5,472 research outputs found

    Understanding the fine structure of electricity prices

    Get PDF
    This paper analyzes the special features of electricity spot prices derived from the physics of this commodity and from the economics of supply and demand in a market pool. Besides mean reversion, a property they share with other commodities, power prices exhibit the unique feature of spikes in trajectories. We introduce a class of discontinuous processes exhibiting a "jump-reversion" component to properly represent these sharp upward moves shortly followed by drops of similar magnitude. Our approach allows to capture—for the first time to our knowledge—both the trajectorial and the statistical properties of electricity pool prices. The quality of the fitting is illustrated on a database of major U.S. power markets

    Pricing average price advertising options when underlying spot market prices are discontinuous

    Get PDF
    Advertising options have been recently studied as a special type of guaranteed contracts in online advertising, which are an alternative sales mechanism to real-time auctions. An advertising option is a contract which gives its buyer a right but not obligation to enter into transactions to purchase page views or link clicks at one or multiple pre-specified prices in a specific future period. Different from typical guaranteed contracts, the option buyer pays a lower upfront fee but can have greater flexibility and more control of advertising. Many studies on advertising options so far have been restricted to the situations where the option payoff is determined by the underlying spot market price at a specific time point and the price evolution over time is assumed to be continuous. The former leads to a biased calculation of option payoff and the latter is invalid empirically for many online advertising slots. This paper addresses these two limitations by proposing a new advertising option pricing framework. First, the option payoff is calculated based on an average price over a specific future period. Therefore, the option becomes path-dependent. The average price is measured by the power mean, which contains several existing option payoff functions as its special cases. Second, jump-diffusion stochastic models are used to describe the movement of the underlying spot market price, which incorporate several important statistical properties including jumps and spikes, non-normality, and absence of autocorrelations. A general option pricing algorithm is obtained based on Monte Carlo simulation. In addition, an explicit pricing formula is derived for the case when the option payoff is based on the geometric mean. This pricing formula is also a generalized version of several other option pricing models discussed in related studies.Comment: IEEE Transactions on Knowledge and Data Engineering, 201

    Dynamic Asset Allocation With Event Risk

    Get PDF
    Major events often trigger abrupt changes in stock prices and volatility. We study the implications of jumps in prices and volatility on investment strategies. Using the event-risk framework of Duffie, Pan, and Singleton (2000), we provide analytical solutions to the optimal portfolio problem. Event risk dramatically affects the optimal strategy. An investor facing event risk is less willing to take leveraged or short positions. The investor acts as if some portion of his wealth may become illiquid and the optimal strategy blends both dynamic and buy-and-hold strategies. Jumps in prices and volatility both have important effects.

    When are static superhedging strategies optimal?

    Get PDF
    This paper deals with the superhedging of derivatives and with the corresponding price bounds. A static superhedge results in trivial and fully nonparametric price bounds, which can be tightened if there exists a cheaper superhedge in the class of dynamic trading strategies. We focus on European path-independent claims and show under which conditions such an improvement is possible. For a stochastic volatility model with unbounded volatility, we show that a static superhedge is always optimal, and that, additionally, there may be infinitely many dynamic superhedges with the same initial capital. The trivial price bounds are thus the tightest ones. In a model with stochastic jumps or non-negative stochastic interest rates either a static or a dynamic superhedge is optimal. Finally, in a model with unbounded short rates, only a static superhedge is possible

    The Impact of Overnight Periods on Option Pricing

    Get PDF
    This paper investigates the effect of closed overnight exchanges on option prices.During the trading day asset prices follow the literature s standard affine model which allows asset prices to exhibit stochastic volatility and random jumps.Independently, the overnight asset price process is modelled by a single jump.We find that the overnight component reduces the variation in the random jump process significantly.However, neither the random jumps nor the overnight jumps alone are able to empirically describe all features of asset prices.We conclude that both random jumps during the day and overnight jumps are important in explaining option prices, where the latter account for about one quarter of total jump risk.Derivative pricing;Jump diffusion;Stochastic volatility
    corecore