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Abstract

We investigate a new method for pricing high-dimensional American op-
tions. The method is of finite difference type but is also related to Monte
Carlo techniques in that it involves a representative sampling of the underly-
ing variables. An approximating Markov chain is built using this sampling
and linear programming is used to satisfy local consistency conditions at
each point related to the infinitesimal generator or transition density. The
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1 Introduction

The pricing of American options is a problem that has remained inaccessible to
closed form solution. It was also long assumed to be inaccessible to Monte Carlo
techniques, but Tilley quashed this belief in his 1993 paper [22]. Simulation tech-
niques are of particular importance for higher dimensional problems where con-
ventional discretisation methods become intractable.

Methods for solving American and Bermudan option pricing problems have
become increasingly important with the widespread use of options and the de-
velopment of more and more complex contracts. Examples of potentially high-
dimensional options include basket options, swaptions and real options. We con-
sider “high-dimensional” problems to be those where the number of stochastic
factors is at least three or four, and thus conventional grid techniques become un-
manageable.

Much progress has been seen in the past decade in the area of Monte Carlo tech-
niques, through the work of Barraquand and Martineau [1], Broadie and Glasser-
man [6] and more recently Longstaff and Schwartz [17], Tsitsiklis and Van Roy
[23], Rogers [20], Haugh and Kogan [12], Boyle et al. [5], and through the method
proposed in Berridge and Schumacher [2, 3, 4].

Most techniques proposed have centred around path generations of the process.
This has the advantage that the points sampled are well adapted to the process, but
the disadvantage that it is difficult to determine the expected value of continuation
at each point. It is important to know the latter in order to make a stopping decision,
and thus determine the early exercise premium.

The last method in the above list is the only one to consider a constant sam-
pling of the state space over time. Since the method centres around an approxi-
mating Markov chain, it is simple to estimate continuation values on the grid using
an appropriate Markov transition matrix. This method is thus more like a finite
difference method, as opposed to the methods in [6, 17, 23, 5] which are more
tree-like.

An important advantage of the irregular grid method proposed here is that the
number of tuning parameters is small. Furthermore, convergence requires increas-
ing only the number of grid points and the number of time steps, as with finite
difference methods. In particular the method does not involve approximation of
the value function or exercise region by basis functions.

We also note that using a constant grid allows implicit solutions to be easily
obtained; for finite difference techniques this represents an increase in convergence
speed from δt to δt2 when considering European problems.

We proceed along the lines of [2, 3, 4] in that we approximate the value func-
tion on an irregular grid. We use a stable and more tractable method however for
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approximating the transition probabilities; instead of taking a root of a transition
matrix, we directly construct the transition probabilities using local consistency
conditions presented in Kushner and Dupuis [16] in the parabolic case and similar
conditions to construct the infinitesimal generator in the elliptic case. This allows
us to use much larger grids, and thus obtain more accurate solutions.

Using the root method of [2, 3, 4] the grid size was limited to 3000 on a desktop
computer, and averaging was needed over several experiments to obtain accurate
solutions. We can now deal with grid sizes in the hundreds of thousands, and
solutions from a single experiment are of sufficient accuracy that randomisation is
no longer required.

The paper continues in Section 2 with a formulation of the problem of interest.
Section 3 presents the proposed methodology, refinements are presented in Section
4 and experiments are carried out in Section 5. Section 6 concludes.

2 Formulation

2.1 The market

As in [2, 3, 4], we consider a complete and arbitrage-free market described by state
variable X(s) ∈ Rd for s ∈ [t, T ] which follows a Markov diffusion process

dX(s) = µ(X(s), s)ds + σ(X(s), s)dW (s) (2.1)

with initial condition X(t) = xt, and a derivative product on X(s) with exercise
value ψ(X(s), s) at time s and value V (s) = v(X(s), s) for some pricing function
v(x, s). The process V (s) satisfies

dV (s) = µV (X(s), s)ds + σV (X(s), s)dW (s) (2.2)

where µV and σV can be expressed in terms of µ and σ by means of Itô’s lemma.
The terminal value is given by V (·, T ) = ψ(·, T ), and intermediate values satisfy
V (·, s) ≥ ψ(·, s), s ∈ [t, T ].

In such a market there exists a unique equivalent martingale measure under
which all price processes are martingales. The risk-neutral process in this case is
given by

dX(s) = µRN (X(s), s)ds + σ(X(s), s)dW (s) (2.3)

where µRN is the risk-neutral drift.
Our objective is to determine the current value V (X(t), t) of the derivative

product and the accompanying adapted exercise and hedging strategies τ and H:

τ : Rd × [t, T ] → {0, 1} (2.4)

H : Rd × [t, T ] → Rd. (2.5)
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Supposing that one has an estimate V̂ (t) of the derivative price, it is often
important to specify an exercise rule τ̂ or a hedging strategy Ĥ in order for the
buyer or seller respectively to be able to realise the estimated price.

2.2 Pricing

2.2.1 The primal formulation

The value of the derivative product is formulated in the primal problem as a supre-
mum over stopping times

v(xt, t) = sup
τ∈T

EQ
xt

(

e−r(τ−t)ψ(X(τ))
)

(2.6)

where T is the set of stopping times on [t, T ] with respect to the natural filtration,
the expectation is taken with respect to the risk-neutral measure Q, and the initial
value is X(t) = xt.

2.2.2 The dual formulation

The dual formulation (see Rogers [20] or Haugh and Kogan [12]) forms a price by
minimising the cost of the hedging strategy over martingales. Theorem 1 of [20]
implies that the price is given by

v(xt, t) = inf
M∈H1

0

EQ
xt

[

sup
s∈[t,T ]

(

e−r(s−t)ψ(X(s)) −M(s)
)

]

(2.7)

where H1
0 is the space of martingales with M(0) = 0 and sups∈[t,T ] |M(s)| ∈ L1.

The infimum is attained at a certain martingale M = M ∗.

2.2.3 The variational inequality formulation

Formulating the problem as a variational inequality invites implications from the
large number of results that have been developed in this field, for example the work
of Glowinski et al. [11]. Jaillet et al. [15] applied this approach to the analysis of
American option pricing.

One must first define an elliptic operator L giving the diffusion of the process.
This is given by

L = 1
2 trσσ′

∂2

∂x2
+ µRN

∂

∂x
− r (2.8)

where r is the risk-free rate.
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One must also specify a function space in which to work. Briefly one defines
an inner product 〈·, ·〉 and a bilinear form a(·, ·) on the Hilbert space H 1 satisfying

a(v, u) = 〈u,Lv〉 . (2.9)

The equivalent variational inequality formulation is then to find v(x, t) such
that







v(x, s) − ψ(x, s) ≥ 0

u ≥ ψ a.e. ⇒ a(v, u− v) −
〈

u− v, ∂v
∂t

〉

≥ 0 a.e. [t, T ]
(2.10)

for (x, s) ∈ Rd × [t, T ] with the terminal condition v(·, T ) ≡ ψ(·, T ).

2.2.4 The complementarity formulation

The variational inequality formulation is not directly amenable to computation. For
this reason it is convenient to reformulate it as a complementarity problem. Let L
be the related diffusion operator; then the option value is found by solving the
complementarity problem















∂v
∂t + Lv ≤ 0

v − ψ ≥ 0
(

∂v
∂t + Lv

)

(v − ψ) = 0

(2.11)

for (x, s) ∈ Rd × [t, T ] with the terminal condition v(·, T ) ≡ ψ(·, T ).
Such a problem can be solved using standard PDE discretisation techniques,

with some modifications to account for the inequalities.

2.3 Consequences

In solving the pricing problem we divide the time-state space into two complemen-
tary regions: the continuation region where it is optimal to hold the option and the
stopping region where it is optimal to exercise. In the continuation region the first
line of (2.11) is active and the stopping rule says not to exercise. In the stopping
region the second line of (2.11) is active and the stopping rule says to exercise.

In all formulations presented, high dimensionality poses a practical problem
since functional approximation in a high-dimensional space is called for.
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3 Methodology

The basic methodology presented is similar to that of [2, 3, 4], with the exception
of the manner in which the transition matrix is constructed. This is done in the
sequel using the local consistency conditions presented in Kushner and Dupuis
[16], and a modification of these conditions is used to find an approximation to the
infinitesimal generator. These conditions ensure that the approximating Markov
chain has a local mean and variance that match those of the continuous process.

3.1 Irregular grid

We first briefly review the irregular grid methodology presented in [2, 3, 4]. We
define an irregular grid to be a representative sampling of the state space

X = {x1, . . . , xn} ⊂ Rd. (3.1)

The method of sampling is to be specified at a later stage, but one can think of it
as a low discrepancy or low distortion set (see for example Bally and Pagès [19])
which is dense in the entire state space as n→ ∞.

Examples of possible grids in two dimensions are presented in Figure 3.1. As
in the case of Monte Carlo integration, it is expected that low discrepancy (e.g.
Sobol’) and low distortion grids will lead to faster convergence than random grids.
For results regarding integration see Evans and Swartz [10] and Pagès [19].
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(c) Low Distortion

Figure 3.1: Grids with 500 points adapted to the normal density.

In order to simplify the analysis we now make the assumption that the risk-
neutral process is a d-dimensional time homogeneous diffusion process

dX(s) = µRN (X(s))ds +R(X(s))dW (s) (3.2)

where R′R is the Cholesky decomposition of the state-dependent covariance ma-
trix Σ(X(s)) and X and W are of the same length d. This assumption is not
necessary for the method to work; it merely simplifies some aspects and allows for
a clearer exposition.
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3.2 Approximation of Markov chain

We consider approximating the risk-neutral process (3.2) using a discrete state,
discrete time Markov chain where the states are exactly the points in our irregular
grid X and the time step is δt.

The Markov transition matrix P is constructed in such a way as to satisfy the
local consistency conditions given in Kushner and Dupuis [16]. We require1 for
each state i = 1, . . . , n

Σ(xi)δt =
∑n

j=1(xj − xi − µRN (xi)δt)(xj − xi − µRN (xi)δt)
′pi,j

µRN (xi)δt =
∑n

j=1(xj − xi)pi,j

1 =
∑n

j=1 pi,j

pi,j ≥ 0
(3.3)

where pi,j is the (i, j)th entry of P .
One must solve for each state i a feasibility problem over the pi,j . The number

of equality constraints in the problem is given by ηd + 1 where

ηd =
1

2
d(d+ 3) (3.4)

and the number of variables is n. In the problems we consider, ηd is much smaller
than n.

In practise one can impose the extra condition that the transitions should only
be allowed to close neighbours of each point. Computationally this means that we
only need to consider a small number of transitions k where ηd + 1 < k � n, thus
dramatically reducing the complexity of the problem.

It is also useful to specify a linear objective function to optimise the proximity
of transitions. That is, to satisfy the local consistency conditions using points as
close as possible to the mean. The linear objective function, to be minimised,
should have a coefficient relating to point j which is an increasing function of the
distance ||xi − xj||. Let us denote the objective function by fi · pi where pi is the
ith row of P .

We thus pose for each point i a linear program min fi · pi subject to (3.3). In
experiments we found that a convenient specification for f is fj = k3 where xj is
the kth nearest neighbour of xi + µRN δt.

We note that the solution to the linear program will in general be a corner
solution using as many zero variables as possible; the number of nonzero transition

1The formulation in [16] is more general in that it allows o(δt) terms to be added on the RHS of
the first two conditions.
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probabilities per point is the minimum number, ηd + 1. This is a consequence
of Corollary 7.11 in Schrijver [21], and of the fact that the constraint matrix has
ηd + 1 rows. Note that the points with positive weights are not necessarily the
ηd +1 nearest neighbours of xi +µRNδt, since these may not satisfy the feasibility
conditions; the points form rather the closest possible feasible set (with respect to
the objective function).

3.3 Approximation of infinitesimal generator

Rather than approximating transition probabilities, one may attempt to approxi-
mate the infinitesimal generator directly. This amounts to constructing a discrete
space, continuous time approximation to the problem.

Constructing an approximation to the infinitesimal generator allows quick re-
construction of transition probabilities for arbitrary time steps δt, or for scaling the
effect of the diffusion operator, through a first order approximation. Consequently
this method is preferred over that of Section 3.2, provided we do not have a large
state-dependent drift. We assume the latter in this section.

In the case of a non-state dependent drift, we refer the reader to Section 4.5
where we introduce a simple transformation of the continuous process to eliminate
a risk-neutral drift that depends deterministically on time.

We start with the problem (3.3), and define

ai,j =
1

δt
(pi,j(δt) − δij) (3.5)

where δij is the Kronecker delta. As δt → 0 in (3.5) we obtain elements of the
infinitesimal generator matrix A.

Substituting (3.5) into (3.3) and letting δt→ 0 yields the new feasibility prob-
lem

Σ(xi) =
∑

j 6=i(xj − xi)(xj − xi)
′ai,j

µRN (xi) =
∑

j 6=i(xj − xi)ai,j

ai,j ≥ 0

(3.6)

and ai,i = −
∑n

j 6=i ai,j . Note that (3.6) now contains only ηd equality constraints,
one less than (3.3).

The same considerations as in Section 3.2 are also applied in this case. We
solve for each point i a linear program min f · ai subject to (3.6) and ai,j ≥ 0
where ai is the ith row of A with the diagonal entry omitted. Following from
the observation at the end of Section 3.2, we again expect a maximum of ηd + 1
nonzero entries per row of A.
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We note that when a large drift term is present, one may be able to satisfy the
local consistency conditions (3.6), but this may require using points xj which are
nonlocal to xi. This method differs from the usual method of lines in that here we
produce a stable system before checking for localness of the neighbours, whereas in
the usual method one selects the neighbours a priori before building the equations
and finally considering stability (see for example Hundsdorfer and Verwer [14]).

3.4 Time stepping

Given a transition matrix P , corresponding to time step δt, the option pricing prob-
lem can be solved using dynamic programming on the discretised Markov chain.
Namely, one solves the problem

v(T ) = ψ

v(tk) = max
(

ψ, e−rδtPv(tk+1)
)

for tk = kδt and k = K−1, . . . , 0 whereK is the number of time steps considered,
v is a vector of values at grid points and ψ is a vector of payoffs at grid points. The
resulting solution v(x, 0) is an exact solution to the approximating Markov chain.

Given the infinitesimal generator A, one can form a first order approximation
to the transition matrix P ' I + Aδt and proceed as above. Alternatively, it is
possible to solve the problem to a higher order using the matrix exponential

v(T ) = ψ

v(tk) = max
(

ψ, e−rδteAδtv(tk+1)
)

for k = K − 1, . . . , 0. Since A is sparse, the effect of the matrix exponential can
be calculated efficiently using Krylov subspace methods, see for example Druskin
and Knizhnerman [9] or Hochbruck and Lubich [13].

The above time stepping methods are suitable for Bermudan pricing problems
with δt being the period between exercise possibilities. We expect convergence to
the Bermudan solution as n → ∞, and convergence to the American solution as
δt→ 0.

When considering a truly American problem, it is useful to consider Crank-
Nicolson and implicit solutions. In particular the Crank-Nicolson method is known
to converge at a rate δt2 for the European problem as opposed to δt for the explicit
and implicit methods, and implicit methods are known to be unconditionally stable
for solving sequences of LCPs (see Glowinski et al. [11]).
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The Crank-Nicolson method corresponding to the truly American problem is
the following system with θ = 1

2

v(T ) = ψ (3.7)

0 ≤ (v(tk) − ψ) ⊥
(

e−θAδtv(tk) − e−rδte(1−θ)Aδtv(tk+1)
)

≥ 0

for k = K−1, . . . , 0. The second line is a linear complementarity problem (LCP).
There are many methods available for solving LCPs, including the projected suc-
cessive overrelaxation (PSOR) method proposed in Cryer [7]. Another possible
candidate is linear programming, which is used for example by Dempster and Hut-
ton [8] to solve the one-dimensional American option pricing problem.

3.5 Summary of the algorithm

We present a concise statement of the proposed algorithm as Algorithm 1. The
generation of the matrices A can be done in advance for a given grid X , with
obvious changes to the algorithm.

Algorithm 1 Proposed algorithm for solving high-dimensional American option
pricing problems.

Choose the grid size n
Generate a QMC grid X
Compute the generator matrix A
Choose the time step δt > 0 and implicitness θ ∈ [0, 1]
Solve the linear complementarity problems (3.7)

4 Fine tuning and extensions

We now mention some implementation issues and refinements of the method. These
issues are not essential to the method, but may improve performance and allow
quicker execution for a given required accuracy.

4.1 Grid specification

In the presentation so far, we have taken the grid X to be given; we now consider
ways one might specify the grid.

Taking inspiration from the literature on MC and QMC integration, we first
suggest that the grid be constructed using low discrepancy (Niederreiter [18]) or
low distortion (Pagès [19]) methods. Just as in the regular grid case, we expect the
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error to be related to the separation of grid points, more specifically the separation
of grid points having positive weights in the generator matrix.

Importance sampling considerations tell us that the most efficient grid density
is given by the density of the process itself. Given our suggestion of a constant grid
(for efficiency reasons), we cannot provide the most efficient importance sampling
at all times. However, given the restriction to a constant grid, we can still provide
an acceptable importance sampling.

As outlined in Evans and Swartz [10], the rate of convergence for importance
sampling of normal densities using normal importance sampling functions is most
damaged when the variance of the importance sampling function is less than that
of the true density. Conversely, convergence rates are not greatly affected when
the variance of the importance sampling function is greater than that of the true
density. The situation we should try to avoid is that the process has a significant
probability of lying in the “tails” of the grid density.

A further consideration is the minimisation of boundary effects on the solution.
This suggests that the grid covariance should be larger than the covariance of the
process.

In [2, 3, 4], where a root method was used to construct transition probabilities,
and the process considered was a five-dimensional Brownian motion with drift, a
grid covariance of 1.5 times the process covariance at expiry was found to give the
best convergence rate when tested against grids with covariances of 1.0 and 2.0
times the covariance at expiry.

4.2 Boundary region and boundary conditions

It is clear that (3.3) and (3.6) may be infeasible for some i. In such a case we say
that xi is an implied boundary point, otherwise it is an implied interior point. Given
nondegenerate Σ and a well-adapted grid, one expects that the implied boundary
points will indeed lie at the extremities of the grid, and the implied interior points
away from the extremities.

One may specify appropriate boundary conditions in this region to reflect the
behaviour of the process. In the experiments we let these points be absorbing,
which is appropriate for value functions having a linear behaviour at the boundary.
One may also apply Dirichlet, Neumann or mixed conditions using neighbours in
the grid.

It would be useful to know a priori which points are likely to be in the implied
boundary, since we would like to avoid trying to solve infeasible linear program-
ming problems. In practise however it is difficult to do this even for simple cases.

A plot of the boundary behaviour for a 500-point low distortion grid in two
dimensions is given in Figure 4.1. Notice in this case that the number of infeasible
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points is 21, this being about 4% of the total.
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Figure 4.1: Interior points (small) and boundary points (large) on a normal low
distortion grid for d = 2, n = 500.

If one assumes a distribution for the neighbours over which (3.3) or (3.6) is to
be solved, then one can quantify the probability of feasibility. Near the boundary
of the grid, there may be a low density of points on the boundary side, and thus the
probability of feasibility changes.

For example, if our grid consists of n independent standard normal draws, we
can calculate the expected number of grid points in a halfspace away from the
centre of the grid at some radius r. One can then say what the minimum number
of points n is where the expected number of grid points in the halfspace away from
the grid centre at radius r is less than some bound.

Let us set this bound to be 1
2ηd, where ηd is given in (3.4), a very optimistic

bound but useful to illustrate the approximate behaviour of the boundary. Requir-
ing an expected number of 1

2ηd points in the halfspace away from the center implies
a boundary radius of

r = Φ−1

(

1 −
1

2n
ηd

)

(4.1)

where Φ is the cumulative normal distribution function. In order to find the ex-
pected number of boundary points we then note that the squared norm of a standard
normal variable in d dimensions is a chi square random variable with d degrees of
freedom. Thus, if the boundary region is defined by

{

x : ‖x‖2 ≥ r2
}

, then the
expected numbers of interior and boundary points are

ENi = nΨ(r2, d) (4.2)

ENb = n
(

1 − Ψ(r2, d)
)

(4.3)
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respectively where Ψ is the chi square cumulative distribution function.
Plots of the radius and expected number of boundary points are presented in

Figure 4.2 for d = 3, 5, 10 and n up to 300, 000.
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Figure 4.2: Naive prediction for the radius of the boundary and the proportion of
points which are in the boundary region for a standard normal grid.

Experimentally we find that (4.1) underestimates the implied radius for lower
dimensions and overestimates it for higher dimensions (see Section 5 for numerical
results). The latter is not surprising since one generally requires more than the
minimum number of points ηd to satisfy the feasibility conditions (3.3) and (3.6).

Finally we mention that in estimating the boundary, we prefer an underesti-
mate to an overestimate. An overestimate of the boundary may lead us to waste a
considerable amount of computing time trying to solve infeasible linear programs.
An underestimate on the other hand just results in the grid having extra boundary
points. The latter does not add a significant amount of overhead to the method,
the effect being limited to a slight increase in complexity of the nearest neighbour
problem and extra zero rows to the sparse generator matrix.

4.3 Parallelism

In the language of computer science, problems (3.3) and (3.6) are said to be em-
barrassingly parallel. This refers to the fact that a speedup linear in the number
of processors can be trivially achieved. For example, having a large number n of
linear programs to solve and m computers, we can reduce the time by a factor 1/m
by solving n/m linear programs per computer, assuming n > m and that the com-
munication time between the computers is negligible. We make use of this point
when conducting the experiments, using a distributed computing environment to
solve the linear programs.
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4.4 Control variates and Richardson extrapolation

To obtain more accurate solutions we consider variance reduction and extrapolation
techniques.

Variance reduction is already used in the method in that the grids are con-
structed using points designed to cover the state space evenly according to the
process density at expiry. In the current context the idea of control variates is also
very easy to apply since the European solution is usually highly correlated with the
Bermudan and American solutions. Since the European price is easy to determine
to a high degree of accuracy, it constitutes an ideal control variate.

The concept of extrapolation is also useful once we have an idea of how the
error behaves with increasing n. In Section 5.5 below, experimental evidence is
given which implies the estimates behave asymptotically as

v̂n = v + c1n
c2/d (4.4)

for some constants c1, c2, which may be estimated. Here we assume that the error
is always of the same sign, which may be indicated for example by a monotone
behaviour of the approximations.

4.5 Matrix reuse

Given that generating the transition and infinitesimal generator matrices is an ex-
pensive operation compared to the final time stepping procedure, it is of interest to
know under which conditions these matrices can be reused for related problems. It
is clear that a single matrix can be reused for as many different payoff functions as
required; it can also be reused for processes with different risk-neutral drifts and
covariances as follows.

Suppose that a transition or infinitesimal generator matrix has been constructed
for a process with covariance matrix I and zero risk-neutral drift on the grid X . Let
us construct the grid Y where yi = R′xi, R being a Cholesky factor of the covari-
ance matrix Σ. The implied covariance of the transition or infinitesimal generator
matrix on Y is now Σ.

Suppose now that our process has covariance Σ, and constant (nonzero) risk-
neutral drift µ. Consider now the time dependent grid Yk where the subscript
k corresponds to time kδt and yk = x + kµδt. The implied covariance of the
transition or infinitesimal generator matrix remains Σ, but the implied drift is now
µ.

Two simple extensions to the time homogeneous problem are those in which
the risk-neutral drift is deterministically time-dependent and the covariance matrix
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is scaled over time,

dX(s) = µRN (s)ds+ α(s)RdW (s). (4.5)

The most convenient way to deal with the drift term is to incorporate the drift in
the payoff function. This amounts to the change of variables

X0(s) = X(s) −

∫ s

0
µRN (u)du, (4.6)

the new process having zero drift

dX0(s) = α(s)RdW (s) (4.7)

and the payoff being

ψ0(xi, s) = ψ

(

xi +

∫ s

0
µRN (u)du

)

. (4.8)

The scaled covariance term can be accommodated by manipulating the time step.
By using time step α(s)δt at time s in place of δt, we achieve a covariance of
α(s)2Σ as required.

4.6 Grid expansion

Grid expansion relates the size of the grid to the variance of the process. A con-
venient way to generate a grid is to sample the process at expiry; one thus obtains
a grid X that becomes dense in the state space as n → ∞. For a finite n how-
ever one can ask how well the process can be represented on X . For example if
we consider a standard d-dimensional Brownian motion on s ∈ [0, 1], the process
density at expiry is N (0, I). If the implied boundary begins at r < 2 for example,
there is a nonnegligible chance of the discrete Markov process hitting the absorbing
boundary before expiry, thus reducing the accuracy of the solution.

In this case we can set a lower limit r0 for the implied boundary, for example
r0 = 4 for which the process has a negligible chance of hitting the boundary. This
limit can be achieved by expanding the grid; to do this, one scales the grid points
by a factor r0/r and the generator matrix entries by a factor r/r0, thus removing
the boundary effects while preserving local consistency.

The grid expansion factor allows us to make a tradeoff between errors caused
by the boundary and errors related to the discretisation. The higher the factor
applied in the grid expansion, the lower the effect from the boundaries but the
coarser the grid becomes and hence the higher the discretisation error.
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4.7 Partially absorbing boundaries

Infeasibility of points in the boundary region is usually caused by a lack of points
in the halfspace away from the center of the grid. If the grid boundary looks lo-
cally linear, as in a spherical grid, it is possible that the infeasibility is only in this
direction, and not “along” the boundary.

In this case it may be useful to consider partially absorbing boundaries in which
one only tries to satisfy local consistency conditions in the direction tangent to the
boundary. In the case of a normal grid this amounts to requiring a zero variance
along lines through the grid center for points in the boundary layer. This type of
boundary condition has not been employed in the current study.

5 Experiments

A major hurdle in testing algorithms for pricing high-dimensional American op-
tions is the difficulty of verifying results. One common method is using out-of-
sample paths to estimate the value of the exercise and hedging strategies implied
by the model. Another, which we use here, is to use benchmark results from a spe-
cial case that can be solved accurately. In the following we introduce benchmark
results and then test the proposed method against those results.

5.1 Geometric average options

We choose to focus on geometric average options, since the pricing problem for
these options can be reduced to a one-dimensional problem. The one-dimensional
problems can be solved to a high degree of accuracy, thus providing benchmark
results for the algorithm.

A geometric average put option written on d assets following the risk-neutral
process (2.3) has payoff function

ψ(s) =

(

K −
(

∏

si

)1/d
)+

(5.1)

where s is the asset value and K is the strike price of the option. Assuming a com-
plete and arbitrage free market with the log asset prices following a multivariate
Brownian motion with constant covariance Σ, we have a constant risk-neutral drift

µRN = r11 −
1

2
diagΣ. (5.2)
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5.2 Benchmarks

Using Itô’s lemma with Y = f(X) = X , we find that Y follows the risk-neutral
process

dY (s) =
1

d

d
∑

i=1

dXi(s) (5.3)

= µ̃ds+ σ̃dW (s), (5.4)

the parameters of the diffusion being given by

µ̃ = r −
1

2d

d
∑

i=1

σ2
i (5.5)

σ̃2 =
1

d2

d
∑

i=1





d
∑

j=1

Rij





2

. (5.6)

The option is thus equivalent to a standard put option on an asset with starting value
exp{X0}, strike price K , risk-free rate r and continuous dividend stream

δ =
1

2

(

1

d

∑

σ2
i − σ̃2

)

. (5.7)

In Table 5.1 we provide benchmark results for geometric put options written on up
to ten assets, with starting asset values Si = 40, for all i and strike price 40. The
risk-free rate is taken as 0.06, the volatilities σi = 0.2 for all i, and correlations
ρij = 0.25, i 6= j.

5.3 Experimental details

Using the methodology proposed in Section 3, we conducted experiments to find
the value of the geometric average put options given above.

We used six different grid sizes ranging from 50, 000 to 300, 000, and two
types of grids consisting of normal Sobol’ points and normal low distortion points
with a covariance corresponding to 1.5 times the process covariance at expiry. The
transition matrices were generated using distributed computing software in a Mat-
lab environment. A maximum of 20ηd nearest neighbours were considered when
trying to satisfy the local consistency conditions, where ηd is defined in (3.4).

We consider the pricing problem for European options, Bermudan with ten
exercise opportunities and true American where the option can be exercised at
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d σ̃2 × 102 δ × 102 European Bermudan American
1 4.000 0.000 2.0664 2.2930 2.3196
2 2.500 0.750 1.5553 1.7557 1.7787
3 2.000 1.000 1.3468 1.5380 1.5597
4 1.750 1.125 1.2318 1.4193 1.4392
5 1.600 1.200 1.1585 1.3421 1.3625
6 1.500 1.250 1.1077 1.2893 1.3094
7 1.429 1.286 1.0703 1.2504 1.2703
8 1.375 1.313 1.0416 1.2207 1.2404
9 1.333 1.333 1.0189 1.1971 1.2167
10 1.300 1.350 1.0004 1.1779 1.1974

Table 5.1: Benchmark results for geometric average options in dimensions 1-10.
Also displayed are the variance σ̃2 and continuous dividend δ for the equivalent
one dimensional problem.

any time up to expiry. For the European and Bermudan problems we used the
Crank-Nicolson method with 100 time steps. For solving the linear systems we
used the conjugate gradients squared (CGS) and generalised minimum residual
(GMRES) methods, the latter being slower but more robust. For the American
problems we used projected successive overrelaxation (PSOR) to solve the linear
complementarity problems, with 1000 time steps. While it is not necessary to use
such a large number of time steps in practise, we wanted to focus on the error
with respect to the space discretisation. Having a small enough δt causes the error
resulting from time discretisation to be negligible in comparison, and thus allows
a more accurate assessment of the error resulting from space discretisation.

5.4 Experimental results

We present results in Tables 5.2–5.4 for prices obtained using normal Sobol’ grids
for the Bermudan, American and European cases respectively. The results for low
distortion grids are presented in Tables 5.7–5.9.

Tables 5.5 and 5.6 show the results on normal Sobol’ grids for Bermudan and
American options when the European is used as control variate. Tables 5.10 and
5.11 show the same for low distortion grids.

Figures 5.1 and 5.2 present the results graphically for normal Sobol’ grids. The
results for low distortion grids are shown in Figures 5.3 and 5.4. We see that the
error increases with dimension to about 5–10% for d = 10. The control variate
improves the results dramatically, the error for d = 10 being now less than 1%.
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When using the European control variate we see that the results are biased
upwards, whereas the raw results are biased downwards. This is probably due to
the upward bias introduced by the convexity of the max operator which appears in
the Bermudan and American problems, but not in the European problem.

In one and two dimensions the generator matrix became numerically unstable
for the grid sizes we consider; we have thus not presented results for these low
dimensions here. This lack of convergence is due to the finite precision arithmetic,
and not to instability in the sense that the generator matrix has unstable eigenvalues
(i.e. eigenvalues having positive real part). The method has been found to work
very well in one and two dimensions, but for smaller grid sizes.

5.5 Error behaviour

Drawing a parallel with regular grid methods, we expect the error to be related to
δx, the distance between grid points with positive weights in A. In a regular grid
with the same number of points N in each dimension we have n = N d points in
total, and the distance to the nearest point is simply n−1/d. The error when using a
standard finite difference method is of order δx2, or n−2/d.

We thus propose modelling irregular grid errors as in the regular grid case,
allowing for a scalar factor in the exponent as well as a multiplicative factor:

log |ε| = c1 + c2
log n

d
. (5.8)

In Figures 5.5 and 5.6 we present plots of the log absolute error versus log(n)/d,
and in Tables 5.12 and 5.13 the regression results. Referring to our assumption
of error behaviour (5.8) we find that the complexity is accurately modelled by the
given relationship in all three cases (for suitable c1, c2). The linear relationships
observed, on the log scale, strongly suggest that the algorithm has exponential
complexity. We note that the behaviour in the Sobol’ and low distortion cases
is very similar, with the European and Bermudan prices showing about the same
asymptotic relationship, and with American errors showing a slightly faster rate in
the Sobol’ case, although this is barely significant.

The convergence rate for finite difference methods used to solve PDE problems
on regular grids is 1/δx2 , or n−2/d which here translates to c2 = −2. From this
point of view our method seems to be slightly slower in convergence than the regu-
lar grid method, although this is barely significant. This may be due to the average
δx being larger as a function of the grid size in the irregular grid case.

The given model for errors implies that the amount of work required to ob-
tain solutions to a certain accuracy increases exponentially with dimension. This
may seem pessimistic in that the curse of dimensionality is not broken; however
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d 5 × 104 10 × 104 15 × 104 20 × 104 25 × 104 30 × 104

3 1.5370 1.5375 1.5376 1.5376 1.5377 1.5377
4 1.4135 1.4147 1.4155 1.4161 1.4163 1.4166
5 1.3300 1.3329 1.3345 1.3360 1.3365 1.3371
6 1.2532 1.2630 1.2667 1.2757 1.2766 1.2780
7 1.1981 1.2133 1.2137 1.2305 1.2311 1.2313
8 1.1489 1.1664 1.1672 1.1891 1.1938 1.1807
9 1.1116 1.1255 1.1351 1.1530 1.1514 1.1612
10 1.0901 1.1080 1.1078 1.1129 1.1242 1.1218

Table 5.2: Results for Bermudan geometric average put options in dimensions 3-10
using normal Sobol’ grids.

d 5 × 104 10 × 104 15 × 104 20 × 104 25 × 104 30 × 104

3 1.5584 1.5588 1.5590 1.5591 1.5592 1.5592
4 1.4332 1.4347 1.4357 1.4362 1.4365 1.4369
5 1.3489 1.3522 1.3537 1.3551 1.3557 1.3563
6 1.2721 1.2818 1.2858 1.2940 1.2951 1.2965
7 1.2182 1.2325 1.2331 1.2482 1.2491 1.2492
8 1.1693 1.1864 1.1870 1.2071 1.2114 1.1993
9 1.1316 1.1460 1.1549 1.1715 1.1700 1.1802
10 1.1102 1.1281 1.1267 1.1324 1.1433 1.1414

Table 5.3: Results for American geometric average put options in dimensions 3-10
on normal Sobol’ grids.

the method we use has definite advantages over regular grid methodology in high
dimensions. In particular we note that the number of grid points n can be chosen
freely, the grid points can be adapted to the process density and the number of
boundary points can be substantially reduced for unbounded problems. Regarding
the last point, Section 5.7 provides a comparison between the number of boundary
points found in regular and normally distributed grids. The results suggest that the
proposed method can handle option pricing problems up to dimension ten, which
sets it aside from traditional finite difference methods which start to become un-
wieldy in dimension three or four.
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d 5 × 104 10 × 104 15 × 104 20 × 104 25 × 104 30 × 104

3 1.3461 1.3463 1.3465 1.3465 1.3465 1.3465
4 1.2274 1.2286 1.2293 1.2302 1.2304 1.2304
5 1.1482 1.1505 1.1520 1.1541 1.1545 1.1549
6 1.0716 1.0813 1.0849 1.0977 1.0984 1.0993
7 1.0156 1.0275 1.0318 1.0527 1.0541 1.0545
8 0.9624 0.9792 0.9848 1.0123 1.0151 0.9943
9 0.9231 0.9406 0.9507 0.9735 0.9755 0.9802
10 0.8966 0.9203 0.9277 0.9340 0.9418 0.9424

Table 5.4: Results for European geometric average put options in dimensions 3-10
on normal Sobol’ grids.

d 5 × 104 10 × 104 15 × 104 20 × 104 25 × 104 30 × 104

3 1.5382 1.5382 1.5382 1.5379 1.5379 1.5379
4 1.4179 1.4178 1.4180 1.4177 1.4177 1.4179
5 1.3403 1.3409 1.3410 1.3404 1.3405 1.3407
6 1.2892 1.2893 1.2894 1.2857 1.2858 1.2863
7 1.2527 1.2560 1.2521 1.2481 1.2473 1.2470
8 1.2281 1.2288 1.2240 1.2184 1.2203 1.2279
9 1.2074 1.2038 1.2033 1.1984 1.1947 1.1999
10 1.1940 1.1881 1.1805 1.1793 1.1829 1.1799

Table 5.5: Results for Bermudan geometric average put options in dimensions 3-10
on normal Sobol’ grids, using the European price as a control variate.

d 5 × 104 10 × 104 15 × 104 20 × 104 25 × 104 30 × 104

3 1.5595 1.5596 1.5596 1.5594 1.5594 1.5594
4 1.4376 1.4378 1.4382 1.4378 1.4379 1.4382
5 1.3592 1.3602 1.3603 1.3595 1.3597 1.3599
6 1.3082 1.3082 1.3085 1.3041 1.3044 1.3048
7 1.2728 1.2752 1.2716 1.2658 1.2653 1.2649
8 1.2484 1.2487 1.2437 1.2364 1.2379 1.2465
9 1.2274 1.2242 1.2231 1.2169 1.2133 1.2189
10 1.2141 1.2082 1.1994 1.1988 1.2020 1.1994

Table 5.6: Results for American geometric average put options in dimensions 3-10
on normal Sobol’ grids, using the European price as a control variate.
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d 5 × 104 10 × 104 15 × 104 20 × 104 25 × 104 30 × 104

3 1.5372 1.5375 1.5376 1.5377 1.5377 1.5378
4 1.4141 1.4155 1.4160 1.4163 1.4165 1.4166
5 1.3309 1.3338 1.3360 1.3364 1.3370 1.3371
6 1.2695 1.2729 1.2751 1.2777 1.2779 1.2796
7 1.2139 1.2249 1.2255 1.2292 1.2319 1.2321
8 1.1628 1.1773 1.1850 1.1898 1.1899 1.1863
9 1.1234 1.1397 1.1428 1.1548 1.1514 1.1588
10 1.1177 1.1008 1.1131 1.1103 1.1170 1.1242

Table 5.7: Results for Bermudan geometric average put options in dimensions 3-10
using low distortion grids.

d 5 × 104 10 × 104 15 × 104 20 × 104 25 × 104 30 × 104

3 1.5583 1.5587 1.5589 1.5590 1.5590 1.5591
4 1.4341 1.4355 1.4361 1.4364 1.4367 1.4369
5 1.3500 1.3528 1.3550 1.3554 1.3561 1.3564
6 1.2875 1.2912 1.2935 1.2961 1.2965 1.2981
7 1.2319 1.2432 1.2433 1.2474 1.2496 1.2502
8 1.1813 1.1952 1.2032 1.2082 1.2080 1.2042
9 1.1412 1.1580 1.1615 1.1730 1.1689 1.1774
10 1.1390 1.1206 1.1315 1.1288 1.1365 1.1434

Table 5.8: Results for American geometric average put options in dimensions 3-10
on low distortion grids.

d 5 × 104 10 × 104 15 × 104 20 × 104 25 × 104 30 × 104

3 1.3460 1.3463 1.3464 1.3465 1.3465 1.3466
4 1.2287 1.2295 1.2299 1.2301 1.2304 1.2305
5 1.1501 1.1520 1.1535 1.1540 1.1544 1.1546
6 1.0904 1.0947 1.0965 1.0982 1.0987 1.0994
7 1.0394 1.0474 1.0497 1.0523 1.0545 1.0553
8 0.9877 1.0015 1.0078 1.0122 1.0137 1.0131
9 0.9405 0.9605 0.9654 0.9726 0.9729 0.9779
10 0.9080 0.9100 0.9247 0.9291 0.9322 0.9393

Table 5.9: Results for European geometric average put options in dimensions 3-10
using low distortion grids.
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d 5 × 104 10 × 104 15 × 104 20 × 104 25 × 104 30 × 104

3 1.5379 1.5379 1.5379 1.5379 1.5380 1.5380
4 1.4172 1.4178 1.4179 1.4179 1.4179 1.4179
5 1.3393 1.3403 1.3410 1.3409 1.3410 1.3410
6 1.2867 1.2859 1.2863 1.2871 1.2868 1.2878
7 1.2448 1.2478 1.2461 1.2472 1.2477 1.2471
8 1.2167 1.2174 1.2187 1.2191 1.2178 1.2147
9 1.2017 1.1980 1.1964 1.2011 1.1974 1.1998
10 1.2101 1.1913 1.1888 1.1817 1.1853 1.1853

Table 5.10: Results for Bermudan geometric average put options in dimensions
3-10 using low distortion grids, using the European price as a control variate.

d 5 × 104 10 × 104 15 × 104 20 × 104 25 × 104 30 × 104

3 1.5590 1.5592 1.5592 1.5592 1.5593 1.5593
4 1.4372 1.4378 1.4380 1.4380 1.4381 1.4381
5 1.3584 1.3593 1.3601 1.3599 1.3602 1.3603
6 1.3048 1.3042 1.3047 1.3056 1.3054 1.3064
7 1.2628 1.2661 1.2639 1.2654 1.2654 1.2652
8 1.2352 1.2353 1.2369 1.2376 1.2359 1.2327
9 1.2196 1.2164 1.2150 1.2193 1.2149 1.2184
10 1.2315 1.2111 1.2072 1.2002 1.2048 1.2045

Table 5.11: Results for American geometric average put options in dimensions
3-10 on low distortion grids, using the European price as a control variate.

Option type c1 c2 R2

European −0.35(±0.23) −1.91(±0.10) 0.971
Bermudan −0.42(±0.14) −1.85(±0.06) 0.988
American −0.55(±0.13) −1.74(±0.05) 0.989

Table 5.12: Regression coefficients for the error behaviour on normal Sobol’ grids
(95% CI in parentheses).
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Option type c1 c2 R2

European −0.49(±0.12) −1.94(±0.05) 0.992
Bermudan −0.59(±0.08) −1.84(±0.03) 0.997
American −0.83(±0.08) −1.65(±0.03) 0.995

Table 5.13: Regression coefficients for the error behaviour on low distortion grids
(95% CI in parentheses).
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Figure 5.1: Bermudan pricing results for normal Sobol’ grids presented raw (left)
and using European price as control variate (right).
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Figure 5.2: American pricing results for normal Sobol’ grids presented raw (left)
and using European price as control variate (right).
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Figure 5.3: Bermudan pricing results for low distortion grids presented raw (left)
and using European price as control variate (right).
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Figure 5.4: American pricing results for low distortion grids presented raw (left)
and using European price as control variate (right).
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Figure 5.5: Log of absolute errors for European, Bermudan and American geomet-
ric average options plotted against log(n)/d for d = 3, . . . , 10 for normal Sobol’
grids. The points nearly lie in a straight line in all three cases, giving a clear indi-
cation of complexity. See Table 5.12 for regression results.
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5.6 Timings

The irregular grid method presented in this paper can be divided into two compu-
tationally intensive stages: obtaining the generator matrix and performing the time
stepping. The first is the most expensive, but once a matrix has been obtained it
can be reused for a wide range of related problems. We do not consider comput-
ing transition matrices here; it suffices to say that the situation is very similar to
generator matrices.

Here we provide indications of the timings involved; as usual this depends
heavily on the hardware and software used. The software aspect is emphasised
here since there is a huge difference in the performance of different algorithms for
solving the linear programming problem and for solving linear systems of equa-
tions. The experiments are carried out in Matlab on a 866MHz Pentium III under
Windows 2000.

5.6.1 Generator matrix

In dimension d we are interested in solving a large number of linear programming
problems with ηd = d(d + 3)/2 equality constraints and where all variables are
nonnegative. The number of variables needed is not known a priori, but it has
been found that 5ηd is sufficient for points close to the center of the grid, and an
increased number of 20ηd is needed closer to the boundary. The strategy is thus
to order the points according to their norm and try 5ηd neighbours until a certain
failure rate is reached, then to switch to 20ηd neighbours on the remaining points.

In two dimensions a single problem takes about 0.06s and is not sensitive to
the number of variables changing from 5ηd to 20ηd. This is probably due to the
relatively large overhead involved in the Matlab routines. In five dimensions we see
an increase from 0.07s for 5ηd neighbours to 0.10s for 20ηd. In ten dimensions we
see a corresponding increase from 0.31s to 1.90s per problem. It is thus clear that
parallelisation is desirable to keep the computation times reasonable, especially for
higher dimensional problems.

5.6.2 Time stepping

In dimension d and with n grid points we use a generator matrix with n rows each
with ηd + 1 nonzero entries. The complexity of implicit time stepping should thus
be quadratic with dimension and linear with grid size.

For 300,000 points in five dimensions, explicit time steps take about 1.5s and
implicit about 29s with CGS. For ten dimensions, explicit time steps take about
3.0s and implicit about 21s with CGS. The fact that implicit solutions can be faster
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in a higher dimension is due to the conditioning of the matrix, making it more
amenable to solution even though it is more dense.

One can thus perform about 10-20 times more explicit than implicit time steps
for the same running time. However there is a tradeoff since the latter generally
give much better precision.

5.7 Boundaries

We now compare the observed boundaries presented in Figures 5.7 and 5.8 to the
naive predictions in Section 4.2 and Figure 4.2.

The proportion of boundary points goes up quickly with dimension, as pre-
dicted in Section 4.2. A simple calculation reveals that the proportion of boundary
points for a regular grid with n1/d steps per dimension is 1 − (1 − 2n−1/d)d. For
example, for d = 10 one requires a grid size of about 5 × 1014 to bring the pro-
portion of boundary points down to 0.5. Using the irregular grid method one needs
about 3 × 105, as seen in Figure 5.7.

We cannot compare our results directly to the predictions since we used a max-
imum of 20ηd neighbours when trying to satisfy local consistency. A direct com-
parison would require that we used all points in the grid. It is clear that the observed
boundaries lie at a smaller radius r than the predicted ones. This may be partially
due to the small number of neighbours considered, but may also be caused by the
optimism inherent in the predictions, namely that only the minimum number of
neighbours is required to satisfy the local consistency conditions.

We finally note that the boundaries are not monotone with grid size in Figures
5.7 and 5.8. In the case of normal Sobol’ grids, this may be attributed to the fact that
new points in the grid are infeasible with respect to the closest 20ηd neighbours.

6 Conclusions

We proposed a method for pricing options with several underlying assets and an
arbitrary payoff structure. The method was tested for geometric average options,
which can be easily benchmarked, in dimensions three to ten with very accurate
results.

We saw a decay in precision for increasing dimension, a phenomenon which
can be attributed to the increasing distance between points in the approximating
Markov chain, and to the increasing size of the boundary region. An analysis of
the error implies that the method has exponential complexity with dimension, but
the use of control variates was shown to reduce the error substantially. The use
of extrapolation is also expected to provide accurate approximations, although this
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was not tested in the present work.
The computation of transition and generator matrices is expensive; however

once generated these matrices can be reused for a large class of similar problems
with time dependent parameters. Furthermore computations are cheap once the
matrix is obtained.

Interestingly we found little difference in complexity between the cases where
Sobol’ and low distortion grids were employed. The complexity observed was
exponential in dimension, of approximately the same order as regular grid discreti-
sations.

Although the method extends naturally in principle to arbitrary Markov pro-
cesses with parameters depending on state and time, further extensions to the nu-
merical procedures are required to make the proposed method computationally at-
tractive in such cases. For example, this is of interest when considering Bermudan
swaptions where the drift is state dependent.
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Figure 5.6: Log of absolute errors for European, Bermudan and American geomet-
ric average options plotted against log(n)/d for d = 3, . . . , 10 for low distortion
grids. The points nearly lie in a straight line in all three cases, giving a clear indi-
cation of complexity. See Table 5.13 for regression results.
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Figure 5.7: Smallest norms in normal Sobol’ grids for which local consistency
could not be satisfied and proportion of points in the boundary region with 20ηd

nearest neighbours. Compare Figure 4.2.
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Figure 5.8: Norms of the smallest points in low distortion grids for which local
consistency could not be satisfied and proportion of points in the boundary region
with 20ηd nearest neighbours. Compare Figure 4.2.
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