28 research outputs found

    FEEDFORWARD CONTROL OF TEMPERATURE-INDUCED HEAD SKEW FOR HARD DISK DRIVES

    Full text link

    Robust periodic disturbance compensation via multirate control

    Get PDF
    Master'sMASTER OF ENGINEERIN

    Control Methods for Improving Tracking Accuracy and Disturbance Rejection in Ball Screw Feed Drives

    Get PDF
    This thesis studies in detail the dynamics of ball screw feed drives and expands understanding of the factors that impose limitations on their performance. This knowledge is then used for developing control strategies that provide adequate command following and disturbance rejection. High performance control strategies proposed in this thesis are designed for, and implemented on, a custom-made ball screw drive. A hybrid Finite Element (FE) model for the ball screw drive is developed and coded in Matlab programming language. This FE model is employed for prediction of natural frequencies, mode shapes, and Frequency Response Functions (FRFs) of the ball screw setup. The accuracy of FRFs predicted for the ball screw mechanism alone is validated against the experimental measurements obtained through impact hammer testing. Next, the FE model for the entire test setup is validated. The dynamic characteristics of the actuator current controller are also modeled. In addition, the modal parameters of the mechanical structure are extracted from measured FRFs, which include the effects of current loop dynamics. To ensure adequate command following and disturbance rejection, three motion controllers with active vibration damping capability are developed. The first is based on the sensor averaging concept which facilitates position control of the rigid body dynamics. Active damping is added to suppress vibrations. To achieve satisfactory steady state response, integral action over the tracking error is included. The stability analysis and tuning procedure for this controller is presented together with experimental results that prove the effectiveness of this method in high-speed tracking and cutting applications. The second design uses the pole placement technique to move the real component of two of the oscillatory poles further to the left along the real axis. This yields a faster rigid body response with less vibration. However, the time delay from the current loop dynamics imposes a limitation on how much the poles can be shifted to the left without jeopardizing the system’s stability. To overcome this issue, a lead filter is designed to recover the system phase at the crossover frequency. When designing the Pole Placement Controller (PPC) and the lead filter concurrently, the objective is to minimize the load side disturbance response against the disturbances. This controller is also tested in high-speed tracking and cutting experiments. The third control method is developed around the idea of using the pole placement technique for active damping of not only the first mode of vibration, but also the second and third modes as well. A Kalman filter is designed to estimate a state vector for the system, from the control input and the position measurements obtained from the rotary and linear encoders. The state estimates are then fed back to the PPC controller. Although for this control design, promising results in terms of disturbance rejection are obtained in simulations, the Nyquist stability analysis shows that the closed loop system has poor stability margins. To improve the stability margins, the McFarlane-Glover robustness optimization method is attempted, and as a result, the stability margins are improved, but at the cost of degraded performance. The practical implementation of the third controller, was, unfortunately, not successful. This thesis concludes by addressing the problem of harmonic disturbance rejection in ball screw drives. It is shown that for cases where a ball screw drive is subject to high-frequency disturbances, the dynamic positioning accuracy of the ball screw drive can be improved significantly by adopting an additional control scheme known as Adaptive Feedforward Cancellation (AFC). Details of parameter tuning and stability analysis for AFC are presented. At the end, successful implementation and effectiveness of AFC is demonstrated in applications involving time periodic or space periodic disturbances. The conclusions drawn about the effectiveness of the AFC are based on results obtained from the high-speed tracking and end-milling experiments

    Disturbance attenuation with multi-sensing servo systems for high density storage devices

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    Doctor of Philosophy

    Get PDF
    dissertationThe dissertation is concerned with the development and analysis of adaptive algorithms for the rejection of unknown periodic disturbances acting on an unknown system. The rejection of periodic disturbances is a problem frequently encountered in control engineering, and in active noise and vibration control in particular. A new adaptive algorithm is presented for situations where the plant is unknown and may be time-varying. Known as the adaptive harmonic steady-state or ADHSS algorithm, the approach consists in obtaining on-line estimates of the plant frequency response and of the disturbance parameters. The estimates are used to continuously update control parameters and cancel or minimize the effect of the disturbance. The dynamic behavior of the algorithm is analyzed using averaging theory. Averaging theory allows the nonlinear time-varying closed-loop system to be approximated by a nonlinear time-invariant system. Extensions of the algorithm to systems with multiple inputs/outputs and disturbances consisting of multiple frequency components are provided. After considering the rejection of sinusoidal disturbances of known frequency, the rejection of disturbances of unknown frequency acting on an unknown and time-varying plant is considered. This involves the addition of frequency estimation to the ADHSS algorithm. It is shown that when magnitude phase-locked loop (MPLL) frequency estimation is integrated with the ADHSS algorithm, the two components work together in such a way that the control input does not prevent frequency tracking by the frequency estimator and so that the order of the ADHSS can be reduced. While MPLL frequency estimation can be combined favorably with ADHSS disturbance rejection, stability is limited due to the local convergence properties of the MPLL. Thus, a new frequency estimation algorithm with semiglobal stability properties is introduced. Based on the theory of asynchronous electric machines, the induction motor frequency estimator, or IMFE, is shown to be appropriate for disturbance cancellation and, with modification, is shown to increase stability of the combined ADHSS/MPLL algorithm. Extensive active noise control experiments demonstrate the performance of the algorithms presented in the dissertation when disturbance and plant parameters are changing

    Feedforward control approach to precision trajectory design and tracking : Theory and application to nano-mechanical property mapping using Scanning Probe Microscope

    Get PDF
    The output tracking problem has been extensively studied. The linear system case has been addressed by B. A. Francis. (1976) by converting the tracking problem to a regulator problem. Such an approach was later extended to nonlinear systems by A. Isidori. et al. (1990). On the feedforward control side, the stable inversion theory solved the challenging output tracking problem and achieved exact tracking of a given desired output trajectory for nonminimum phase systems (linear and nonlinear). The obtained solution is noncausal and requires the entire desired trajectory to be known a priori. This noncausality constraint has been alleviated through the development of the preview-based inversion approach, which showed the precision tracking can be achieved with a finite preview of the future desired trajectory, and the effect of the limited future trajectory information on output tracking can be quantified. Moreover, optimal scan trajectory design and control method provided a systematic approach to the optimal output-trajectory-design problem, where the output trajectory is repetitive and composed of pre-specified trajectory and unspecified trajectory for transition that returns from ending point to starting point in a given time duration. This dissertation focuses on the development of novel inversion-based feedforward control technique, with applications to output tracking problem with tracking and transition switchings, possibly non-repetitive. The motivate application examples come from atomic force microscope (AFM) imaging and material property measurements. The raster scanning process of AFM and optimal scan trajectory design and control method inspired the repetitive output trajectory tracking problem and attempt to solve in frequency domain. For the output tracking problem, especially for the AFM, there are several issues that have to be addressed. At first, the shape of the desired trajectory must be designed and optimized. Optimal output-trajectory-design problem provided a systematic approach to design the desired trajectory by minimizing the total input energy. However, the drawback is that the desired trajectory becomes very oscillatory when the system dynamics such as the dynamics of the piezoelectric actuator in AFM is lightly damped. Output oscillations need to be small in scanning operations of the AFM. In this dissertation, this problem is addressed through the pre-filter design in the optimal scan trajectory design and tracking framework, so that the trade off between the input energy and the output energy in the optimization is achieved. Secondly, the dissertation addressed the adverse effect of modeling error on the performance of feedforward control. For example, modeling errors can be caused in process of curve fitting. The contribution of this dissertation is the development of novel inversion based feedforward control techniques. Based on the inversion-based iterative learning control (S. Tien. et al. (2005)) technique, the dissertation developed enhanced inversion-based iterative control and the model-less inversion-based iterative control. The convergence of the iterative control law is discussed, and the frequency range of the convergence as well as the effect of the disturbance/noise to signal ratio is quantified. The proposed approach is illustrated by implementing them to high-speed force-distance curve measurements by using atomic force microscope (AFM). Then the control approach is extended to high-speed force-volume mapping. In high-speed force-volume mapping, the proposed approach utilizes the concept of signal decoupling-superimposition and the recently-developed model-less inversion-based iterative control (MIIC) technique. Experiment of force volume mapping on a Polydimethylsiloxane (PDMS) sample is presented to illustrate the proposed approach. The experimental results show that the mapping speed can be increased by over 20 times

    39th Aerospace Mechanisms Symposium

    Get PDF
    The Aerospace Mechanisms Symposium (AMS) provides a unique forum for those active in the design, production, and use of aerospace mechanisms. A major focus is the reporting of problems and solutions associated with the development and flight certification of new mechanisms. Organized by the Mechanisms Education Association, NASA Marshall Space Flight Center (MSFC) and Lockheed Martin Space Systems Company (LMSSC) share the responsibility for hosting the AMS. Now in its 39th symposium, the AMS continues to be well attended, attracting participants from both the United States and abroad. The 39th AMS was held in Huntsville, Alabama, May 7-9, 2008. During these 3 days, 34 papers were presented. Topics included gimbals and positioning mechanisms, tribology, actuators, deployment mechanisms, release mechanisms, and sensors. Hardware displays during the supplier exhibit gave attendees an opportunity to meet with developers of current and future mechanism components

    Long Stroke FTS

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Mechanical Engineering, 2005.Includes bibliographical references (p. 375-384).In this thesis, I detail the design and control of a linear long stroke fast tool servo (FTS) with integral balance mass. The long stroke fast tool servo consists of an air bearing stage driven by a unique three phase oil cooled linear motor. The linear FTS has a travel range of 25 mm and is capable of 100 m/s² accelerations. The FTS is mounted to a T-base diamond turning machine (DTM). The FTS is attached to a hydrostatic bearing supported in-feed stage which is driven by a second linear motor. The in-feed stage is allowed to move in response to the FTS actuation forces and thus acts as an integral balance mass. We have developed a unique control structure to control the position of both the FTS and the reaction mass. The FTS controller employs a conventional lead-lag inner loop, an adaptive feedforward cancelation (AFC) outer loop, and command pre-shifting. For the FTS controller, the AFC resonators are placed in the forward path which creates infinite gain at the resonator frequency. The controller for the hydrostatic stage consists of a conventional lead-lag control inner-loop and a base acceleration feedback controller. The acceleration feedback controller consists of a high-pass filter, a double integrator for phase compensation, and an array of AFC resonators. For the base acceleration controller, the AFC resonators are placed in the feedback path and thus act as narrow-frequency notch filters. The notch filters allow the hydrostatic stage/balance mass to move freely at the commanded trajectory harmonics thus attenuating the forces introduced into the DTM. The AFC control loops are designed using a new loop shaping perspective for AFC control. In this thesis, we present two extensions to AFC control.(cont.) The first extension called Oscillator Amplitude Control (OAC) is used to approximate the convergence characteristics of an AFC controller. The second extension termed Amplitude Modulated Adaptive Feedforward Cancelation (AMAFC) is designed to exactly cancel disturbances with a time varying amplitude.by Marten F. Byl.Ph.D
    corecore