for the capitalization, the reuse and the extension of fundamental knowledge. This approach has been experimented within several companies. This paper presents the case in a company environment that designs and produces families of ship equipment parts

    Framework for Product Lifecycle Management integration in Small and Medium Enterprises networks

    Get PDF
    In order to improve the performance of extended enterprises, Small and Medium Enterprises (SMEs) must be integrated into the extended networks. This integration must be carried out on several levels which are mastered by the Product Lifecycle Management (PLM). But, PLM is underdeveloped in SMEs mainly because of the difficulties in implementing information systems. This paper aims to propose a modeling framework to facilitate the implementation of PLM systems in SMEs. Our approach proposes a generic model for the creation of processes and data models. These models are explained, based on the scope and framework of the modeling, in order to highlight the improvements provided

    Towards a maintenance semantic architecture.

    No full text
    International audienceTechnological and software progress with the evolution of processes within company have highlighted the need to evolve systems of maintenance process from autonomous systems to cooperative and sharing information system based on software platform. However, this need gives rise to various maintenance platforms. The first part of this study investigates the different types of existing industrial platforms and characterizes them compared to two criteria namely : information exchange and relationship intensity. This allowed identifying the e-maintenance architecture as the current most efficient architecture. despite its effectiveness, this latter can only guarantee technical interoperability between various components. Therefore, the second part of this study proposes a semantic-knowledge based architecture, thereby ensuring a higher level of semantic interoperability. To this end, specific maintenance ontology has been developed

    Understanding the new Context of Uncertainty and Risk under the 4th Industry Revolution

    Get PDF
    Proceedings of the 29th European Safety and Reliability Conference (ESREL), 22 – 26 September 2019, Hannover, Germany. Editors, Michael Beer and Enrico ZioThe revolution towards the Industry 4.0, requires as a fundamental challenge the advanced treatment of risk in physical assets according to this new context. This revolution also includes the transition towards a new concept of assets and production systems giving rise to those known as cyber-physical systems (CPS) where the available information and knowledge about the systems and its behaviour should promote a level of control of the risk not known until now. In this context, the transition from classical model for risk management to other concepts, more flexible and dynamic is needed. It is the context that this paper is intended to illustrate, approaching risk control to the available data and technology.Gobierno de España. FFI2017- 89639-P, “Mechanisms in the sciences: from the biological to the social

    Integrated product relationships management : a model to enable concurrent product design and assembly sequence planning

    Get PDF
    The paper describes a novel approach to product relationships management in the context of concurrent engineering and product lifecycle management (PLM). Current industrial practices in product data management and manufacturing process management systems require better efficiency, flexibility, and sensitivity in managing product information at various levels of abstraction throughout its lifecycle. The aim of the proposed work is to manage vital yet complex and inherent product relationship information to enable concurrent product design and assembly sequence planning. Indeed, the definition of the product with its assembly sequence requires the management and the understanding of the numerous product relationships, ensuring consistency between the product and its components. This main objective stresses the relational design paradigm by focusing on product relationships along its lifecycle. This paper gives the detailed description of the background and models which highlight the need for a more efficient PLM approach. The proposed theoretical approach is then described in detail. A separate paper will focus on the implementation of the proposed approach in a PLM-based application, and an in-depth case study to evaluate the implementation of the novel approach will also be given

    An Ontology-based model for providing Semantic Maintenance.

    No full text
    International audienceMaintenance is becoming more and more crucial in Asset Lifecycle Management information models. Issues such as collecting, handling and using the asset data produced during its lifecycle in a lean and efficient manner are on top of today's research. Customer satisfaction, compliance with environmental friendly legislation, product quality, high performance and reliability are only a few of the benefits improved maintenance methods and tools may provide to enterprises. In this work we combine the benefits of two previous developed models and we develop a model for Semantic Maintenance. The first model we are based on is the PROMISE semantic object model which was made for supporting Closed-Loop Product Lifecycle Management. The second model is the semantic model of e-maintenance developed in PROTEUS project. The new model described in this paper is named “SMAC-Model”. Its aim is to provide advanced maintenance services as well as feedback for the Beginning of Life and input for End of Life. The model is generic and may be used in various Asset Lifecycle Management cases. It is developed to facilitate complex physical assets and to work in industrial environment

    Internet of Things - Enabled visual analytics for linked maintenance and product lifecycle management

    Get PDF
    When closed loop product lifecycle management was first introduced, much effort focused on establishing ways to communicate data between different lifecycle phase activities. The concept of a smart product, able to communicate its own identity and status, had a key role to play to this end. Such a concept has further matured, benefiting from internet things-enabled product lifecycle management advancements. Product data exchanges can now be brought closer to the point of end use consumption, enabling users to become more proactive actors within the product lifecycle management process. This paper presents a conceptual approach and a pilot implementation of how this can be achieved by superimposing middle of life relevant product information to beginning of life product views, such as a 3D product CAD model. In this way, linked maintenance data and knowledge become visual features of a product design representation, facilitating a user’s understanding of middle-of life concepts, such as occurrence of failure modes. The proposed approach can be particularly useful when dealing with product data streams as a natural visual analytics add-in to closed loop product lifecycle management

    Towards an Ontology for Product Version Management

    Get PDF
    During its lifecycle, products are affected by market, technology, and user requirements. Without a process for efficiently handling product changes, product data, which is spread in different areas and systems, might become unusable, incomplete, or inconsistent. A simple change on product information may trigger a domino effect that could be very difficult to control. In order to reduce this effect, knowledge is important to answer what, when, why, and how a change occurred. This article proposes an ontology that allows capturing product changes in order to answer the aforementioned questions. The proposed ontology extends PRoductONTOlogy (PRONTO) (Vegetti et al., 2011) to represent product family changes. OWL implementation of the proposed ontology is presented with a simple case study to validate it.Fil: Sonzini, Maria Soledad. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Santa Fe. Instituto de Desarrollo y Diseño (i); ArgentinaFil: Vegetti, Maria Marcela. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Santa Fe. Instituto de Desarrollo y Diseño (i); ArgentinaFil: Leone, Horacio Pascual. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Santa Fe. Instituto de Desarrollo y Diseño (i); Argentin

    Ontology-based solutions for interoperability among product lifecycle management systems: A systematic literature review

    Get PDF
    During recent years, globalization has had an impact on the competitive capacity of industries, forcing them to integrate their productive processes with other, geographically distributed, facilities. This requires the information systems that support such processes to interoperate. Significant attention has been paid to the development of ontology-based solutions, which are meant to tackle issues from inconsistency to semantic interoperability and knowledge reusability. This paper looks into how the available technology, models and ontology-based solutions might interact within the manufacturing industry environment to achieve semantic interoperability among industrial information systems. Through a systematic literature review, this paper has aimed to identify the most relevant elements to consider in the development of an ontology-based solution and how these solutions are being deployed in industry. The research analyzed 54 studies in alignment with the specific requirements of our research questions. The most relevant results show that ontology-based solutions can be set up using OWL as the ontology language, Protégé as the ontology modeling tool, Jena as the application programming interface to interact with the built ontology, and different standards from the International Organization for Standardization Technical Committee 184, Subcommittee 4 or 5, to get the foundational concepts, axioms, and relationships to develop the knowledge base. We believe that the findings of this study make an important contribution to practitioners and researchers as they provide useful information about different projects and choices involved in undertaking projects in the field of industrial ontology application.Fil: Fraga, Alvaro Luis. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo y Diseño. Universidad Tecnológica Nacional. Facultad Regional Santa Fe. Instituto de Desarrollo y Diseño; ArgentinaFil: Vegetti, Maria Marcela. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo y Diseño. Universidad Tecnológica Nacional. Facultad Regional Santa Fe. Instituto de Desarrollo y Diseño; ArgentinaFil: Leone, Horacio Pascual. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo y Diseño. Universidad Tecnológica Nacional. Facultad Regional Santa Fe. Instituto de Desarrollo y Diseño; Argentin

    Manufacturability verification through feature-based ontological product models

    Get PDF
    To achieve efficient, fast and cost effective production, designers must consider all the manufacturing stages a product has to go through. A case study in a manufacturing setup shows that owing to the differences in perception of an engineering component, the coordination between design and manufacturing becomes difficult. Semantic interoperability problems are therefore faced when knowledge sharing for the purpose of manufacturability verification is attempted through computer-based knowledge bases. Ontologies have a reputation for solving semantic interoperability problems. Combined with shape feature-based models of components, ontologies provide a basis for seamless knowledge sharing. This article demonstrates the use of ontologies for analyzing the manufacturability of engineering components in the early design stages. This is done by developing shape feature-based ontological models of these components and associating manufacturability knowledge with these models. To achieve this, an ontological modelling technique is proposed that uses shape feature-based geometrical models of engineering components as building blocks. The knowledge associated with these models to demonstrate their use for manufacturability verification is derived from the findings of a case study also detailed in this article. © IMechE 2012
    corecore