1,963 research outputs found

    Enhanced Value Stream Mapping for Improving Turnaround Process Efficiency in Oil and Gas Industry

    Get PDF
    Turnaround maintenance (TAM) is one of the most important maintenance strategies to minimise the risk of production losses. Managing these TAM projects is challenging as for its complexity due to the involvement of massive man powers and financial resources. The aim of this research is to develop an enhanced-Value Stream Mapping (enhanced-VSM) framework to effectively improve TAM efficiency. Four theoretical enhancements are made to the conventional VSM method and validation results show the successful implementation

    Total Ownership Cost Modeling Of Technology Adoption Using System Dynamics: Implications For Erp Systems

    Get PDF
    Investment in new technologies is considered by firms as a solution to improve their productivity, product and service quality and their competitive advantages in the global market. Unfortunately, not all technology adoption projects have met their intended objectives. The complexity of technology adoption along with little consideration of the long term cost of the technology, are among the factors that challenge companies while adopting a new technology. Companies often make new technology adoption decision without enough attention to the total cost of the technology over its lifecycle. Sometimes poor decision making while adopting a new technology can result in substantial recurring loss impacts. Therefore, estimating the total cost of the technology is an important step in justifying the technology adoption. Total Ownership Cost (TOC) is a wildly-accepted financial metric which can be applied to study the costs associated with the new technology throughout its lifecycle. TOC helps companies analyze not only the acquisition and procurement cost of the technology, but also other cost components occurring over the technology usage and service stage. The point is that, technology adoption cost estimation is a complex process involving consideration of various aspects such as the maintenance cost, technology upgrade cost and the cost related to the human-resource. Assessing the association between the technology characteristics (technology upgrades over its life cycle, compatibility with other systems, technology life span, etc) and the TOC encompasses a high degree of complexity. The complexity exists because there are many factors affecting the cost over time. Sometimes decisions made today can have long lasting impact on the system costs and there is a lag between the time the decision is taken and when outcomes occur. iv An original contribution of this dissertation is development of a System Dynamics (SD) model to estimate the TOC associated with the new technology adoption. The SD model creates casual linkage and relationships among various aspects of the technology adoption process and allows decision makers to explore the impact of their decisions on the total cost that the technology brings into the company. The SD model presented in this dissertation composes of seven sub-models including (1) technology implementation efforts, (2) workforce training, (3) technology-related workforce hiring process, (4) preventive and corrective maintenance process, (5) technology upgrade, (6) impact of technology on system performance and (7) total ownership cost sub model. A case study of Enterprise Resource Planning (ERP) system adoption has been used to show the application of the SD model. The results of the model show that maintenance, upgrade and workforce hiring costs are among the major cost components in the ERP adoption case study presented in Chapter 4. The simulation SD model developed in this dissertation supports trade-off analysis and provides a tool for technology scenarios evaluation. The SD model presented here can be extended to provide a basis for developing a decision support system for technology evaluation

    Using Overall Equipment Effectiveness for Manufacturing System Design

    Get PDF
    Different metrics for measuring and analyzing the productivity of manufacturing systems have been studied for several decades. The traditional metrics for measuring productivity were throughput and utilization rate, which only measure part of the performance of manufacturing equipment. But, they were not very helpful for “identifying the problems and underlying improvements needed to increase productivity” [1]. During the last years, several societal elements have raised the interest in analyze the phenomena underlying the identification of productive performance parameters as: capacity, production throughput, utilization, saturation, availability, quality, etc. This rising interest has highlighted the need for more rigorously defined and acknowledged productivity metrics that allow to take into account a set of synthetic but important factors (availability, performance and quality) [1]. Most relevant causes identified in literature are: The growing attention devoted by the management to cost reduction approaches [2] [3]; The interest connected to successful eastern productions approaches, like Total Productive Maintenance [4], World Class Manufacturing [5] or Lean production [6]; The importance to go beyond the limits of traditional business management control system [7]; For this reasons, a variety of new performance concepts have been developed. The total productive maintenance (TPM) concept, launched by Seiichi Nakajima [4] in the 1980s, has provided probably the most acknowledged and widespread quantitative metric for the measure of the productivity of any production equipment in a factory: the Overall Equipment Effectiveness (OEE). OEE is an appropriate measure for manufacturing organizations and it has being used broadly in manufacturing industry, typically to monitor and control the performance (time losses) of an equipment/work station within a production system [8]. The OEE allows to quantify and to assign all the time losses, that affect an equipment whilst the production, to three standard categories. Being standard and widely acknowledged, OEE has constituted a powerful tool for production systems performance benchmarking and characterization, as also the starting point for several analysis techniques, continuous improvement and research [9] [10]. Despite this widespread and relevance, the use of OEE presents limitations. As a matter of fact, OEE focus is on the single equipment, yet the performance of a single equipment in a production system is generally influenced by the performance of other systems to which it is interconnected. The time losses propagation from a station to another may widely affect the performance of a single equipment. Since OEE measures the performance of the equipment within the specific system, a low value of OEE for a given equipment can depend either on little performance of the equipment itself and/or time losses propagation due to other interconnected equipments of the system. This issue has been widely investigated in literature through the introduction of a new metric: the Overall Equipment Effectiveness (OTE), that considers the whole production system as a whole. OTE embraces the performance losses of a production system both due to the equipments and their interactions. Process Designers need usually to identify the number of each equipments necessary to realize each activity of the production process, considering the interaction and consequent time losses a priori. Hence, for a proper design of the system, we believe that the OEE provides designer with better information on each equipment than OTE. In this chapter we will show how OEE can be used to carry out a correct equipments sizing and an effective production system design, taking into account both equipment time losses and their propagation throughout the whole production system. In the first paragraph we will show the approach that a process designer should face when designing a new production system starting from scratch. In the second paragraph we will investigate the typical time-losses that affect a production system, although are independent from the production system itself. In the third part we will define all the internal time losses that need to be considered when assessing the OEE, along with the description of a set of critical factors related to OEE assessment, such as buffer-sizing and choice of the plant layout. In the fourth paragraph we will show and quantify how time losses of a single equipment affects the whole system and vice-versa. Finally, we will show through the simulation some real cases in which a process design have been fully completed, considering both equipment and time losses propagation

    Feasibility study of an Integrated Program for Aerospace-vehicle Design (IPAD) system. Volume 6: Implementation schedule, development costs, operational costs, benefit assessment, impact on company organization, spin-off assessment, phase 1, tasks 3 to 8

    Get PDF
    A baseline implementation plan, including alternative implementation approaches for critical software elements and variants to the plan, was developed. The basic philosophy was aimed at: (1) a progressive release of capability for three major computing systems, (2) an end product that was a working tool, (3) giving participation to industry, government agencies, and universities, and (4) emphasizing the development of critical elements of the IPAD framework software. The results of these tasks indicate an IPAD first release capability 45 months after go-ahead, a five year total implementation schedule, and a total developmental cost of 2027 man-months and 1074 computer hours. Several areas of operational cost increases were identified mainly due to the impact of additional equipment needed and additional computer overhead. The benefits of an IPAD system were related mainly to potential savings in engineering man-hours, reduction of design-cycle calendar time, and indirect upgrading of product quality and performance

    Application of Optimization in Production, Logistics, Inventory, Supply Chain Management and Block Chain

    Get PDF
    The evolution of industrial development since the 18th century is now experiencing the fourth industrial revolution. The effect of the development has propagated into almost every sector of the industry. From inventory to the circular economy, the effectiveness of technology has been fruitful for industry. The recent trends in research, with new ideas and methodologies, are included in this book. Several new ideas and business strategies are developed in the area of the supply chain management, logistics, optimization, and forecasting for the improvement of the economy of the society and the environment. The proposed technologies and ideas are either novel or help modify several other new ideas. Different real life problems with different dimensions are discussed in the book so that readers may connect with the recent issues in society and industry. The collection of the articles provides a glimpse into the new research trends in technology, business, and the environment

    Impact of variation orders on performance of repetitive residential projects in Egypt

    Get PDF
    The construction industry is one of the most active sectors of the Egyptian economy. This industry links with other sectors such as manufacturing of steel. One of the most projects that are continuing to grow rapidly in Egypt is the repetitive residential units due to the expansion of population in Egypt. The composition of the Egyptian population is a major contributor to the booming of the repetitive residential units sector in Egypt. This is because of more than half of the Egyptian population are under the age of 25. Construction projects contain complex operations that cannot be predicted. Also it is rare to find a construction project without changes. This leads to the issue of variation order. Variation orders cause time delay, cost overrun, quality defects, and other negative impacts. Moreover, variation orders lead to uncertain flow processes and increase of non value-adding activities which reduce the output value. This research aims to study the impact of variation orders on performance of repetitive residential units in Egypt by identifying the causes, impact on project performance and the associated non value-adding activities from the point of view of owners, consultants and contractors. A compiled list was prepared regarding variation orders causes, non value-adding activities and impact of variation orders. This was done through an extensive literature review. This compiled list was concluded and adapted to the Egyptian construction industry through seven semi-structured interviews. The interviewees commented according to their experiences to the Egyptian context. Three further interviews with experts were conducted to ensure and confirm the results of the list that has been reached. Subsequently, a questionnaire survey was submitted to the participants and 76 responses were received including 23 owners, 24 consultants and 29 contractors. The data received was analyzed and the importance index was used for ranking. The analyzed data presents the result of each party independently. The degree of agreement was measured between different parties and it was noticeable that some conflicting points of view between the owner and the contractor, while good correlation was found between the owner and the consultant. The overall results indicated that the most three important causes of variation orders for the repetitive residential units in Egypt are change of plans or scope by owner, change of schedule sequence by owner and change in specifications by owner. Moreover, the most significant impacts of variation orders were time overrun, disputes between parties to the contract and professional reputation of one or more parties adversely affected. The study also found that the top five non value-adding activities with variation orders are waiting due to resources problem, rework due to varied works, waiting due to ignorance of specifications, frequent design changes and idling due to the shortage of skilled labo

    Evaluating Process Improvement Courses of Action Through Modeling and Simulation

    Get PDF
    Quantifying an expected improvement when considering moderate-complexity changes to a process is time consuming and has potential to overlook stochastic effects. By modeling a process as a Numerical Design Structure Matrix (NDSM), simulating the proposed changes, and evaluating performance, quantification can be rapidly accomplished to understand stochastic effects. This thesis explores a method to evaluate complex process changes within Six Sigma DMAIC process improvement to identify the most desirable outcome amongst several improvement options. A tool to perform the modeling and evaluation is developed. This process evaluation tool is verified for functionality, then is demonstrated against generic processes, a case study, and a real world Continuous Process Improvement event. The application of modeling and simulation to improve and control a process is found to be a positive return on investment under moderate complexity or continuous improvement events. The process evaluation tool is demonstrated to be accurate in prediction, scalable in complexity and fidelity, and capable of simulating a wide variety or evaluation types. Experimentation identifies the importance of understanding the evaluation criteria prior to “Measurement” in DMAIC, which increases the consistency of process improvement efforts

    Voyager spacecraft system. Preliminary design, volume A /book 4B of 4/ - Implementation plan

    Get PDF
    Voyager spacecraft construction scheduling and implementation planning - management, logistics, and auditing revie

    Improving project management planning and control in service operations environment.

    Get PDF
    Projects have evidently become the core activity in most companies and organisations where they are investing significant amount of resources in different types of projects as building new services, process improvement, etc. This research has focused on service sector in attempt to improve project management planning and control activities. The research is concerned with improving the planning and control of software development projects. Existing software development models are analysed and their best practices identified and these have been used to build the proposed model in this research. The research extended the existing planning and control approaches by considering uncertainty in customer requirements, resource flexibility and risks level variability. In considering these issues, the research has adopted lean principles for planning and control software development projects. A novel approach introduced within this research through the integration of simulation modelling techniques with Taguchi analysis to investigate ‗what if‘ project scenarios. Such scenarios reflect the different combinations of the factors affecting project completion time and deliverables. In addition, the research has adopted the concept of Quality Function Deployment (QFD) to develop an automated Operations Project Management Deployment (OPMD) model. The model acts as an iterative manner uses ‗what if‘ scenario performance outputs to identify constraints that may affect the completion of a certain task or phase. Any changes made during the project phases will then automatically update the performance metrics for each software development phases. In addition, optimisation routines have been developed that can be used to provide management response and to react to the different levels of uncertainty. Therefore, this research has looked at providing a comprehensive and visual overview of important project tasks i.e. progress, scheduled work, different resources, deliverables and completion that will make it easier for project members to communicate with each other to reach consensus on goals, status and required changes. Risk is important aspect that has been included in the model as well to avoid failure. The research emphasised on customer involvement, top management involvement as well as team members to be among the operational factors that escalate variability levels 3 and effect project completion time and deliverables. Therefore, commitment from everyone can improve chances of success. Although the role of different project management techniques to implement projects successfully has been widely established in areas such as the planning and control of time, cost and quality; still, the distinction between the project and project management is less than precise and a little was done in investigating different levels of uncertainty and risk levels that may occur during different project phase.United Arab Emirates Governmen

    Evolution of Ada technology in the flight dynamics area: Design phase analysis

    Get PDF
    The software engineering issues related to the use of the Ada programming language during the design phase of an Ada project are analyzed. Discussion shows how an evolving understanding of these issues is reflected in the design processes of three generations of Ada projects
    corecore