2,797 research outputs found

    Continuous Multiclass Labeling Approaches and Algorithms

    Get PDF
    We study convex relaxations of the image labeling problem on a continuous domain with regularizers based on metric interaction potentials. The generic framework ensures existence of minimizers and covers a wide range of relaxations of the originally combinatorial problem. We focus on two specific relaxations that differ in flexibility and simplicity -- one can be used to tightly relax any metric interaction potential, while the other one only covers Euclidean metrics but requires less computational effort. For solving the nonsmooth discretized problem, we propose a globally convergent Douglas-Rachford scheme, and show that a sequence of dual iterates can be recovered in order to provide a posteriori optimality bounds. In a quantitative comparison to two other first-order methods, the approach shows competitive performance on synthetical and real-world images. By combining the method with an improved binarization technique for nonstandard potentials, we were able to routinely recover discrete solutions within 1%--5% of the global optimum for the combinatorial image labeling problem

    HopSkipJumpAttack: A Query-Efficient Decision-Based Attack

    Full text link
    The goal of a decision-based adversarial attack on a trained model is to generate adversarial examples based solely on observing output labels returned by the targeted model. We develop HopSkipJumpAttack, a family of algorithms based on a novel estimate of the gradient direction using binary information at the decision boundary. The proposed family includes both untargeted and targeted attacks optimized for 2\ell_2 and \ell_\infty similarity metrics respectively. Theoretical analysis is provided for the proposed algorithms and the gradient direction estimate. Experiments show HopSkipJumpAttack requires significantly fewer model queries than Boundary Attack. It also achieves competitive performance in attacking several widely-used defense mechanisms. (HopSkipJumpAttack was named Boundary Attack++ in a previous version of the preprint.

    Paradigm of tunable clustering using binarization of consensus partition matrices (Bi-CoPaM) for gene discovery

    Get PDF
    Copyright @ 2013 Abu-Jamous et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.Clustering analysis has a growing role in the study of co-expressed genes for gene discovery. Conventional binary and fuzzy clustering do not embrace the biological reality that some genes may be irrelevant for a problem and not be assigned to a cluster, while other genes may participate in several biological functions and should simultaneously belong to multiple clusters. Also, these algorithms cannot generate tight clusters that focus on their cores or wide clusters that overlap and contain all possibly relevant genes. In this paper, a new clustering paradigm is proposed. In this paradigm, all three eventualities of a gene being exclusively assigned to a single cluster, being assigned to multiple clusters, and being not assigned to any cluster are possible. These possibilities are realised through the primary novelty of the introduction of tunable binarization techniques. Results from multiple clustering experiments are aggregated to generate one fuzzy consensus partition matrix (CoPaM), which is then binarized to obtain the final binary partitions. This is referred to as Binarization of Consensus Partition Matrices (Bi-CoPaM). The method has been tested with a set of synthetic datasets and a set of five real yeast cell-cycle datasets. The results demonstrate its validity in generating relevant tight, wide, and complementary clusters that can meet requirements of different gene discovery studies.National Institute for Health Researc

    Empirical Study of Car License Plates Recognition

    Get PDF
    The number of vehicles on the road has increased drastically in recent years. The license plate is an identity card for a vehicle. It can map to the owner and further information about vehicle. License plate information is useful to help traffic management systems. For example, traffic management systems can check for vehicles moving at speeds not permitted by law and can also be installed in parking areas to se-cure the entrance or exit way for vehicles. License plate recognition algorithms have been proposed by many researchers. License plate recognition requires license plate detection, segmentation, and charac-ters recognition. The algorithm detects the position of a license plate and extracts the characters. Various license plate recognition algorithms have been implemented, and each algorithm has its strengths and weaknesses. In this research, I implement three algorithms for detecting license plates, three algorithms for segmenting license plates, and two algorithms for recognizing license plate characters. I evaluate each of these algorithms on the same two datasets, one from Greece and one from Thailand. For detecting li-cense plates, the best result is obtained by a Haar cascade algorithm. After the best result of license plate detection is obtained, for the segmentation part a Laplacian based method has the highest accuracy. Last, the license plate recognition experiment shows that a neural network has better accuracy than other algo-rithm. I summarize and analyze the overall performance of each method for comparison

    Optimization of Image Processing Algorithms for Character Recognition in Cultural Typewritten Documents

    Full text link
    Linked Data is used in various fields as a new way of structuring and connecting data. Cultural heritage institutions have been using linked data to improve archival descriptions and facilitate the discovery of information. Most archival records have digital representations of physical artifacts in the form of scanned images that are non-machine-readable. Optical Character Recognition (OCR) recognizes text in images and translates it into machine-encoded text. This paper evaluates the impact of image processing methods and parameter tuning in OCR applied to typewritten cultural heritage documents. The approach uses a multi-objective problem formulation to minimize Levenshtein edit distance and maximize the number of words correctly identified with a non-dominated sorting genetic algorithm (NSGA-II) to tune the methods' parameters. Evaluation results show that parameterization by digital representation typology benefits the performance of image pre-processing algorithms in OCR. Furthermore, our findings suggest that employing image pre-processing algorithms in OCR might be more suitable for typologies where the text recognition task without pre-processing does not produce good results. In particular, Adaptive Thresholding, Bilateral Filter, and Opening are the best-performing algorithms for the theatre plays' covers, letters, and overall dataset, respectively, and should be applied before OCR to improve its performance.Comment: 25 pages, 4 figure
    corecore