7,165 research outputs found

    Pricing High-Dimensional American Options Using Local Consistency Conditions

    Get PDF
    We investigate a new method for pricing high-dimensional American options. The method is of finite difference type but is also related to Monte Carlo techniques in that it involves a representative sampling of the underlying variables.An approximating Markov chain is built using this sampling and linear programming is used to satisfy local consistency conditions at each point related to the infinitesimal generator or transition density.The algorithm for constructing the matrix can be parallelised easily; moreover once it has been obtained it can be reused to generate quick solutions for a large class of related problems.We provide pricing results for geometric average options in up to ten dimensions, and compare these with accurate benchmarks.option pricing;inequality;markov chains

    An Irregular Grid Approach for Pricing High-Dimensional American Options

    Get PDF
    We propose and test a new method for pricing American options in a high-dimensional setting.The method is centred around the approximation of the associated complementarity problem on an irregular grid.We approximate the partial differential operator on this grid by appealing to the SDE representation of the underlying process and computing the root of the transition probability matrix of an approximating Markov chain.Experimental results in five dimensions are presented for four different payoff functions.option pricing;inequality;markov chains

    Application of Operator Splitting Methods in Finance

    Full text link
    Financial derivatives pricing aims to find the fair value of a financial contract on an underlying asset. Here we consider option pricing in the partial differential equations framework. The contemporary models lead to one-dimensional or multidimensional parabolic problems of the convection-diffusion type and generalizations thereof. An overview of various operator splitting methods is presented for the efficient numerical solution of these problems. Splitting schemes of the Alternating Direction Implicit (ADI) type are discussed for multidimensional problems, e.g. given by stochastic volatility (SV) models. For jump models Implicit-Explicit (IMEX) methods are considered which efficiently treat the nonlocal jump operator. For American options an easy-to-implement operator splitting method is described for the resulting linear complementarity problems. Numerical experiments are presented to illustrate the actual stability and convergence of the splitting schemes. Here European and American put options are considered under four asset price models: the classical Black-Scholes model, the Merton jump-diffusion model, the Heston SV model, and the Bates SV model with jumps

    Irregular grid methods for pricing high-dimensional American options

    Get PDF
    This thesis proposes and studies numerical methods for pricing high-dimensional American options; important examples being basket options, Bermudan swaptions and real options. Four new methods are presented and analysed, both in terms of their application to various test problems, and in terms of their theoretical stability and convergence properties. A method using matrix roots (Chapter 2) and a method using local consistency conditions (Chapter 4) are found to be stable and to give accurate solutions, in up to ten dimensions for the latter case. A method which uses local quadratic functions to approximate the value function (Chapter 3) is found to be vulnerable to instabilities in two dimensions, and thus not suitable for high-dimensional problems. A proof of convergence related to these methods is provided in Chapter 6. Finally, a method based on interpolation of the value function (Chapter 5) is found to be effective in pricing Bermudan swaptions.

    Using Localised Quadratic Functions on an Irregular Grid for Pricing High-Dimensional American Options

    Get PDF
    We propose a method for pricing high-dimensional American options on an irregular grid; the method involves using quadratic functions to approximate the local effect of the Black-Scholes operator.Once such an approximation is known, one can solve the pricing problem by time stepping in an explicit or implicit manner.We study stability of the method in two dimensions, and find that the grid structure is important in providing a stable approximation to the operator.
    corecore