
TDA Progress Report 42-109 May 15, 1992

l  e",TFy

t

N92-293,Z5
A

Golay and Other Box Codes

G. Solomon _

The (24,12;8) extended Golay Code can be generated as a 6 x4 binary matrix

from the (15,11;3) BCtt-ttamming Code, represented as a 5 x 3 matrix, by adding
a row and a column, both of odd or even parity. The odd-parity case provides

the additional 12th dimensi%n: Furthermore , any three columns and five rows of

the 6x4 Golay form a BClI-tlamming (15,11;3) Code. Similarly a (80,58;8) code
can be generated as a 10 x 8 binary matrix from the (63,57;3) BClt-Hamming Code

represented as a 9 x 7 matrix by adding a row and a column both of odd and even
parity. Furthermore, any seven columns along with the top nine rows is a BCH-

Hamming (63,57;3) Code.

A (80,40;16) 10x8 matrix binary code with weigh_ s_ructure identical to the

extended (80,40;16) Quadratic Residue Code is generated from a (63,39;7) binary

cyclic code represented as a 9 x 7 matrix, by adding a row and a column, both of
odd or even parity.

I. Golay Code Properties

The (24, 12;8) extended Golay Code possesses many

properties. Solomon and Sweet [1] showed that it can be
represented by a 6 x 4 binary matrix with equal row and

column sums. Certain permutations of the matrix that

keep the rows fixed give rise to at least three other boxes or

matrices with identical row/column sum properties. These
boxes can be used for "eyeball" decoding which avoids al-

gebraic procedures. Here new properties of the extended

Golay Code are further demonstrated.

A, Constructions

The (24,11;8) code in 6 x 4 matrix form is obtained

from the BCH-Hamming (15,11;3) Code by adjoining row
and column even parity. The BCH-Hamming Code here
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is expressed as a 5 x 3 matrix with entries in the (i, j)
positions, 0 __ i _< 4, 0 < j < 2 corresponding to the

coordinates 5i + 3j mod 15 of the code.

Let A be the BCH-Hamming (15,11;3) Code. The

Mattson-Solomon (MS) polynomial for a code word a E

A = (ai; i = 0... 14) is given by

Pa(z) = Co + Tr Cz + Tr Dz 3 + Ez _ + E_z 1°

where C,D E GF(16), E E GF(4), Co • GF(2), and

Pa(/3 i) -- ai for fl a primitive 15th root of unity. Tr

denotes the linear operator Trace in GF(16). Tr a = a +
a 2 + a4 + as.

b

The parity check polynomial for the code is (z + 1) x

fl(z)f3(z)f_(z) where fi(z) is the irreducible polynomial

over GF(2) with/3 _ a root.
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The weight, w(a) mod 4 for even-weight words

a(C0 = 0), is given by w rood 4 = 2F_(Pa(x)) where

r2(Pa(z)) = D 5 + D '° + E 3 [2].

Now place the code words in 5 x 3 matrices (bii), 0 _< i _<
4, 0 <_ j <_ 2 corresponding to their values 5i + 3j mod 15.

The ith coordinate is entered thusly:

0 5 10

3 8 13

6 11 1

9 14 4

12 2 7

The MS polynomial expressed in the 5 x 3 setting, in-

dexing each row by y in terms of the independent variable

z, becomes Tr Dya+Tr ' (E'+Cy+C4y4)x; E _= E 2. Note

again that for the rows, the trace is defined over GF(4) as
follows: Tr _ a = a + a2 for a E GF(4).

Form the sum over the rows to give a sixth row with

MS polynomial Tr / E_x. Form the parity sum over the

columns to obtain a 6 x 1 column, which is of course

Tr Dye; y6 = y. The bottom row is indexed by y = 0,
and the parity column corresponds to z = 0.

This is what is needed to prove the following results.

Note that the coefficient of x is E' + Cy + (Cy) 4. This is

the MS polynomial for a (5, 3; 3) code indexed by y5 = 1

over GF(4). Adding a sixth row, one obtains a (6,3;4)
code indexed by y6 = y over GF(4) as the coefficient of
x. Note that the constant term in each row varies and

is a (5,4;2) binary code. It contributes the same values
to the fourth parity column. Thus if one started with

a BCH subcode of dimension 10 of even weight w with
w mod 4 = 2F2 where F2 = D 5 + D 1° + E 3, adjoining

the parity rows and columns adjoins row and column code

words whose weight modulo 4, w mod 4 = D s + D l° + E 3.

So the total new weight w _ = 0 mod 4.

6 x 4 matrix code generated. Complementing these new
code words still gives words of weights 8, 12, and 16, which

takes care of the odd weight Itamming code words adding
up to dimension 11.

The 12th dimension of the constructed code is obtained

by adding odd parity row and column to the Itamming

words. Thus tile additional row (first 3 columns) is given

by 1 + Tr Ex and the additional column (upper 5 rows)

is given by 1 + Tr Dy. The even weights are determined
by F2 = E 3 + D 5 + D _°. Consider the even weights equal

to 4 and 6. If E 3 = 0 and 1, respectively, then weights 3

and 1, respectively, have been added to the bottom row.

If D s + D 1° = 0 and 1, respectively, then weights 1 and 3,

respectively, have been added to tile fourth column. If

D = 0, then a 5 has been added.

Consider the case of F2 = E 3 -t- D 5 -I- D 1° = 1 or w = 6.

Either-E ¢- 0, D 5 = 1, and weight 6 is added, or E = 0,

D 5 7t 1, and weight 2 is added. For F2 = 0 or w = 4,

E ¢ 0 and D s ¢ 1, so weight 4 is added, or E = 0 and
D _ = 1 and again weight 4 is added. In either case, adding

odd parity row and column ensures that w _ = 0 mod 4 and
w_>8.

This new code has weights 8, 12, 16, and 24. This is
sufficient to guarantee that this code is the extended Go-

lay Code by various uniqueness theorems in the literature.

Itowever, there is an explicit construction by Solomon and
Sweet that does it.

B, The (24,12;8) Code Is the Golay Code

This formulation was first used by Solomon and Sweet
[1]. The code has words of weight w = 0mod4 and is
thus self-dual, has minimum distance 8, and contains the

all one vector. This is the Golay Code. In fact, the cor-

respondence between the coordinates of the cyclic code

generated by the parity check polynomial and its repre-
sentation as a 6 x 4 binary matrix is

This proves w I > 8. For if one started with w = 4, one
has either E 3 = I and D 5 + D l° = 1, adding weight 4, or

E = 0 and D 5 + D 1° = 0, giving D 5 = 1, adding a column

of weight 4.

One could also show easily that w' > 8 by noting that

the coefficient of x is now a (6, 3; 4) code over GF(4), hav-
C. Encoding

ing adjoined an even parity row. Thus there are at least ..........

four rows of weight 2 each. The addition of the even parity

- column ensures w >_ 8 when the coefficient of x = 0. The

new code words are of weights 8, 12, 16, and 24 in the

0 2 1 3

4 12 7 10

9 22 6 11
16 15 8 19

20 21 18 13

17 ec 5 14

Let a be a code word of length 24: a = (ao,al,a2,...,

a22, _). Label positions (0, I, 2,..., 22, _) generated by
the recursion shift register rule
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f(x) = x 12 + x 1° + x 7 + x4 + x a + x 2 + x + 1

an+12 -- an+10 + an+v + an+4

+ an+3 + an+2 + an+l + an

22
where n = O, 1,2,3,...,22 and aoo = _i=o ai.

D. A Key Property

Theorem. Represent the Golay Code as a 6 x 4 binary

matrix and consider any 5 x 3 submatrix obtained by re-

moving one column and one row. This is a BCH-tIamming

(15,11;3) Code. There is one proof and one verification.

Proof: Consider the 6 x 4 matrix with the top row

deleted. Using the bottom parity check row and consid-

ering the first three columns, there is now a permuted
5 x 3 BCtt-Hamming Code where the rows have been in-

terchanged.

Note that the coefficient of x is the (6,3;4) extended

Reed-Solomon (RS) Code over GF(4), which gives rise to
the (24,6;8) portion of the code. The map y---* (1 +c_y+

a2y 4) is a permutation of this code that interchanges the
top and bottom rows corresponding to y = /3° = 1 and

y = 0. For c_-- /35 aroot ofx 2+x+ 1, the second and

fifth rows are interchanged and the third and fourth rows

are fixed. Here y ranges over the values y6 = y.

The remaining five dimensions, which are a function of

Co and D in tile BCtt-IIamming Code, are easily seen to be

manipulated so the weights stay the same. Since the code

is clearly invariant under cyclic row cyclic permutations,
this takes care of all subcodes with thc first three columns

fixed.

Now interchange the first column with the fourth right-
most parity column and the second with the third to obtain

a BCtI-Hamming Code still like the above in the top five

rows. This interchange of columns is given by x --+ x + 1.

This map takes the row indexed by y, Tr Dy+Tr' (E'+
Cy + (Cy)4)x, into a permuted row indexed by y, where

D 6 GF(16) has been augmented: ]9' (E'+Cy+(Cy)4)+

Tr Dy + Tr' (E' + Cy + (Cy)4)x. There clearly exists a D'

such that D t = Tr' (E' +Cy+(Cy)4)+ Tr Dy for all values

of y. Now clearly every three columns that occurred in
the leftmost 5 × 3 matrix now occur in the newly formed

5 x 3 matrix. As the code is invariant under cyclic column

permutation, the proof is complete. O

Verification: Postconjecture and preproof, a com-
puter verification was performed by F. Po]lara; this veri-

fication generated the identical weight distributions of the

Hamming Code for each relevant permutation.

I!. Extension of Results to (63,57;3)

BCH-Hamming Code

Starting with the BCII-tIamming Code of length 63 in

its 9 x 7 setting and using the MS polynomials for codes of

lengths 63, 9, and 7, one obtains a 10 x 8 code of distance
8.

A. MS Polynomial for the BaH-Hamming

Code in a 9 x 7 Setting

Let fl(X) : x6+ x + 1 be the primitive polynomial with

/3 as a root. Then fi(x) is the irreducible polynomial with

coefficients in GF(2) with ]3i as a root.

The BCH-IIamming Code in its MS polynomial form is
written as

P(z):Co+ C,z'+ ZTr' +C ,z +C ,z

where C, E GF(64); i = 1,3,5,7,11,13,15,23; Cj E

GF(8); j : 9, 27; and

Tr t a -- a + a 2 + a4; a E GF(8)

Let z G GF(64) be a primitive root of GF(64). Express
z : xy where

x ----fl 9i, 0<i<6; y=/37i, 0<j<8

then

Tr Cz = Tr Cxy = Tr' [Cy + (Cy)S]x

Tr C_? = T_' [C_v_ + C_sv3]__

:

Replacing the letter by its primed letter to indicate a miss- :

ing appropriate power, -
"z
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W_C_z 5 = W_'(C_y2 + C_%7)__

Tr CTz 7 = TrC_yTr Cgz 9 = Tr' C_x

tS 5
Tr Vii zll = Tr' (C;ly 4 + 611y )x

Tr C13 zl3 : 'l_r' (Cl3Y 4 -_- C_3yS)x 6

TrCI_x 15 Tr''C' 3 . ,s 6= t I_Y -t-C1sY )z

C 18 7\ xTr C23z 23 = Tr' (C_3y _ + 23Y )

Tr C27z2_= Tr' C27x6

C2,z _1 = C2,y 21

Recall that the Golay Code can be viewed in the

MS polynomial formulation for lengths 6 or 4 as made

up of components that are themselves RS Codes. Siml-

larly express the Hamming Code here in MS polynomials

of lengths 9 or 7. Recall that a binary eodeword of length

7 has an MS polynomial of the form

C r _+C_,y21+RS code over GF(8). The values C0 -t- Tr 7Y
C_y 4_ taken over y form a (9,9;1) binary code. The min-

imum weight of this code is clearly 3. If the coefficient of

x 6 is zero, then the minimum weight is given by a weight

one word (coefficient of x) in the (9,9,1) code (giving rise

to a Weight 4 word) complemented by a value of Co, which
is l at that y position. If the coefficient of x 6 is nonzero,

one again has a minimum weight 3 word.

Now extend the 9 x 7 matrix to 10 x 8 by adjoining

even parity rows and columns. The 10th parity row is

clearly the code word in MS form Co -t- Tr' (C9x + C27x6).

The coefficients Co + Tr C_y _ + C_y 2_ + C_y 42 in the

row MS polynomials for yl0 = y now form a (10,9;2)

binary code. The coefficient of x is also a (10,9;2) code

over GF(8). The coefficient of x 6 is a (10, 7; 4) code over

GF(8). Adding the even parity column guarantees that

the minimum weight w of the expanded code w = 8.

Thus the BCH-Hamming Code extends to a (80, 57; 8)
code. Finally, if the 10th row and 8th column are to be

of odd parity, the minimum weight still is 8. It is obvious

that the weight does not decrease this way. Consider words

of weight w _< 7 and try placing them in a 9 x 7 setting.

Clearly l0 - w columns are at least zero and odd parity

will certainly increase the weight this much.

P(x)=Co + Tr' (Cx + Dx 6)

Tr rC=C + C 2 + C4; CEGF(8)

Write the BCII-IIamming Code in all 57 dimensions as

c0 + a_ c_ _ + ci,y _' + c_y _

B. BCH-Hamming Submatrices of the 10 x 8 Code

To show that every 9 x 7 submatrix of the 9 x 8 top

portion of the matrix is also a Hamming Code, follow the

technique used for the Golay Code. The map x ---+ x +
1 does an interchange of columns and replaces the first

with the even parity column. A similar argument invoking

cyclicity of the columns proves that the IIamming Code
appears in every top 9 x 7 submatrix.

+ Tr' (C; + Cy + CSy s + C_,y 4 + C_Sly _

C' 3- C/8 6 , 2 /8 7+ 15Y "t- 15Y +C23Y +C23Y )z

+ Tr' (C_ + CJ + C_y _ + C_y_

C 's _ 'C 4+ 5 Y -t- 13y +CS3yS)x 6

I!1. Quadratic Residue Code Properties (Box
Codes)

The (63,39;7) binary cyclic code when extended by

adding a row/column of odd and even parity has the

weight structure of the extended (80,40;16) Quadratic
Residue (QR) Code but is not isomorphic to it.

A. Constructions
where C_ E GF(64), i = 1,3,5,7,11,13,15,23; Cj G
GF(8); j = 9, 27. The (80,39;16) in l0 x 8 matrix form is obtained from

the (63,39;7) cyclic code by adjoining row and column even
Note that the coefficient of x in the above expression is parity. The cyclic code here is expressed as a 9 x 7 matrix

t9,9;1) code over GF(8), the coefficient of x 6 is a (9,7;3) with entries in the (i,j) positions, 0 < i < 6, 0 _< j _< 8
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corresponding to the coordinates 9i + 7j mod 63 of the
code.

Let A be the (63,39;7) cyclic code. Tile MS polynomial

for a code word a E A = (ai; i = 0...62) is given by

P(z) = Co+ ZTr Ciz i + ZTr' Cjz I +C2,2' -1-C221z42

where Ci E GF(64); i = 1,3,5,7,13; Cj • GF(8); j =

9,27; and

C t 7 _.-_1 21 Ct2 42Co +Tr 7Y H- _21Y H- 21Y

C' 6 c,S 3+ Tr' (C_9 + Cy + CSyS)x + Tr' (C27 + 3Y + 3 Y

C t 2 .'w8 7+ 5Y + t_5 Y + Cx3Y 4 + C83y5) x6

where Ci • GF(64); i = 1,3,5,7,13; Cj • GF(8); and

j = 9, 27. The generator polynomial for the code is

f, (z)f3(z)f5 (z)f,3(z)

Tr' a=a+a 2+a 4", a•GF(8)

Let z • GF(64) be a primitive root of GF(64). Express

z = xy where

then

x=fl 9_, 0<i<6; y=flvj, 0_<j<8

Tr C_ = Tr Cxu = Tr' [Cu+ (cv)S]x

Tr C_z"= Tr' [Ciu6+ ciSu"]x_

c_ = c_

Replacing the letter by its primed letter to indicate a miss-

ing appropriate power,

T_ C57 = W_' (C_y 2 + C_uT)x _

Tr CTz 7 = Tr C_yTr Cgz 9 = Tr' C$x

Tr C13z 13 = Tr' (C13y 4 + C_3yS)z 6

Tr C27z_7= Tr' C2_._ 6

C21z 21 = C21y 21

Write the cyclic code in all 39 dimensions as

where f_(z) is the irreducible polynomial over GF(2) with
a root.

The weight, w(a) mod 4 for even weight words a(C0 =
0) is given by w mod 4 = 2F2(P_(x)) where F2(P_(x)) =
E, c,c_, = _' (c_ + c_c_, + c_, ) [2].

Now place the code words in 9 x 7 matrices (b/j),

0 _< i _< 6, 0 < j _< 8 corresponding to their values

9i + 7j mod 63. Note that the coefficient of x in the above

expression is a (9,3;7) code over GF(8), and the coeffi-

cient of x 6 is a (9,7;3) RS Code over GF(8). The values
C0+Tr "_' 7-,_, 21 ,_y42t_TY tt_21y + C21 taken over y form a (9,9;1)

binary code. The minimum weight of this code is clearly
7. If the coefficient of x and x 6 is zero, then the minimum

weight is given by a weight one word (the coefficient of

x) in the (9,9,1) code giving rise to a weight 7 word. If
the coefficient of x 6 is nonzero, again there is a minimum

weight 12 word, but, complemented by the constants, this

can give rise to weight 9 at least.

Now extend the 9 x 7 matrix into a 10 x 8 matrix by

adjoining even parity rows and columns. The 10th parity

row is clearly the code word in MS form Co + 'Pt _ (Cgx +
C7y "l-t-_21Y "1" 21Y inC2Tx6). The coefficients Co +Tr _. 7-f, . 21-C_2.4_

the row MS polynomials for yl0 = y now form a (10,9;2)

binary code. The coefficient of x is also a (10,3; 8) code

over GF(8). The coefficient of x 6 is a (10,7;4) code over

GF(8). Adding the even parity column guarantees that
the minimum weight w of the expanded code w equals 16.

Note that in the 10th row, F2 = _' (C9Cs4). In the

eighth column, F_ = Tr' (C_ + C3a). Thus coming from
the length 63 cyclic code with Fg. = Tr' (C_+C9C54+C_)

by adjoining a row and column of equal even parity, one

has obtained a code with weights equal to 0 mod 4.

The 40th dimension of the constructed code is obtained

by adding odd parity row and column to the code wc

=
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and keeps the minimum weight and F2 property. This new and generate a correct version. This leaves ten rows that

code has weights 16, 20, 24, 28, 32, 36, 40, 48, 56, and 64 are assumed to be BCII-IIamming Codes.

and is self-dual. This is sufficient to guarantee that this

code has the weight structure of" the (80,40;16) extended Only seven of these must be corrected to generate the

QR Code [3]. entire word. Thus, if there is more than one error in each

B. Decoding

Place the code in its 10 x 8 box and compute row and

column parities. Decide whether the code word is of even

or odd row/column parity. If in doubt, assume first even

and then try odd. Where a row is determined to have

an odd number of errors, mark that row as an erasure.
Otherwise assume an even number of errors in that row.

To correct seven errors, there are at least three rows that

must be correct, if seven row erasures are assumed. The

coefficient of x is a (10,3;8) code, so one can extract that

of four rows, but an odd number in the other three, then,

with trial and error, 4 + 3 x 3 = 13 errors of a particular

pattern can be corrected. If the 7-8-9 error patterns are
such that three rows are clean, and at least four have single

errors, then one can generate the (10,3;8) code over GF(8)

the coefficient of x and the (10,7;4) code over GF(8) the
coefficient of x6. The rest emerges easily although this

may require assuming first even and then odd parity of

the row/column received code words. In general for error

patterns of four or less, the row/column parity will be clear

and the decoding simplified. In the event of even error

patterns in the rows, one will have to decode the (10,3;8)
code with some kind of modified RS decoding.
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