

 80 Int. J. Product Lifecycle Management, Vol. 8, No. 1, 2015

 Copyright © 2015 Inderscience Enterprises Ltd.

Towards an ontology for product version
management

María Soledad Sonzini*
INGAR – Instituto de Desarrollo y Diseño (CP 3000),
Avellaneda 3657, Province of Santa Fe, Argentina
and
Universidad Nacional de La Rioja (CP 5300),
Luis M. de la Fuente S/N, Province of La Rioja, Argentina
Email: ssonzini@santafe-conicet.gob.ar
*Corresponding author

Marcela Vegetti and Horacio Leone
INGAR – Instituto de Desarrollo y Diseño (CP 3000),
Avellaneda 3657, Province of Santa Fe, Argentina
Email: mvegetti@santafe-conicet.gob.ar
Email: hleone@santafe-conicet.gob.ar

Abstract: During its lifecycle, products are affected by market, technology,
and user requirements. Without a process for efficiently handling product
changes, product data, which is spread in different areas and systems, might
become unusable, incomplete, or inconsistent. A simple change on product
information may trigger a domino effect that could be very difficult to control.
In order to reduce this effect, knowledge is important to answer what, when,
why, and how a change occurred. This article proposes an ontology that allows
capturing product changes in order to answer the aforementioned questions.
The proposed ontology extends PRoductONTOlogy (PRONTO) (Vegetti et al.,
2011) to represent product family changes. OWL implementation of the
proposed ontology is presented with a simple case study to validate it.

Keywords: product lifecycle management; PLM; ontology; product version;
product ontology; control version; engineering change management; ECM;
product information; ontology web language; OWL; bill of materials; BOM;
semantic web rule language; SWRL.

Reference to this paper should be made as follows: Sonzini, M.S., Vegetti, M.
and Leone, H. (2015) ‘Towards an ontology for product version management’,
Int. J. Product Lifecycle Management, Vol. 8, No. 1, pp.80–97.

Biographical notes: María Soledad Sonzini is a graduate in Information
Systems Engineering of Universidad Nacional de La Rioja, La Rioja,
Argentina. She is currently a PhD student in Information Systems Engineering
of Universidad Tecnológica Nacional (UTN). She also works at Instituto de
Desarrollo y Diseño (INGAR) on a Research Fellowship granted by Consejo
Nacional de Investigaciones Científicas y Técnicas (CONICET) (Argentine
Council for Scientific and Technical Research of Argentina). Her research
interests are focused on applying ontologies and semantic web technologies to
represent product information in manufacturing industries.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CONICET Digital

https://core.ac.uk/display/52482925?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

 Towards an ontology for product version management 81

Marcela Vegetti is an Associate Professor at the Information System
Engineering Department, Facultad Regional Santa Fe, Universidad Tecnológica
Nacional, Santa Fe, Argentina. She also holds an Assistant Researcher position
at Instituto de Desarrollo y Diseño of CONICET. She obtained her PhD in
Information Systems Engineering at ‘Universidad Tecnológica Nacional’,
Santa Fe, Argentina in 2007. Her current research activities are focused on
ontologies and semantic technologies for supply chain information systems and
enterprise modelling.

Horacio Leone is a Full Professor at the Information System Engineering
Department, Facultad Regional Santa Fe, Universidad Tecnológica Nacional,
since 1989. He also has an Independent Researcher position at Instituto de
Desarrollo y Diseño of CONICET of Argentina. He received his Chemical
Engineer degree from Universidad Tecnológica Nacional in 1981. He obtained
his PhD in Chemical Engineering at Universidad Nacional del Litoral in 1986.
From 1986 to 1989, he was a Postdoctoral Fellow at the Laboratory for
Intelligent Systems in Process Engineering (LISPE) at Massachusetts Institute
of Technology. His research interests are focused on improving the
understanding of the engineering design process, mainly through the
application of different modelling frameworks to diverse engineering domains.
In software architecture design process, he has worked on characterising design
decisions and the rationale behind them. He has also explored semantic web
applications to supply chain information systems and enterprise modelling.

1 Introduction

In the past decade, vast research has been increasingly focused on product lifecycle
management (PLM). This discipline is developed within the industrial environment and
its objective is sharing and managing product information during product lifecycle.

PLM requires robust solutions to represent product data models, enabling information
exchange across different organisations, stakeholders, processes, stages in the product
lifecycle, and several business activities. In recent years, research has shifted its course to
include ontology technology with the aim of holistically integrating product information
representation. This integration should consider changes in domain and user requirements
that naturally occur for several reasons such as global competition, advances in
technology, and demands for customised products.

During product lifecycle, the above mentioned changes should be reflected in the
product information in order to improve efficiency in lifecycle phases and to shorten
product development times. Without a process for efficiently handling changes, product
data might become unusable, incomplete, or inconsistent. This management process will
enable assessing the impact upon the affected components and making scheduling and
design decisions. Sjoberg (1995) considers that in order to obtain a sophisticated
maintenance tool and predict change consequences, it is necessary to take into account a
set of questions about the change event, which are formulated as follows:

• What were the affected components?

• When did it occur?

 82 M.S. Sonzini et al.

• Why did it occur?

• How did it change?

• How was the change register?

It is widely accepted that ontologies constitute an enabling technology for information
management through a commonly understandable semantic representation of
domain-specific information, which can be communicated between applications
(Gruninger, 2004). Therefore, even though several ontologies for product information
modelling have been proposed in the last decade, few contributions take into account the
product change management issue.

One of the proposed ontologies is called PRoductONTOlogy (PRONTO) (Vegetti
et al., 2011). This ontology provides a product conceptual model that introduces
two hierarchies to consistently represent abstract and structural product information.
In addition, PRONTO allows representing aggregation and disaggregation processes
to obtain a different bill of materials (BOM) or product configuration description.
However, PRONTO lacks the ability to represent control and change management of a
product.

In order to fill this gap, this proposal extends PRONTO by introducing new entities
and relationships in order to capture changes and evolution of products. The proposal is
able to show how a change affects a specific family and allows for gathering answers to
the aforementioned questions.

This work is organised in sections. Section 2 provides an overview of the principles
of change management engineering, change control within a demanding environment,
and the existing product ontologies. The proposal of a conceptual model extending
PRONTO for change management and its implications is defined in Section 3. Then,
Section 4 discusses the implementation of the proposed model in ontology web language
(OWL). Moreover, a simple case study is presented in Section 5 to show the proposal
application. Finally, conclusions are outlined in Section 6.

2 Related works

This section describes several topics necessary to understand the present proposal.
First, it describes some existing proposals for engineering change management (ECM)
in manufacturing industries. Then, it introduces some ontologies that are
proposed to represent product information. At the end, a brief description of PRONTO is
included.

2.1 Background of ECM

Product manufacturing industry undergoes changes caused by several factors such as new
technologies and design decision components that are withdrawn from the market, among
others. A change in the structure of a product may affect another aspect such as schedule
or project budget. Propagation of product changes should receive special treatment,
particularly in products with complex structures. Thus, Jarratt et al. (2004) consider that
companies must adopt new methodologies to survive in the market and improve their

 Towards an ontology for product version management 83

product design processes through effective change management. To take up this
challenge, they propose ECM process as “the process of making modifications and
alterations to parts, software, and drawing that have been already released at any point in
the product lifecycle”. This process consists of five steps, the evaluation of possible
impacts of a change being the most critical. ECM process can affect two features: the
product itself or the development process. In this paper, we focus on the former,
considering the impact upon product information.

Early studies on computer tools for ECM have focused on stand-alone
computer-aided systems for storing and retrieving engineering change documents. Then,
ECM systems based on workflow systems have been proposed (Huang and Mak, 1998;
Huang et al., 2001) to provide a wide set of functionalities for supporting the entire
engineering change process. There are also several knowledge management systems for
product development that are intended to capture process knowledge and share product
data (May et al., 2000; May and Carter, 2001; Monplaisir, 1999; Numata and Taura,
1996; Ramesh and Tiwana, 1999; Yoo and Kim, 2002).

However, these proposals are still limited in their ability to capture and reuse the
knowledge involved in engineering changes. Therefore, engineering change teams
currently depend heavily on off-line collaboration without codifying knowledge
explicitly. In order to overcome this difficult, Lee et al. (2006) introduce the use of
ontology in their proposal.

Today, there are several commercially available tools to support computer-based
ECM, especially tools as part of enterprise resource planning (ERP), PLM, or product
data management (PDM) to track and register changes. As an extension of PLM systems,
Horváth (2007) proposes a new method for human-computer communication for
decision-making in engineering based on change management for product development
in modelling environments. However, any of these proposals use ontologies to formalise
product change information, which would allow inferring answers to the questions
mentioned in Section 1.

2.2 Ontologies for product data representation

In the last decade, ontologies have been proposed as a mechanism to support semantic
integration in the context of semantic web (Shadbolt et al., 2006). Thus, ontologies are
defined to establish a common vocabulary among areas within an organisation, different
organisations, and various applications. Ontology is a formal model which explicitly
represents the consensual knowledge of a domain (Brandt et al., 2008).

There are principles, design criteria, and stages for ontologies development. For
instance, Henning (2012) describes a methodology for deploying an ontology including
four stages, which are summarised as follows:

1 requirements specification stage to identify the ontology aim

2 conceptualisation stage to semi-formalise the previous stage and obtain a view of the
domain

3 implementation stage, in which the ontology is codified by a formal language

4 evaluation stage to make a judgment of usefulness and ontology quality with respect
to the stage number 1.

 84 M.S. Sonzini et al.

These stages are not sequential; in contrast, the ontology development is an iterative and
incremental process. This work implements stage 2 by a conceptualisation of the proposal
for change management in Section 3. In Section 4, the proposed ontology is implemented
using OWL (stage 3), and the proposal evaluation is established by the solution of the set
of already mentioned question (Section 5).

Ontologies have been also developed for manufacturing environments. An important
proposal is Toronto virtual enterprise (TOVE) project (Fox, 1992), which defined a set of
ontologies to be used in the representation of enterprises. One of such ontologies
introduced product related concepts. However, it adopted a traditional representation of
product variants, which are not efficient enough and only consider products that are
obtained by assembling component parts.

In nowadays electronic commerce context, business-to-business (B2B) applications
require effective communication among computers. This led to the emergence of some
standards which improve product information exchange among suppliers and customers.
As an example, it is possible to mention product data representation and exchange
(STEP) model (ISO 10303, 1991), United Nations Standard Products and Services Code
(UNSPSC), NAICs (North American Industry Classification System), eCl@ss, Electronic
Open Technical Dictionary (eOTD) or RosetaNet’s technical dictionary. Such standards
are agreed by a wide group of organisations. However, they only represent concept
taxonomies and do not allow for modelling product structures. In the last years, some
proposals (Klein, 2002; Hepp, 2006; Zhao and Liu, 2008) arose to codify such standards
into languages for Semantic Web.

Hepp (2008) introduces an ontology that can be used for describing products and
services offered on the web. It is focused on the representation of web resources, offers
made by means of those web resources legal entities, prices, terms, and conditions. Yang
et al. (2009) successfully developed a model of product configuration knowledge in
which structural knowledge is represented in OWL and constraint knowledge is described
in semantic web rule language (SWRL). Matsokis and Kiritsis (2010) also use OWL in
their proposal of an ontology for representing documents, resources, and activities in
PLM.

Semantic web-based open engineering platform (SWOP) project proposes a semantic
product modelling approach to define four ontologies: product, representation, rule, and
operation, which are collectively called product modelling ontology (PMO) (Böhms
et al., 2008). On the one hand, PMO states the concepts using representation of product
geometry. On the other hand, such ontology allows representing the relation between a
product and its constituent parts.

PRONTO is proposed by Vegetti et al. (2010, 2011) to be used as a common
vocabulary in order to reach the semantic integration of product information systems. It is
based on both the generative BOM and the product family concepts in order to provide an
efficient management of multiple variants. The proposal modifies the traditional
two-level product family representation (product family – family member) by adding a
new level between them. The new three-level hierarchy approach allows the natural
modelling of product information with different aggregation degrees, which are needed
for planning activities taking place at various time horizons.

As it is presented in previous paragraphs, there are several ontologies capable of
representing different aspects of product data. Some of them are focused on representing
product structure (Böhms et al., 2008; Zhao and Liu, 2008, Fox, 1992; Hepp, 2008),
product catalogues (Klein, 2002; Hepp, 2006), and design documents (Matsokis and

 Towards an ontology for product version management 85

Kiritsis, 2010), among others. Even though there exist many ontologies for product
information modelling, few contributions take into account the product change
management problem.

2.3 PRoductONTOlogy

PRONTO is a general ontology that could be extended to represent product in different
industrial domains. The concepts that are relevant to this paper are illustrated in Figure 1.
PRONTO introduces two hierarchies to represent product information: abstraction
hierarchy (AH) and structural hierarchy (SH). The former organises product information
at three abstraction levels.

Figure 1 Simplified conceptual model of PRONTO (see online version for colours)

The highest one, Family level, represents a set of similar products that have
similar structures, characteristics, and production routes. A family is related to a
superstructure, which includes all possible structures that the members of such a
family may have. The second level, called VariantSet, models a subset of Family
members that share the same structure and/or similar characteristics, i.e., a subfamily.
Hence, a VariantSet is a memberOf a Family. Thus, when a VariantSet is specified, one
of the structures contained in Family´s superstructure must be selected. In addition,
certain modifications and constraints can be introduced into that structure. Product is the
lowest level and represents individual items with physical existences which are members
of a particular VariantSet. Therefore, all products associated with a given VariantSet have
the same structure, which is that defined for such VariantSet. Minor modifications in
some parameter values (e.g., flavour, colour, etc.) can be also introduced at this lower
level.

SH organises the specific knowledge about product structural information.
This hierarchy is a tool to handle product information associated with the multiple
available recipes or processes for manufacturing a particular product or a set of similar
products.

PRONTO allows representing BOMs of products that are manufactured by
assembling component parts or disaggregating non-atomic raw materials, and products
with hybrid BOMs. Therefore, SH considers two types of structural hierarchies:
one which relates a product with its component parts and another one which links a

 86 M.S. Sonzini et al.

product with its derivative constituents. The relationships that are used to represent
each of these types are called componentOf and derivativeOf, respectively. As shown in
Figure 1, both relations are a specialisation of SHRelation class, which links a
ProductAbstraction instance (whole) with zero or more ProductAbstraction instances
(part) defined at the same abstraction level. The family concept is specialised into
simple family (SFamily) and composite family (CFamily) in order to denote families
without structures and families having one or more structures. Composite family may
represent products that:

1 are manufactured by assembling parts (typical of discrete manufacturing
environments)

2 are decomposed/disaggregated to obtain intermediate products (characteristic of
dairy, meat, or petrochemical industries), which can participate as components of
other products

3 have hybrid structures.

Hence, PRONTO considers two types of structures and relations: composition relation
(CRelation) to identify the component of the composite structure (CStructure) and
decomposition relation (DRelation) to identify the derivatives of decomposition structure
(DStructure). Each one is linked to the Value concept by quantityPerUnit relationship,
which represents the amount of the part that is required to produce one unit of the whole.
This concept specifies a numerical value (number), the unit in which the number should
be measured (UnitOfMeasurement), and boundaries (upperBound and lowerBound) that
constraint the numerical value.

Furthermore, constraints associated with the specification of valid products
are introduced in PRONTO. This is a very important feature in production
environments where customer specifications have a strong influence on defining the
products to be manufactured/ assembled. Thus, it prevents a customer from requiring an
incorrect product configuration. Due to the scope of this work, Figure 1 only shows
restrictions related to Family level (FRestriction). Each restriction is identified as
obligatory (ObligatoryRest) or incompatible (IncompatibleRest). The former forces a
component to participate in a SH. In contrast, incompatible restrictions exclude a
component from the SH.

Figure 2 illustrates the application of both hierarchies in a computer industry
example. It shows the abstraction hierarchies of laptop product line, as well as the ones
corresponding to the components needed for its manufacture (FloppyDisk, Memory and
Processor families). Dashed lines between entities located at different levels represent
memberOf associations that are comprised in the different abstraction hierarchies. On the
other hand, structural hierarchies (solid lines) of Laptop family, Laptop M1 series variant
set, and Laptop M1 124 products are included at Family, VariantSet, and Product levels,
respectively. These solid lines represent componentOf relationships that are defined
among entities belonging to the same abstraction level. It can be seen that at the Family
level, FloppyDisk, Memory, and Processor families are components of Laptop family. At
the middle level, LaptopM1 series variant set is composed of a FloppyDisk M1serie
floppy disk (member of FloppyDisk Family), a Memory M1 series memory (member of
Memory Family), and a Processor M1 series processor (member of Processor Family).
Similarly, at the lowest level, the particular components of laptop M1 124 product, which
is a member of Laptop M1 series variant set, are shown.

 Towards an ontology for product version management 87

Figure 2 Laptop family example

However, PRONTO lacks the mechanism to represent product change management.
Change management is an important activity to maintain the visibility of product
information evolution; and it could be useful to trace product versions during product
lifecycle and make several decisions.

3 Ontology for product version management

The lack of change management in PRONTO impacts directly on product family
information since a change occurrence could corrupt the original structure. This section
presents the concepts and relations that should be added to PRONTO in order to capture,
trace product versions, and answer the set of above mentioned questions. The scope of
the model is applied in the highest level of PRONTO AH.

During product lifecycle, product family structure may vary due to external factors
and design decisions. In the example of computer machine industry domain (Section 2.1),
a professional designer makes a decision about removable data storage. Initially, a Laptop
Family is composed of a Floppy Disk Family. But an external factor such as technology
advances leads to redesigning the family information, adding a new component such as
USB Drive Family, and deleting Floppy Disk Family.

The proposed model, which is introduced in Figure 3, represents each change
affecting a product family by means of the ChangeEvent concept. The occurrence of a
ChangeEvent generates a new family version. It would be important to capture all
versions of a specific family. Therefore, the conceptual model includes the History
concept to represent all changes undergone by a family during its lifecycle. Family
History is the set of family versions own by a Family. Each Version is linked to
DateTime entity which specifies the time and date when the version became valid (see
validSince relation in Figure 3). Moreover, each Version can be linked to its predecessor
version by Previous association. Only the first version is not related to another.

Specification entity allows capturing more information about the creation of the
version, e.g., causes of change, designer responsible of the version, etc. As already
mentioned, a Version is generated by the occurrence of a ChangeEvent concept (see

 88 M.S. Sonzini et al.

generatedBy association in Figure 3) and the elements affected by Involves relationship
are associated to that version.

Figure 3 Conceptual model for product version management

Within the PRONTO concepts explained in Section 2.3, there are three elements that can
be affected by a change:

1 one of the family structures, through the addition or removal of a Relation in the
structure

2 the quantityPerUnit value of a relation

3 a constraint between families.

Therefore, the model introduces the ChangedEntity concept to represent the element that
may be affected by a change event. At family level, particularly, the entities that could be
affected by a change are CRelation and FRestriction.

In order to represent the different possible changes, the ontology specialises
ChangeEvent concept into: FRestrictionChange and CRelationChange. The former
represents the change of a family restriction and the latter is used for changes in relations
as a whole and in its quantityPer attribute. These kinds of change events are associated to
the restriction or the relation affected by the change respectively (see affectedByCFR and
affectedByCCR in Figure3). Both change event types must be conformed according to
certain restrictions. In particular, CRelationChange is associated to a constraint to ensure
their only application in a CFamily, since a SFamily has not a structure. In contrast,
FRestriction can be applied in both CFamily and SFamily.

Each ChangeEvent might affect a ChangeEntity by three different operations.
Shaban-Nejad and Haarslev (2009) distinguished 74 different types of operations that
frequently occur in bio-ontologies life cycles, represented by ten general terms. Within
the scope of this work, only three of these types are adopted: Add, Delete, and Edit. A
change event is related to a type of operation by hasOperationType association. Add
operation allows the addition of a restriction (FRestriction) or a relation (CRelation) in a
product family definition. Likewise, Delete operation allows the removal of a restriction
or a relation. Nevertheless, not all operations can be applied to all affected components.
A FRestriction may be affected by an Add or Delete operation, but it cannot be edited. In
contrast, an instance of CRelation could be affected by the three defined operation types.

 Towards an ontology for product version management 89

It is possible to Add or Delete a CRelation as well as to edit the Value associated to it by
the quantityPerUnit link. In other words, product designers can add or delete a
FRestriction between families or a relation in one family structure. However, the value of
quantityPer attribute of a relation can be only edited by modifying its number, unit of
measurement, or its bounds. Therefore, the definition of a restriction is necessary in order
to constrain the proposed model. This restriction is represented in Figure 3 by a note
associated to Edit entity.

The ontology defines a ChangeEventConstraint entity, which describes a dependency
relationship between two change events. A specific change event may Requires or
Excludes the consideration of another ChangeEvent, e.g., a change event which specifies
the removal of a certain restriction may be needed to define a new (Add) restriction.
Constraints are necessary to maintain consistency and the correct interpretation of the
conceptual model.

The proposed conceptual model can answer the aforementioned set of questions. To
answer the first question: ‘What were the affected components?’, the proposal defines
ChangedEntity and its specialisation concepts. Likewise, to answer ‘How did it change?’,
the model defines two concepts: CRelationChange and FRestrictionChange to identify
the kind of the affected entity, and OperationType concept to specify the type of change.
AffectedByCCR and affectedByCFR relationships allow obtaining the connection between
EntityChangeEvent and ChangeEvent. In turn, DateTime and Specification concepts
allow for responses to ‘When did it occur?’ and ‘Why?’, respectively. Finally, to answer
‘How was it registered?’, the model defines a History concept to capture all versions of a
Family in its lifecycle, and a Version concept to register all information about the
occurring change.

4 OWL implementation

This section presents the implementation of the conceptual model described in Section 3
by using OWL. For this implementation, Protégé 3.5 and Pellet 1.5.2 reasoner are chosen.
First, the identified concepts were classified and organised to represent a hierarchical
structure. Then, data types as well as properties and their domain and Range were defined
(see Table 1). Each property has a domain, which consists of a list of classes of the
individuals that can be placed on the left hand side of the property, and a range, which
consists of the list of classes of individuals that can be placed in the right hand side of the
property. Domain and range are used for reasoning or inferred new knowledge. After
that, the class expression and asserted conditions were specified. Asserted conditions
ensure consistency of product models based on the proposed ontology. In particular, the
following assertions were defined as necessary conditions: ‘a ChangeEvent must be
associated to at least one OperationType’, ‘a Family class must be associated to a History
class’, and ‘Edit concept is associated only to a Value concept’.

In order to define the behaviour and semantics of relationships, SWRL is used.
SWRL enables acquiring more powerful deductive reasoning. A SWRL rule contains an
antecedent part, which is referred to as body, and a consequent part, which is referred to
as head. Both, body and head consist of positive conjunctions of atoms. Informally, a
SWRL rule may be read to mean that if all atoms in the antecedent are true, then the
consequent must be also true. Predicate symbols can include OWL classes, properties, or

 90 M.S. Sonzini et al.

data types. Arguments can be OWL individuals or data values, or variables referring to
them. All variables in SWRL are treated as universally quantified, their scope being
limited to a given rule.

Table 2 shows some of the defined rules to infer knowledge. By means of these rules,
it is possible to infer, for example, inverse functional properties (rules 1 to 7), the relation
value that is edited by a change (rule 8), families that were deleted in a specific version
(rule 9), or new restrictions added to a family in a specific version (rule 10).
Table 1 Set of properties defined in OWL

Property Domain Range
affectedByCCR CRelation CRelationChange
affectedByCFR FRestriction FRestrictionChange
constraintTo ChangeEventConstraint ChangeEvent
editValue Edit Value
GeneratedBy Version ChangeEvent
hasConstraint ChangeEvent ChangeEventConstraint
hasHistory Family History
hasOperationType ChangeEvent OperationType
hasSpecification Version Specification
hasVersion History Version
Involves Version ChangeEntity
isCEventOf ChangeEvent Version
isEditedBy Value Edit
isOperationTypeOf OperationType ChangeEvent
PartOf CRelation Family
quantityPerUnit CRelation Value
ValidSince Version DateTime

Table 2 Partial set of rules defined in SWRL

 Rules Explanations
1 Family(?x) ∧ History(?y) ∧ hasHistory(?x, ?y) →

isHistoryOf(?y, ?x)
x is a family associated to a

history y and y is history of family
x.

2 History(?x) ∧ Version(?y) ∧ hasVersion(?x ?y) →
isVersionOf(?y, ?x)

x is a history and y is a version. x
has a version y. y is version of x.

3 Version(?x) ∧ ChangedEntity(?y) ∧ involves(?x, ?y)
→ isInvolveIn(?y, ?x)

x is a version and involves an
Entity changed y. Hence, y is

involved in x.
4 Version(?x) ∧ ChangeEvent(?y) ∧ GeneratedBy(?x,

?y) → isCEventOf(?y, ?x)
x is a version and is generated by

a ChangeEventy. Hence y is
Change Event of a version x.

5 Version(?x) ∧ ChangeFRestriction (?y) ∧
FRestriction (?z) ∧ GeneratedBy(?x, ?y) ∧
Involves(?x, ?z) → affectToFR(?y, ?z)

A change y generates a version x
and affects a FRestriction z

involved in x. This rule is similar
to affectToCR.

 Towards an ontology for product version management 91

Table 2 Partial set of rules defined in SWRL (continued)

 Rules Explanations
6 Version(?x) ∧ ChangeFRestriction (?y) ∧

FRestriction (?z) ∧ GeneratedBy(?x, ?y) ∧
Involves(?x, ?z) → affectedByCFR(?z, ?y)

A change y generates a version x
and affects a FRestriction z

involved in x. This rule is similar
to affectedByCCR.

7 ChangeEvent(?x) ∧ ChangeConstraint(?y) ∧
hasConstraint(?x, ?y) → ConstraintTo(?y, ?x)

x is a change event and it has a
constraint y.

8 ChangeRelation(?x) ∧ OperationType(?y) ∧
hasOperation(?x, ?y) ∧ Value(?u) ∧ Edit(?t) ∧
CRelation(?z) ∧ affectedByCCR(?z, ?x) ∧
quantityPerUnit(?z, ?u) → editValue(?t, ?u)

A ChangeRelation x applies an
edit operation to value u.

9 Family(?f) ∧ History(?h) ∧ Version(?v) ∧
CRelation(?e) ∧ Involves(?v, ?e) ∧ Family(?af) ∧
partOf(?e, ?af) ∧ CRelationChange (?ch) ∧
GeneratedBy(?v, ?ch) ∧ affectedByCCR(?ch, ?e) ∧
Delete(?o) ∧ hasTypeOperation (?ch, ?o) →
delFamilyFromStructureOf(?af, ?f)

This rule enables inferring a
family af which was removed

from a structure of a family f in
version v.

10 Family(?f) ∧ History(?h) ∧ Version(?v) ∧
FRestrictionChange (?ch) ∧ GeneratedBy(?v, ?ch) ∧
Add(?o) ∧ hasTypeOperation (?ch, ?o) ∧
FRestriction (?e) → addRestrcitionToFamily(?e, ?f)

This rule enables inferring that a
FRestriction e was added to a

family f in version v.

5 Case study in computer machine industry domain

This section presents the instantiation of the proposed ontology into a case study related
to the computer machine industry, considering the laptop product line as an example. A
brief description of how PRONTO is applied to represent this product line is presented at
the end of Section 2.1. Aforesaid, Laptop Family has component parts and these
components are also families. Despite Laptop family has many components, the example
considers only the three ones shown in Figure 2: memory, processor, and floppy disk
drive. According to PRONTO, these components are part of the SH of Laptop Family and
they are related to it by componentOf relationship. For space reasons, this case study only
considers changes in the SH of products at family level and leaves aside changes
affecting the AH. In Figure 4(a), the Laptop Family is represented, depicting its
composite structure, and is considered as an initial version.

Each component of Laptop Family is related to the composite family structure
(CStructure) by instances of CRelation class, which are called CRMemory, CRProcessor,
and CRFloppy, respectively. These relations could be changed and therefore generate
new versions of the family. In particular for this case, we consider a change caused by the
introduction of a new storage device technology. This change affects directly the
LaptopFamily structure where the relation (CRFloppy) between LaptopFamily and
FloppyDiskFamily is removed and a new relation (CRUSB) is added between Laptop
Family and USB storage device Family. This addition is represented by a dotted line in
Figure 4(b).

 92 M.S. Sonzini et al.

Figure 4 Laptop family versions, (a) initial version (b) new version – changed structure

(a) (b)

Modifications on the Laptop Family information can be implemented by the ontology
described in Section 4. Figure 5 shows the Laptop Family represented by LaptopFamily
individual (box with solid lines), which is an instance of Family class indicated by a box
with dashed line. This individual is associated to HistoryNF individual (instance of
History class) by hasHistory property. Based on this association, it is possible to deduce
its inverse functional property called isHistoryOf, following the rules described in
Table 2.

Figure 5 Ontology instance

 Towards an ontology for product version management 93

Each history is composed of a set of versions or a single initial version. In the example
shown in Figure 4, the HistoryNF has two associated versions: V00 (initial version) and
V01 (new version). Both versions are individuals instanced of Version class. The
proposal considers the initial version as the first definition of laptop family. The
occurrence of the aforementioned change events generates the new version (V01), which
is valid from 2005-11-05 (see DT2005-11-05 individual a ValidSince property). Also,
specification (Spec_1 is an individual of Specification class) is associated to V01 version
by hasSpec relation in order to capture information concerned with the causes and
description of the event. In addition, the mentioned versions are linked to CRFloppy and
CRUSB entities which are affected by changes belonging to it. Each one of these entities
has its values associated by a quantityPerUnit property. The values are ValueFloppy and
ValueUSB respectively, and indicate the amount of the parts that are required to produce
members of the LaptopFamily.

V01 version is related with its predecessor version V00 by means of Previous
property. By navigating through versions using this property, it is possible to construct
the family structure from the initial version to the current one. Change events are
represented by CRCUSB and CRCFloppy entities and they are instances of
CRelationChange. Each one is linked by means of hasOperationType property to its
corresponding type: addCRCUSB or deleteCRCFloppy, respectively.

Once the information about the changes is captured and formalised, it is possible to
answer the above mentioned set of questions, using SPARQL (SPARQL Protocol and
RDF Query Language) language (SPARQL, 2013). This language, which allows writing
queries to retrieve and manipulate data stored in triple pattern format, is selected to
formalise the questions mentioned in Section 1. Figures 6 to 9 present screen captures of
the SPARQL tab of Protégé editor with the formalisation of the queries. This tab allows
defining queries and retrieving their results.

Figure 6 Queries in SPARQL to answer ‘What were the affected components?’ and ‘When did it
occur?’

Figure 6 shows the formalisation of the questions ‘What were the affected components?’
and ‘When did it occur?’ The left part of Figure 6 presents SPARQL queries while the
right part shows their results. The first query asks about the components which are

 94 M.S. Sonzini et al.

changed by version V01. Particularly, the changes belonging to V01 affect CRUSB and
CRFloppy relations. The second query asks about the time when the changes occurred,
which is captured by the ValidSince property of V01, which links the version with the
individual DT2005-11-05.

For the answer to ‘Why did it occur?’, we develop a simple query in SPARQL
(Figure 7). The description field is a data type associated to Spec_1 Specification and it is
composed of a set of characters to explain for the reason of changes that caused the new
version (in this case the V01 version), and some useful information.

Figure 7 Queries in SPARQL to answer: ‘Why did it occur?’

Similarly, to analyse the impact of a change, a query is written to select change events,
operation types, the affected entities and the valid date filtering a specific version
(Figure 8). Results are ordered in an ascendant way, based on the valid date.

Figure 8 Queries in SPARQL to answer: ‘how did it change?’

Figure 9 presents the last question, which asks how the change was registered. A query is
written to obtain the modified family, its history, and the versions that belong to it. In this
way, it is possible to register information about different versions associated to a specific
product.

Figure 9 Queries in SPARQL to answer: ‘How was the change registered?’

All mentioned questions provide appropriate knowledge for a suitable change
management of product information at family level during product life cycle. This case

 Towards an ontology for product version management 95

study is a simple demonstration to register a version caused by change occurrence, but
this may be extended to handle more products, versions, and changes.

6 Conclusions

To obtain efficient software solutions to meet PLM needs, it is important to adopt
processes or methodologies that allow managing, assessing, and registering the change
that may be experienced by product information during product lifecycle. The proposal
introduces a conceptual model to represent the information about the occurrence of
changes in product structure, extending PRONTO model. The proposed model considers
the registration of all versions that a product may suffer during its lifecycle.

An implementation of the proposed model is also introduced. OWL and SWRL
languages were selected for the implementation. Finally, the article shows how the
implemented ontology allows inferring knowledge about change events.

Ontology technology provides suitable mechanisms for capturing important change
management concepts. The ontology can help us register the history of a product family.
In addition, this extension facilitates navigation through all product family versions or
infers new knowledge about it.

As future work, there are two goals to achieve: the extension of the proposal at
variant set and product level in PRONTO AH, and the implementation of the described
ontology by a merge operation with PRONTO ontology to validate this proposal.

Acknowledgements

We thank financial support jointly granted by CONICET, ANPCyT (PICT 2315), UTN
(PID 25-O156), and Universidad Nacional de La Rioja. We are grateful to Translator
María Inés Fidalgo for her contributions in the writing process.

References
Böhms, M., Bonsma, M.P., Willems, P., Zarli, A., Bourdeau, M., Pascual, E., Storer, G., Kazi, S.,

Hannus, M., García Sedano, J.A., Triguero, L., Tsahalis, H., Eckstein, H., Josefiak, F. and
Schevers, H. (2008) The SWOP Semantic Product Modelling Approach, Deliverable 23 of the
Semantic Web-based Open Engineering Platform Project [online] http://www.w3.org/2005/
Incubator/w3pm/wiki/images/c/c3/SWOP_D23_WP2_T2300_TNO_2008-04-15_v12.pdf
(accessed 16 September 2014).

Brandt, S.C., Morbach, J., Miatidis, M., Theißen, M., Jarke, M. and Marquardt, W. (2008) ‘An
ontology-based approach to knowledge management in design processes’, Computers and
Chemical Engineering, Vol. 32, No. 1, pp.320–342.

Fox, M. (1992) ‘The TOVE project: a common-sense model of the enterprise’, Lecture Notes in
Artificial Intelligence, Springer-Verlag, Vol. 604, pp.25–34, ISSN 1865-1348.

Gruninger, M. (2004) ‘Ontologies and semantics for seamless connectivity’, SIGMOD Record,
Vol. 33, No. 4, pp.58–64.

Henning, G. (2012) ‘Formal specification of batch scheduling problems: a step toward integration
and benchmarking’, Advances in Production Management Systems, Vol. 398, No. 2013,
pp.96–103.

 96 M.S. Sonzini et al.

Hepp, M. (2006) ‘Products and services ontologies: a methodology for deriving OWL ontologies
from industrial categorization standards’, International Journal on Semantic Web &
Information Systems (IJSWIS), Vol. 2, No. 1, pp.72–99.

Hepp, M. (2008) ‘GoodRelations: an ontology for describing products and services offers on the
web’, Lecture Notes in Computer Sciences, Springer-Verlag, Vol. 5268, pp.329–346, ISSN
0302-9743.

Horváth, L. (2007) New Design Objective and Human Intent-based Management of Changes or
Product Modelling, Institute of Intelligent Engineering Systems, John von Neumann Faculty
of Informatics, Budapest Tech.

Huang, G.Q. and Mak, K.L. (1998) ‘Computer aids for engineering change control’, Journal of
Materials Processing Technology, Vol. 76, No. 1, pp.187–191.

Huang, G.Q., Yee, W.Y. and Mak, K.L. (2001) ‘Development of a web-based system for
engineering change management’, Robotics and Computer Integrated Manufacturing, Vol. 17,
No. 1, pp.255–267.

ISO 10303 (1991) Product Data Representation and Exchange – Part 44, Product Structure
Configuration.

Jarratt, T., Eckert, C. and Clarkson, J. (2004) ‘Development of a product model to support
engineering change management’, Proceedings of the TMCE 2004.

Klein, M. (2002) DAML+OIL and RDF Schema Representation of UNSPSC.
Lee, H.J., Ahn, H.J., Kim, J.W. and Park, S.J. (2006) ‘Capturing and reusing knowledge in

engineering change management: a case of automobile development’, InfSyst Front, Vol. 8,
No. 5, pp.375–394.

Matsokis, A. and Kiritsis, D. (2010) ‘An ontology-based approach for product lifecycle
management’, Computers in Industry, Vol. 61, No. 8, pp.787–797, ISSN: 0166-3615.

May, A. and Carter, C. (2001) ‘A case study of virtual team working in the European automotive
industry’, International Journal of Industrial Ergonomics, Vol. 27, No. 3, pp.171–186.

May, A., Carter, C. and Joyner, S. (2000) ‘Virtual team working in the European automotive
industry: user requirements and a case study approach’, Human Factors and Ergonomics in
Manufacturing, Vol. 10, No. 3, pp.273–289.

Monplaisir, L. (1999) ‘An integrated CSCW architecture for integrated product/process design and
development’, Robotics and Computer-Integrated Manufacturing, Vol. 15, No. 2, pp.145–153.

Numata, J. and Taura, T. (1996) ‘A case study: a network system for knowledge amplification in
the product development process’, IEEE Transactions on Engineering Management, Vol. 43,
No. 4, pp.356–367.

Ramesh, B. and Tiwana, A. (1999) ‘Supporting collaborative process knowledge management in
new product development teams’, Decision Support Systems, Vol. 27, Nos. 1–2, pp.213–235.

Shaban-Nejad, A. and Haarslev, V. (2009) Bio-medical Ontologies Maintenance and Change
Management, Department of Computer Science and Software Engineering, Concordia
University, Montreal, Canada

Shadbolt, N., Hall, W. and Berness-Lee, T. (2006) ‘The semantic web revisited’, IEEE Intelligent
Systems, May–June, Vol. 21, No. 3, pp.96–101.

Sjoberg, D. (1995) Managing Change in Information Systems: Technological Challenges,
Department of Informatics, University of Oslo, N-0316 Oslo, Norway.

SPARQL (2013) Query Language for RDF, SPARQL Tutorial created by W3C SPARQL Working
Group [online] http://www.w3.org/TR/rdf-sparql-query (accessed 16 September 2014).

Vegetti, M., Leone, H. and Henning, G.P. (2010) ‘Document a three level abstraction hierarchy to
represent product structural information’, Proceedings of the 12th International Conference on
Enterprise Information Systems (ICEIS 2010).

Vegetti, M., Leone, H. and Henning, G.P. (2011) ‘PRONTO: an ontology for comprehensive and
consistent representation of product information’, Engineering Applications of Artificial
Intelligence, Vol. 24, No. 8, pp.1305–1327.

 Towards an ontology for product version management 97

Yang, D., Miao, R., Wu, H. and Zhou, Y. (2009) ‘Product configuration knowledge modeling using
ontology we language’, Expert System with Applications, Vol. 36, No. 3, pp.4399–4411.

Yoo, S.B. and Kim, Y. (2002) ‘Web-based knowledge management for sharing product data
in virtual enterprises’, International Journal of Production Economics, Vol. 75, No. 2,
pp.173–183.

Zhao, W. and Liu, J.K. (2008) ‘OWL/SWRL representation methodology for EXPRESS-driven
product information model. Part I. Implementation methodology’, Computers in Industry,
Vol. 59, No. 6, pp.580–589.

