2,177 research outputs found

    Golay and other box codes

    Get PDF
    The (24,12;8) extended Golay Code can be generated as a 6 x 4 binary matrix from the (15,11;3) BCH-Hamming Code, represented as a 5 x 3 matrix, by adding a row and a column, both of odd or even parity. The odd-parity case provides the additional 12th dimension. Furthermore, any three columns and five rows of the 6 x 4 Golay form a BCH-Hamming (15,11;3) Code. Similarly a (80,58;8) code can be generated as a 10 x 8 binary matrix from the (63,57;3) BCH-Hamming Code represented as a 9 x 7 matrix by adding a row and a column both of odd and even parity. Furthermore, any seven columns along with the top nine rows is a BCH-Hamming (53,57;3) Code. A (80,40;16) 10 x 8 matrix binary code with weight structure identical to the extended (80,40;16) Quadratic Residue Code is generated from a (63,39;7) binary cyclic code represented as a 9 x 7 matrix, by adding a row and a column, both of odd or even parity

    Algebraic techniques in designing quantum synchronizable codes

    Get PDF
    Quantum synchronizable codes are quantum error-correcting codes that can correct the effects of quantum noise as well as block synchronization errors. We improve the previously known general framework for designing quantum synchronizable codes through more extensive use of the theory of finite fields. This makes it possible to widen the range of tolerable magnitude of block synchronization errors while giving mathematical insight into the algebraic mechanism of synchronization recovery. Also given are families of quantum synchronizable codes based on punctured Reed-Muller codes and their ambient spaces.Comment: 9 pages, no figures. The framework presented in this article supersedes the one given in arXiv:1206.0260 by the first autho

    Numerical cubature using error-correcting codes

    Full text link
    We present a construction for improving numerical cubature formulas with equal weights and a convolution structure, in particular equal-weight product formulas, using linear error-correcting codes. The construction is most effective in low degree with extended BCH codes. Using it, we obtain several sequences of explicit, positive, interior cubature formulas with good asymptotics for each fixed degree tt as the dimension n→∞n \to \infty. Using a special quadrature formula for the interval [arXiv:math.PR/0408360], we obtain an equal-weight tt-cubature formula on the nn-cube with O(n^{\floor{t/2}}) points, which is within a constant of the Stroud lower bound. We also obtain tt-cubature formulas on the nn-sphere, nn-ball, and Gaussian Rn\R^n with O(nt−2)O(n^{t-2}) points when tt is odd. When μ\mu is spherically symmetric and t=5t=5, we obtain O(n2)O(n^2) points. For each t≥4t \ge 4, we also obtain explicit, positive, interior formulas for the nn-simplex with O(nt−1)O(n^{t-1}) points; for t=3t=3, we obtain O(n) points. These constructions asymptotically improve the non-constructive Tchakaloff bound. Some related results were recently found independently by Victoir, who also noted that the basic construction more directly uses orthogonal arrays.Comment: Dedicated to Wlodzimierz and Krystyna Kuperberg on the occasion of their 40th anniversary. This version has a major improvement for the n-cub

    On the Peak-to-Mean Envelope Power Ratio of Phase-Shifted Binary Codes

    Full text link
    The peak-to-mean envelope power ratio (PMEPR) of a code employed in orthogonal frequency-division multiplexing (OFDM) systems can be reduced by permuting its coordinates and by rotating each coordinate by a fixed phase shift. Motivated by some previous designs of phase shifts using suboptimal methods, the following question is considered in this paper. For a given binary code, how much PMEPR reduction can be achieved when the phase shifts are taken from a 2^h-ary phase-shift keying (2^h-PSK) constellation? A lower bound on the achievable PMEPR is established, which is related to the covering radius of the binary code. Generally speaking, the achievable region of the PMEPR shrinks as the covering radius of the binary code decreases. The bound is then applied to some well understood codes, including nonredundant BPSK signaling, BCH codes and their duals, Reed-Muller codes, and convolutional codes. It is demonstrated that most (presumably not optimal) phase-shift designs from the literature attain or approach our bound.Comment: minor revisions, accepted for IEEE Trans. Commun

    Stabilizer codes from modified symplectic form

    Full text link
    Stabilizer codes form an important class of quantum error correcting codes which have an elegant theory, efficient error detection, and many known examples. Constructing stabilizer codes of length nn is equivalent to constructing subspaces of Fpn×Fpn\mathbb{F}_p^n \times \mathbb{F}_p^n which are "isotropic" under the symplectic bilinear form defined by ⟨(a,b),(c,d)⟩=aTd−bTc\left\langle (\mathbf{a},\mathbf{b}),(\mathbf{c},\mathbf{d}) \right\rangle = \mathbf{a}^{\mathrm{T}} \mathbf{d} - \mathbf{b}^{\mathrm{T}} \mathbf{c}. As a result, many, but not all, ideas from the theory of classical error correction can be translated to quantum error correction. One of the main theoretical contribution of this article is to study stabilizer codes starting with a different symplectic form. In this paper, we concentrate on cyclic codes. Modifying the symplectic form allows us to generalize the previous known construction for linear cyclic stabilizer codes, and in the process, circumvent some of the Galois theoretic no-go results proved there. More importantly, this tweak in the symplectic form allows us to make use of well known error correcting algorithms for cyclic codes to give efficient quantum error correcting algorithms. Cyclicity of error correcting codes is a "basis dependent" property. Our codes are no more "cyclic" when they are derived using the standard symplectic forms (if we ignore the error correcting properties like distance, all such symplectic forms can be converted to each other via a basis transformation). Hence this change of perspective is crucial from the point of view of designing efficient decoding algorithm for these family of codes. In this context, recall that for general codes, efficient decoding algorithms do not exist if some widely believed complexity theoretic assumptions are true

    Coding with Scrambling, Concatenation, and HARQ for the AWGN Wire-Tap Channel: A Security Gap Analysis

    Full text link
    This study examines the use of nonsystematic channel codes to obtain secure transmissions over the additive white Gaussian noise (AWGN) wire-tap channel. Unlike the previous approaches, we propose to implement nonsystematic coded transmission by scrambling the information bits, and characterize the bit error rate of scrambled transmissions through theoretical arguments and numerical simulations. We have focused on some examples of Bose-Chaudhuri-Hocquenghem (BCH) and low-density parity-check (LDPC) codes to estimate the security gap, which we have used as a measure of physical layer security, in addition to the bit error rate. Based on a number of numerical examples, we found that such a transmission technique can outperform alternative solutions. In fact, when an eavesdropper (Eve) has a worse channel than the authorized user (Bob), the security gap required to reach a given level of security is very small. The amount of degradation of Eve's channel with respect to Bob's that is needed to achieve sufficient security can be further reduced by implementing scrambling and descrambling operations on blocks of frames, rather than on single frames. While Eve's channel has a quality equal to or better than that of Bob's channel, we have shown that the use of a hybrid automatic repeat-request (HARQ) protocol with authentication still allows achieving a sufficient level of security. Finally, the secrecy performance of some practical schemes has also been measured in terms of the equivocation rate about the message at the eavesdropper and compared with that of ideal codes.Comment: 29 pages, 10 figure
    • …
    corecore