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Abstract

We propose a method for pricing high-dimensional American options on
an irregular grid; the method involves using quadratic functions to approx-
imate the local effect of the Black-Scholes operator. Once such an approx-
imation is known, one can solve the pricing problem by time stepping in
an explicit or implicit manner. We study stability of the method in two di-
mensions, and find that the grid structure is important in providing a stable
approximation to the operator.
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1 Introduction

Recent literature tends to support the widely-held belief that pricing American op-
tions in a high-dimensional setting is a highly nontrivial task. Methods proposed
by Carrière [5], Longstaff and Schwartz [9], Rogers [11] and Haugh and Kogan
[7] give good results in many situations, but are sensitive to the choice of ba-
sis. Berridge and Schumacher [2, 3, 4]) and Bally and Pagès [1] propose methods
which do not require the choice of a basis.

The difficulty with primal methods in a high-dimensional problem is deter-
mination of the expected continuation value. This is essentially an integral with
respect to the risk neutral process and the optimal stopping rule. The latter poses
the most difficulty since it is itself a high-dimensional function which must be ap-
proximated.

In classical finite difference methods the expected continuation value is deter-
mined through an approximation to the operator on a regular grid. In the irregular
grid setting this approximation becomes more difficult, mainly due to instabilities
in the approximation. The construction of stable approximations will be investi-
gated in this paper through using a local polynomial representation of the value
function.

Once a stable approximation is found, one has access to finite difference tech-
niques for time stepping, including the explicit, Crank-Nicolson and implicit meth-
ods. In general, these θ-methods lead to linear complementarity problems (LCPs),
which can be solved using the projected successive overrelaxation (PSOR) method
introduced by Cryer [6] or by linear programming, for example.

It is of interest to note the connection between the methods presented in this
paper and the literature on mesh-free methods (for an overview see Liu [8]). In
particular the method of moving least squares provides an approach to partial dif-
ferential equation (PDE) solution which is similar to that found in this paper in that
an irregular grid is used on which to calculate local quadratic approximations. The
essential difference is that our approach does not use weak forms, and thus does
not require integration of basis functions. It seems the method we present is more
sensitive to the structure of the grid, producing unstable approximations in some
circumstances.

The remainder of the paper is organised as follows. In Section 2 we introduce
the setting, the problem and a review of irregular grid methodology. Section 3
introduces the local quadratic approximation method; Sections 4 and 5 present re-
sults using this method for regular and irregular grids respectively. Finally Section
6 presents conclusions and ideas for future research.
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2 The pricing problem

2.1 Formulation

We consider an American option at time t on d underlying assets with values
X(s) = (X1(s), . . . , Xd(s))

′ at time s ∈ [t, T ], payoff ψ(X(s), s) and expiry
T . The assets follow the diffusion

dXi(s) = µi(X(s), s)ds + σi(X(s), s)dW (s) (1)

for i = 1, . . . , d and where X(t) is known, dW (s) are the increments of a standard
d-dimensional Brownian motion and the µi and σi are measurable with respect to
the filtration generated by the Brownian motion.

The price of an American option, giving the long party the right to receive the
payoff ψ(X(s), s) at any time s ∈ [t, T ], is given in the primal formulation as

v(X(t), t) = sup
τ∈T

E
Q

X(t)

(

e−r(τ−t)ψ(X(τ))
)

(2)

where T is the set of stopping times on [t, T ] with respect to the natural filtration,
the expectation is taken with respect to the risk-neutral measure Q, and the initial
value is X(t).

This can be reformulated as the following complementarity problem














∂v
∂t

+ Lv ≤ 0

v − ψ ≥ 0
(

∂v
∂t

+ Lv
)

(v − ψ) = 0

(3)

for (x, s) ∈ Rd × [t, T ] with the terminal condition v(·, T ) ≡ ψ(·, T ). Here L is
the Black-Scholes operator implied by the diffusion.

2.2 Discretisation

One way to discretise the complementarity formulation is to sample the state space.
This is the approach taken in finite difference methods, however the traditional
grid approach is not suitable for high-dimensional problems due to the curse of
dimensionality. We thus consider an irregular sampling of the state space on which
to approximate the problem.

Suppose now that we are given some sampling of the state space, X = (x1, . . . , xn)
⊂ Rd. We do not concentrate on the properties of the sampling, but we may as-
sume it is a sequence of low discrepancy in the sense of Niederreiter [10] or low
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distortion in the sense of Bally and Pagès [1]. These quantities may be best mea-
sured in terms of the terminal distribution of the process, which in our setting is a
multivariate normal distribution.

Having taken such a sample we approximate the complementarity problem (3)
by the new complementarity problem















dv
dt

+Av ≤ 0

v − ψ ≥ 0
(

dv
dt

+Av
)′

(v − ψ) = 0

(4)

where v is an n-vector and the ith component of ψ is ψ(xi, t). The matrixA should
approximate L on our grid X in that

(Av(t))i ' (Lv)(xi, t). (5)

Let us write v as v = (v(1) · · · v(n))′ where each v(i) : [t, T ] → R.

2.3 Nearest neighbours

Just as in traditional finite difference methods, a great deal of efficiency can be
gained by only considering local interactions. We thus use nearest neighbour sets
on which to construct local approximations to L.

The kth-nearest neighbour function Nk,X : {1, . . . , n} → {1, . . . , n} for some
set of points X is then defined as

Nk,X (i) , {j : ‖x− xi‖ ≤ ‖xj − xi‖ for exactly k different x, x ∈X} .

Note that N1,X (i) = i, that is xi is the nearest neighbour of xi in this definition.
Further let Ni = {Nj,X (i)}j=1,...,k be the ordered set of the k nearest neighbours

for each i. For brevity we denote the jth nearest neighbour of point xi as x(j)
i ≡

Nj,X (i).
In addition to considering other points as neighbours, we may also allow bound-

ary points to be neighbours. Thus in some situations we use the extended nearest
neighbour function Nk,X : {1, . . . , n} → {1, . . . , n+ 2d} where the 2d extra
points are projections of xi onto the boundaries.

3 Methodology

3.1 Approximating the differential operator

We consider now the construction of a direct approximation to A with respect to
a grid X . Let us form this approximation by assuming that v is approximately
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locally quadratic about each grid point xi. This is justified since we know that v
is almost everywhere continuously differentiable, and convenient since we wish to
approximate the effect of the second order operator L.

We write L as

L = α0,0 +

d
∑

j=1

αj,0
∂

∂xj
+

d
∑

j=1

j
∑

k=1

αj,k
∂2

∂xj∂xk

for some αj,k ∈ R.
Now let us introduce the quadratic interpolant v̄(i) : Rd → R at grid point xi

as

v̄(i)(x) = a
(i)
0,0 +

d
∑

j=1

a
(i)
j,0xj +

d
∑

j=1

j
∑

k=1

a
(i)
j,kxjxk (6)

where the a(i)
j,k are chosen so that v̄(i)(x

(j)
i )(s) = v(j)(t) for all s ∈ [t, T ] whenever

j ∈ Ni. By finding this interpolant for each i we have an approximation for v(x, t)
in a neighbourhood of all our grid points. Letting η = 1

2

(

d2 + 3d+ 2
)

(the num-
ber of parameters in each v̄(i)), we can determine a unique quadratic interpolant
for each i. Replacing the subscript i on x by the vector index, the coefficients of
the ith interpolant are

a(i)(t)

≡
(

a
(i)
0,0, a

(i)
1,0, . . . , a

(i)
d,0, a

(i)
1,1, a

(i)
2,1, . . . , a

(i)
d,d

)′

=











1
...
1

x
(1)
1 · · · x

(1)
d

...
...

x
(η)
1 · · · x

(η)
d

(

x
(1)
1

)2
x

(1)
2 x

(1)
1 · · ·

(

x
(1)
d

)2

...
...

...
(

x
(η)
1

)2
x

(η)
2 x

(η)
1 · · ·

(

x
(η)
d

)2











−1






v
(i)
1
...

v
(i)
η







≡
(

M (i)
)−1

v(i)(t) (7)

assuming that the matrix M (i) is nonsingular.
Now let us consider the effect of the operator L on v̄(i). First note that

∂v̄(i)

∂xj
= a

(i)
j,0 +

d
∑

k=1

a
(i)
j,k(1 + δj,k)x

(i)
k

∂2v̄(i)

∂xj∂xk
= a

(i)
j,k(1 + δj,k)
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where δj,k is the Kronecker delta function. Hence the effect is

(Lv̄(i))(x(i)) = α0,0v̄
(i) +

d
∑

j=1

αj,0
∂v̄(i)

∂xj
+

d
∑

j=1

j
∑

k=1

αj,k
∂2v̄(i)

∂xj∂xk

= α0,0







a
(i)
0,0 +

d
∑

j=1

a
(i)
j,0x

(i)
j +

d
∑

j=1

j
∑

k=1

a
(i)
j,kx

(i)
j x

(i)
k







+
d

∑

j=1

αj,0

{

a
(i)
j,0 +

d
∑

k=1

a
(i)
j,k(1 + δj,k)x

(i)
k

}

+
d

∑

j=1

j
∑

k=1

αj,k

{

a
(i)
j,k(1 + δj,k)

}

= a
(i)
0,0 {α0,0} +

d
∑

j=1

a
(i)
j,0

{

α0,0x
(i)
j + αj,0

}

+

d
∑

j=1

j
∑

k=1

a
(i)
j,k

{

α0,0x
(i)
j x

(i)
k + (1 + δj,k)αj,k +

(

αk,0x
(i)
j + αj,0x

(i)
k

)}

or in matrix form

(Lv̄(i))(x(i)) =





































α0,0

α1,0 + α0,0x
(i)
1

...

αd,0 + α0,0x
(i)
d

α0,0

(

x
(i)
1

)2
+ 2α1,0x

(i)
1 + 2α1,1

(

α0,0x
(i)
2 x

(i)
1 + α2,1

)

+
(

α1,0x
(i)
2 + α2,0x

(i)
1

)

...

α0,0

(

x
(i)
d

)2
+ 2αd,d + 2αd,0x

(i)
d





































′


































a
(i)
0,0

a
(i)
1,0
...

a
(i)
d,0

a
(i)
1,1

a
(i)
2,1
...

a
(i)
d,d



































= β(α, x(i))′a(i)(t)

and substituting for a and evaluating at x(i) we have

(Lv̄(i))(x(i)) = β(α, x(i))′
(

M (i)
)−1

v(i)(t)

= A(i)v(i)(t) (8)
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where A(i) is a row vector of length η which we can think of as containing the
elements of the ith row of some matrix A which defines the constrained system of
ordinary differential equations (4).

In order to unify these n equations into the form of Equation 4, introduce an
operator S : Rη → Rn which stretches and rearranges the η-vector v(i) so that
it becomes an n-vector with the entries placed in positions corresponding to the
nearest neighbours of x(i).

SX (x, i) ,
(

0, . . . , 0, xj1 , 0, . . . , 0, xj2 , 0, . . . , 0, xjη , 0, . . . , 0
)

where xjk
is in the Nk,X (i)th position (in particular xi is in the ith position). Now

let

A ,







SX (A(1), 1)
...

SX (A(n), n)






. (9)

3.2 Weighted least squares

As a simple extension to the above one may consider a least squares regression us-
ing ξ > η nearest neighbours. As a further extension one may consider weighting
the points in the regression according to their distance from xi.

Letting M (i) be the matrix in (7), but now with ξ rows. Furthermore let Λ
denote a diagonal weighting matrix, yet to be specified. The least squares criterion
then gives

a(i)(t) =
(

M (i)′Λ2M (i)
)−1

M (i)′Λv(i)(t). (10)

Now, as in (8), we have the approximation

A(i) , β(α, x(i))′
(

M (i)′Λ2M (i)
)−1

M (i)′Λ (11)

and we define A from the A(i) as in (9).

3.3 Time stepping

We can now discretise time using a θ-method. Let tk = kT
K

for some δt, k ∈
{0, . . . ,K} and θ ∈ [0, 1], which can be thought of as the implicitness.

In the unconstrained case we form the finite difference equation

vk+1 − vk

δt
+ (1 − θ)Avk+1 + θAvk = 0
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where vk ≡ v(tk). Then the set of equations we have to solve at each time step is

(I + δt(1 − θ)A) vk+1 = (I − δtθA) vk

where the initial conditions are given by vK = ψ(x, T ).
In the constrained case, we obtain the complementarity problem







(I + (1 − θ)Aδt) vk+1 − (I − θAδt) vk ≤ 0
vk − ψ ≥ 0

((I + (1 − θ)Aδt) vk+1 − (I − θAδt) vk)
′ (vk − ψ) = 0

(12)

which can be solved using Cryer’s PSOR [6] or linear programming, for example.

3.4 Stability

The stability of the time stepping algorithm depends crucially on the eigenvalues
of the matrix A. In particular, the stability of the time stepping method in the
unconstrained case requires that real eigenvalues of A must be nonpositive. The
mapping of eigenvalues from the matrix A to the time stepping matrix is shown in
Figure 3.1.

Algebraically, stability can be guaranteed through the diagonal dominance con-
dition

|aii| ≥
∑

j 6=i

|aij | (13)

where aii ≤ 0 for all i. This condition ensures the real parts of the eigenvalues of
A are negative, a direct consequence of the Gershgorin disc theorem. Since row
sums are zero, this also implies that off-diagonal entries must be nonnegative. The
condition (13) is not necessary for stability however.

4 Application to regular grid

Before applying the discretisation method in its generality, we would first like to
investigate its behaviour on regular grids. In particular it is of interest to compare
the irregular grid method to standard finite difference methods. In the following
analysis we consider only internal grid elements, and not boundary elements.

4.1 One dimension

The standard finite difference method on a regular grid approximates the first and
second derivatives as

∂v

∂x
'
vi+1 − vi−1

2δx
,

∂2v

∂x2
'
vi+1 − 2vi + vi−1

δx2
(14)
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−1/δ t

1

1

1

1

1

1

1/δ t

Figure 3.1: Mapping of eigenvalues from generator matrix A to time stepping
matrix M in the explicit, Crank-Nicolson and implicit schemes respectively. The
shaded areas correspond to stable eigenvalues.
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thus leading to the standard finite difference matrix A which has nonzero compo-
nents in row i of Ai where

Ai =
(α11

δ2
−
α10

2δ
, α00 − 2

α11

δ2
,
α11

δ2
+
α10

2δ

)

. (15)

This implies the approximation

(Lv) (xi) ' Ai





vi−1

vi

vi+1



 . (16)

Consider now the irregular grid approximation introduced in the previous sec-
tion. Since we are using a regular grid, let us choose our x to be multiples of some
δ and let xi = iδ for all i. Making use of three nearest neighbours, we then have

M (i) =







1 (i− 1)δ (i− 1)2δ2

1 iδ i2δ2

1 (i+ 1)δ (i+ 1)2δ2






(17)

and thus our approximation to L at xi is

A(i) = β(α, x(i))′
(

M (i)
)−1

=







α00

α10 + α00iδ

α00i
2δ2 + 2α10iδ + 2α11







′ 





1
2 i(i + 1) 1 − i2 1

2 i(i− 1)

− 1
2δ

(2i+ 1) 1
2δ
i 1

2δ
(1 − 2i)

1
2δ2 − 1

δ2

1
2δ2







=
(α11

δ2
−
α10

2δ
, α00 − 2

α11

δ2
,
α11

δ2
+
α10

2δ

)

.

Hence we see that for a regular grid in one dimension the method of the previous
section is equivalent to the standard finite difference method.

4.2 Two dimensions

We now compare the irregular grid method to the standard finite difference method
on a regular grid in two dimensions. For the finite difference scheme, in addition
to the derivative approximations given above for one dimension we introduce the
standard cross-derivative approximation (see for example Wilmott [12])

∂2v

∂x1∂x2
'
vi+1,j+1 − vi−1,j+1 − vi+1,j−1 + vi−1,j−1

4δx2
. (18)
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7 5 9

2 1 3

6 4 8

Table 4.1: Assignment of indices of v to neighbours.

In this case the ith row of the approximation matrix is

Ai = (α00 −
2(α11 + α22)

δ2
,−

α10

2δ
+
α11

δ2
,
α10

2δ
+
α11

δ2
, . . .

−
α20

2δ
+
α22

δ2
,
α20

2δ
+
α22

δ2
,
α12

4δ2
,−

α12

4δ2
,−

α12

4δ2
,
α12

4δ2
)

implying the approximation

(Lv) (xi) ' Ai





























vi,j

vi−1,j

vi+1,j

vi,j−1

vi,j+1

vi−1,j−1

vi−1,j+1

vi+1,j−1

vi+1,j+1





























. (19)

Pictorially, we present in Table 4.1 the way in which entries in the vector v
correspond to the points around vi,j .

Nine neighbours In order to compare the finite difference scheme to the irreg-
ular grid method, we consider nine nearest neighbours in the approximation. We
thus use the least squares approach and denote xi,j = (iδ, jδ). The resulting ap-
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proximation is

A(i) =





































































5
9α00 −

2(α11 + α22)

3δ2

2
9α00 +

2α11 − α10δ − 4α22

6δ2

2
9α00 +

2α11 + α10δ − 4α22

6δ2

2
9α00 +

2α22 − α20δ − 4α11

6δ2

2
9α00 +

2α22 + α20δ − 4α11

6δ2

−1
9α00 +

4(α11 + α22) + 2(−α20 − α10)δ + 3α12

12δ2

−1
9α00 +

4(α11 + α22) + 2(α20 − α10)δ − 3α12

12δ2

−1
9α00 +

4(α11 + α22) + 2(−α20 + α10)δ − 3α12

12δ2

−1
9α00 +

4(α11 + α22) + 2(α20 + α10)δ + 3α12

12δ2





































































′

. (20)

One can view this approximation as a weighted finite difference method, with
the weightings being given in Tables 4.2–4.7. Note that the only case in which the
weights are the same is for α12; in all other cases the weights for the nine neighbour
irregular grid scheme have less concentrated weights than in the finite difference
method.

0 0 0

0 1 0

0 0 0

1

9

-1 2 -1

2 5 2

-1 2 -1

Table 4.2: Weights for α00, for finite difference and irregular grid respectively.

Six neighbours Alternatively if we use six nearest neighbours, which is the min-
imum required to find a quadratic interpolant, we must make a choice between the
diagonally located neighbours. Focusing on the points xi,j ,xi,j−1,xi,j+1,xi−1,j ,xi+1,j

12



1

2δ

0 0 0

-1 0 1

0 0 0

1

6δ

-1 0 1

-1 0 1

-1 0 1

Table 4.3: Weights for α10, for finite difference and irregular grid respectively.

1

2δ

0 1 0

0 0 0

0 -1 0

1

6δ

1 1 1

0 0 0

-1 -1 -1

Table 4.4: Weights for α20, for finite difference and irregular grid respectively.

and xi+1,j+1 we find that

A(i) =





































α00 −
2(α11 + α22) − α12

δ2

−
α10

2δ
+
α11 − α12

δ2
α10

2δ
+
α11

δ2

−
α20

2δ
+
α22 − α12

δ2
α20

2δ
+
α22

δ2
α12

δ2





































′

. (21)

We thus can find no equivalence between the irregular grid method and the
standard finite difference method on a two dimensional regular grid, in contrast
to the one dimensional case. One can however see the irregular grid method as a
modified finite difference scheme in which different weights are used in the finite
difference approximations.

We shall see in the Section 5 that the local quadratic approximation method
leads to a stable scheme when six neighbours are used as in (21), but an unstable
scheme when nine neighbours are used as in (20).
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1

δ2

0 0 0

1 -2 1

0 0 0

1

3δ2

1 -2 1

1 -2 1

1 -2 1

Table 4.5: Weights for α11, for finite difference and irregular grid respectively.

1

δ2

0 1 0

0 -2 0

0 1 0

1

3δ2

1 1 1

-2 -2 -2

1 1 1

Table 4.6: Weights for α22, for finite difference and irregular grid respectively.

5 Experimental results

In order to solve the complementarity problem related to the American option pric-
ing problem, we must find a stable and convergent method for time stepping. As
outlined in Section 3.4, a necessary condition for obtaining a stable time stepping
matrix is that the real eigenvalues of A are nonpositive.

Having ascertained that A will lead to a stable time stepping scheme, it also
remains to check the convergence conditions for the LCP solution method.

5.1 Grids on the unit cube in R2

We first consider grids on the region Ω = [0, 1]2 ⊂ R2. This is a natural place to
start since we know that finite difference schemes using regular grids lead to stable
A matrices in this case. Boundaries are allowed to be neighbours in this setting.

We present in Figures 5.1–5.7 point sets of size approximately 500 and the
eigenvalues of the corresponding Amatrix obtained using the irregular grid method
(plotted in the complex plane).

In the case of the Sobol’ grid one can in practise observe which points are caus-
ing instability by examining the eigenvector corresponding to the eigenvalues with
positive real part. The instability can often be resolved by changing the neighbour
configuration, in particular so that neighbours are well-distributed about the point.
No systematic method was found to perform this stabilisation however.

Note that the least squares scheme using nine neighbours was not stable, de-
spite the fact that it uses the same points as in the regular finite difference scheme.
It was also found that none of the grids considered above leads to a stable A when
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Figure 5.1: Points and eigenvalues of A for regular grid with 529 interior points
and using 6 neighbours - stable. Note that the vertical scale in the eigenvalue plot
is close to zero.
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Figure 5.2: Points and eigenvalues of A for regular grid with 529 interior points
and using 9 neighbours - unstable.
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Figure 5.3: Points and eigenvalues of A for triangular grid with 546 interior points
and using 6 neighbours - stable.
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Figure 5.4: Points and eigenvalues of A for hexagonal grid with 512 interior points
and using 6 neighbours - stable.
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Figure 5.5: Points and eigenvalues of A for uniform pseudo-random grid with 500
interior points and using 6 neighbours - unstable.
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Figure 5.6: Points and eigenvalues of A for Sobol’ grid with 500 interior points
and using 6 neighbours - unstable.
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1

4δ2

-1 0 1

0 0 0

1 0 -1

1

4δ2

-1 0 1

0 0 0

1 0 -1

Table 4.7: Weights for α12, for finite difference and irregular grid respectively.
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Figure 5.7: Points and eigenvalues of A for low distortion grid with 500 interior
points and using 6 neighbours - stable.

considering local least squares fits over 7 neighbours.

5.2 Normally distributed grids in R2

Grids constructed on the unit cube are not optimal for the application under consid-
eration. The main reason for this is that they are not representative of the regions
of space that are likely to be visited by the stochastic process introduced in (1).

A further problem with using a grid on the unit cube is that neither Dirichlet
nor Neumann boundary conditions are known. Approximate conditions may be
specified, thus adding an extra source of error to the computed solution.

A natural grid choice for our problem would be one that is related to the pro-
cess, and in this case a normally distributed grid seems appropriate. This also
alleviates the second problem mentioned, in that a normally distributed grid cov-
ers Rd asymptotically, and so boundary conditions have a vanishing effect on the
solution.

Given the previous results of grids on the unit cube, we choose to focus on low
distortion grids in the following. We generate a low distortion grid with respect
to the standard normal density in R2, and apply the irregular grid method to it to
obtain the matrix A. We then examine the eigenvalues of A.
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Figure 5.8: Points and eigenvalues of A for low distortion normal grid with 500
points and using r = ∞ and 6 neighbours - unstable, max(<(λ)) = 2.54.
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Figure 5.9: Points and eigenvalues of A for low distortion normal grid with 500
points and using r = 3.0 and 6 neighbours - unstable, max(<(λ)) = 2.51.

Since there are no natural boundary points when dealing with normally dis-
tributed grids, we choose a radius outside which all points are considered to be
boundary points. In particular we consider the radii r = ∞, 3.0, 2.5 and 2.0. In
general one expects the eigenvalues to be different for different choices of r, and
in particular that A should only be stable for smaller choices of r.

The results are presented in Figures 5.8 – 5.11. The maximum real parts of the
eigenvalues are given in the captions. In this case the transition to stability occurs
when r is between 3.0 and 2.5.
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Figure 5.10: Points and eigenvalues of A for low distortion normal grid with 500
points and using r = 2.5 and 6 neighbours - stable, max(<(λ)) = 0.
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Figure 5.11: Points and eigenvalues of A for low distortion normal grid with 500
points and using r = 2.0 and 6 neighbours - stable, max(<(λ)) = 0.
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6 Conclusions

We presented a method for approximating a differential operator on an irregular
grid. The method uses local polynomial interpolants to construct derivative approx-
imations. We analysed the stability of the operator approximation using different
grid and boundary configurations.

In one dimension, we showed that the method is equivalent to the standard
finite difference method.

Our main finding in two dimensions was that grids with a regular local structure
are more likely to lead to stable approximations. Thus square, triangular and hexag-
onal grids lead to stable approximations, but pseudo-random and quasi-random
grids did not. Low distortion grids as used in Bally and Pagès [1] were also found
to lead to stable approximations. We were able to induce stability in the case of a
low discrepancy grid by altering neighbour configurations so that the neighbours
were more uniformly distributed in an angular sense. For a low distortion grid
adapted to the normal distribution, we found that the approximations constructed
were unstable when the boundary radius was too large, but stable for smaller radii.

Summarised, this study indicates that instabilities in the approximation are a
consequence of the local roughness of points in the grid, and of boundary effects.

The hurdle in extending this work to higher dimensions is stability, in particu-
lar more research is required either in the direction of determining sufficient condi-
tions for stability on arbitrary grids or towards modifications of the approximation
method.

The literature on mesh-free methods provides one solution in the form of the
moving least squares method, where one attempts to integrate a particular inter-
polant, as opposed to working with derivatives of the interpolants. The moving
least squares method seems to be less susceptible to instabilities than the present
method.
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