55,574 research outputs found

    Mathematics and Morphogenesis of the City: A Geometrical Approach

    Full text link
    Cities are living organisms. They are out of equilibrium, open systems that never stop developing and sometimes die. The local geography can be compared to a shell constraining its development. In brief, a city's current layout is a step in a running morphogenesis process. Thus cities display a huge diversity of shapes and none of traditional models from random graphs, complex networks theory or stochastic geometry takes into account geometrical, functional and dynamical aspects of a city in the same framework. We present here a global mathematical model dedicated to cities that permits describing, manipulating and explaining cities' overall shape and layout of their street systems. This street-based framework conciliates the topological and geometrical sides of the problem. From the static analysis of several French towns (topology of first and second order, anisotropy, streets scaling) we make the hypothesis that the development of a city follows a logic of division / extension of space. We propose a dynamical model that mimics this logic and which from simple general rules and a few parameters succeeds in generating a large diversity of cities and in reproducing the general features the static analysis has pointed out.Comment: 13 pages, 13 figure

    SciTech News Volume 71, No. 2 (2017)

    Get PDF
    Columns and Reports From the Editor 3 Division News Science-Technology Division 5 Chemistry Division 8 Engineering Division 9 Aerospace Section of the Engineering Division 12 Architecture, Building Engineering, Construction and Design Section of the Engineering Division 14 Reviews Sci-Tech Book News Reviews 16 Advertisements IEEE

    A software tool for simulating practical chemistry

    Get PDF
    A software package has been written to allow a user to build and manipulate a simple chemistry experiment. Using a toolbox of equipment the apparatus can be interactively designed and the necessary chemicals added from a database. Selection of the appropriate physical and reaction conditions allows the experiment to be run both in real and virtual time, snapshots of the experiment being stored for subsequent modification and replay. The structure of the reaction data file allows any reaction to be designed with yields and both forward and backward reaction rates. Thus, the user has the opportunity to experiment with the best apparatus layout, reactant composition and physical conditions in order to achieve an optimal result. Some extensions of the current software are discussed

    Towards a systemic research methodology in agriculture: Rethinking the role of values in science

    Get PDF
    The recent drastic development of agriculture, together with the growing societal interest in agricultural practices and their consequences, pose a challenge to agricultural science. There is a need for rethinking the general methodology of agricultural research. This paper takes some steps towards developing a systemic research methodology that can meet this challenge – a general self-reflexive methodology that forms a basis for doing holistic or (with a better term) wholeness-oriented research and provides appropriate criteria of scientific quality. From a philosophy of research perspective, science is seen as an interactive learning process with both a cognitive and a social communicative aspect. This means, first of all, that science plays a role in the world that it studies. A science that influences its own subject area, such as agricultural science, is named a systemic science. From this perspective, there is a need to reconsider the role of values in science. Science is not objective in the sense of being value-free. Values play, and ought to play, an important role in science – not only in form of constitutive values such as the norms of good science, but also in the form of contextual values that enter into the very process of science. This goes against the traditional criterion of objectivity. Therefore, reflexive objectivity is suggested as a new criterion for doing good science, along with the criterion of relevance. Reflexive objectivity implies that the communication of science must include the cognitive context, which comprises the societal, intentional, and observational context. In accordance with this, the learning process of systemic research is shown as a self-reflexive cycle that incorporates both an involved actor stance and a detached observer stance. The observer stance forms the basis for scientific communication. To this point, a unitary view of science as a learning process is employed. A second important perspective for a systemic research methodology is the relation between the actual, different, and often quite separate kinds of science. Cross-disciplinary research is hampered by the idea that reductive science is more objective, and hence more scientific, than the less reductive sciences of complex subject areas – and by the opposite idea that reductive science is necessarily reductionistic. Taking reflexive objectivity as a demarcator of good science, an inclusive framework of science can be established. The framework does not take the established division between natural, social and human science as a primary distinction of science. The major distinction is made between the empirical and normative aspects of science, corresponding to two key cognitive interests. Two general methodological dimensions, the degree of reduction of the research world and the degree of involvement in the research world, are shown to span this framework. The framework can form a basis for transdisciplinary work by way of showing the relation between more and less reductive kinds of science and between more detached and more involved kinds of science and exposing the abilities and limitations attendant on these methodological differences

    Apperceptive patterning: Artefaction, extensional beliefs and cognitive scaffolding

    Get PDF
    In “Psychopower and Ordinary Madness” my ambition, as it relates to Bernard Stiegler’s recent literature, was twofold: 1) critiquing Stiegler’s work on exosomatization and artefactual posthumanism—or, more specifically, nonhumanism—to problematize approaches to media archaeology that rely upon technical exteriorization; 2) challenging how Stiegler engages with Giuseppe Longo and Francis Bailly’s conception of negative entropy. These efforts were directed by a prevalent techno-cultural qualifier: the rise of Synthetic Intelligence (including neural nets, deep learning, predictive processing and Bayesian models of cognition). This paper continues this project but first directs a critical analytic lens at the Derridean practice of the ontologization of grammatization from which Stiegler emerges while also distinguishing how metalanguages operate in relation to object-oriented environmental interaction by way of inferentialism. Stalking continental (Kapp, Simondon, Leroi-Gourhan, etc.) and analytic traditions (e.g., Carnap, Chalmers, Clark, Sutton, Novaes, etc.), we move from artefacts to AI and Predictive Processing so as to link theories related to technicity with philosophy of mind. Simultaneously drawing forth Robert Brandom’s conceptualization of the roles that commitments play in retrospectively reconstructing the social experiences that lead to our endorsement(s) of norms, we compliment this account with Reza Negarestani’s deprivatized account of intelligence while analyzing the equipollent role between language and media (both digital and analog)

    Tangible user interfaces : past, present and future directions

    Get PDF
    In the last two decades, Tangible User Interfaces (TUIs) have emerged as a new interface type that interlinks the digital and physical worlds. Drawing upon users' knowledge and skills of interaction with the real non-digital world, TUIs show a potential to enhance the way in which people interact with and leverage digital information. However, TUI research is still in its infancy and extensive research is required in or- der to fully understand the implications of tangible user interfaces, to develop technologies that further bridge the digital and the physical, and to guide TUI design with empirical knowledge. This paper examines the existing body of work on Tangible User In- terfaces. We start by sketching the history of tangible user interfaces, examining the intellectual origins of this field. We then present TUIs in a broader context, survey application domains, and review frame- works and taxonomies. We also discuss conceptual foundations of TUIs including perspectives from cognitive sciences, phycology, and philoso- phy. Methods and technologies for designing, building, and evaluating TUIs are also addressed. Finally, we discuss the strengths and limita- tions of TUIs and chart directions for future research

    The city as a socio-technical system a spatial reformulation

    Get PDF

    On a landscape approach to design and eco-poetic approach to Landscape

    Get PDF
    For Landscape Architecture to become an academic discipline it must present its own coherent theory and methodology for the planning, designing and management of (built) landscapes. This also requires not only an articulated if difficult differentiation of planning, design and management and the interrelationship between them, but also clarification of the term landscape itself
    corecore