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When are Static Superhedging Strategies Optimal?

January 16, 2004

Abstract

This paper deals with the superhedging of derivatives on incomplete markets, i.e.
with portfolio strategies which generate payoffs at least as high as that of a given
contingent claim. The simplest solution to this problem is in many cases a static
superhedge, i.e. a buy-and-hold strategy generating an affine-linear payoff.

We study whether a superhedge can be achieved with less initial capital if we also
allow for dynamic trading strategies. The answer to this question depends on the
kind of the non-traded risk factors. Our main findings for a stochastic volatility
model with unbounded volatility show that there is always an optimal static su-
perhedge. Additionally, there may be infinitely many optimal dynamic superhedges
which require the same initial capital. In a model with stochastic jumps, it is always
either a dynamic or a static strategy which is optimal, but never both. In a model
with a stochastic short rate the properties of the interest rate process are also rele-
vant. When there are no bounds for the interest rate optimal superhedges (if they
exist) are always static, since the strategy will never contain an investment in the
money market account. On the other hand, when interest rates are either bounded
or non-negative either a static or a dynamic strategy is optimal, depending on the
respective contingent claim.

Our results have important implications for the design of superhedges as they show
under which conditions we can restrict the analysis to static strategies. There is no
such thing as the incomplete market when it comes to superhedging. Although in
continuous-time models the class of possible trading strategies contains much more
elements than just static strategies, there is a number of cases where buy-and-hold
is as good as or even superior to dynamic strategies.

Keywords: Incomplete markets, superhedging, stochastic volatility, stochastic jumps,
stochastic interest rates

JEL: G13



1 Introduction and Motivation

In this paper we consider the superhedging of path-independent European contingent

claims. A superhedge is a portfolio strategy which generates a payoff at least as high as

that of the claim. The key question is whether the cheapest superhedge, i.e. the cheapest

strategy generating such a payoff, is static or dynamic. A static superhedge generates an

affine-linear dominating payoff. In most cases it is easy to find and easy to implement.

Once we have found such a static superhedge we have the question arises whether there

is an even cheaper superhedge if we allow for dynamic trading strategies. The answer to

this question is also relevant for the determination of price bounds for contingent claims.

If a static superhedge is optimal, then the trivial model-independent price bounds cannot

be improved upon.

A number of papers are related to the topic of this study. The paper closest to ours

is certainly Cvitanic, Pham, and Touzi (1999) who analyze superhedging in stochastic

volatility (SV) models. They derive viscosity solutions to partial differential equations,

which then give the value process of the cheapest superhedge for the given claim. The

general topic of attainability of certain types of claims in incomplete market models

is treated in Branger, Esser, and Schlag (2003) and indirectly in Romano and Touzi

(1997). In the latter paper it is shown that in an SV model where volatility follows a

one-dimensional diffusion the market can be completed by any convex traded payoff. An

important application of the results derived in these papers concerns the bounds on prices

of contingent claims which are not attainable. In his seminal paper Merton (1973) derives

model-independent (and thus static) no-arbitrage bounds for the prices of European and

American options. Frey and Sin (1999) demonstrate that these trivial bounds for call

prices are the tightest ones for a large class of SV models, while Eberlein and Jacod

(1997) obtain a similar result when the stock price is driven by a Lévy process.

In this paper we investigate the superhedging of European path-independent claims

in a Markovian setup. Our proofs concerning the optimality of static or dynamic strategies

rely on the explicit construction of the optimal superhedge. We derive restrictions for the
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optimality of a strategy, that is we derive conditions a given strategy has to satisfy to be a

sound candidate for a superhedge. As an example consider the case of a stochastic interest

rate (SI) model with a non-negative short rate, like the short rate model of Cox, Ingersoll,

and Ross (1985). If interest rates can go to infinity, we will not take a short position in

the money market account since such a position could basically create an infinite liability.

The restrictions for a sound superhedging strategy in the respective model trans-

late into some optimal dominating payoff, which generally characterizes the cheapest

superhedge for a given claim. The replicating strategy for this dominating payoff in some

worst-case model then produces a superhedge. The intuition for this is that we construct a

hedging strategy for the claim under the worst-case scenario so that in any other scenario

the strategy never requires an additional infusion of cash, but rather generates a cash

outflow in some states of the world.

Our paper contributes to the existing literature in several ways. To the best of our

knowledge there has been no paper which analyzes different sources of incompleteness,

i.e. we study markets where incompleteness is caused by either SV, stochastic jumps (SJ),

or SI (and, ultimately, also by all these factors simultaneously). The key finding here is

that it is very important for the optimality of static and dynamic strategies which risk

factors are non-traded. The structure of the superhedge, in particular the issue whether

the optimal superhedge is static or dynamic, depends on both the model and on the claim

under consideration. This will also be demonstrated by means of examples.

While our basic results for the SV economy are the same as those derived by Cvitanic,

Pham, and Touzi (1999), we take a different approach to the proofs with a direct focus on

stochastic and partial differential equations and their economic interpretation. We show

that with unbounded volatility there is always an optimal static superhedge, so dynamic

strategies do not offer an improvement over buy-and-hold. Depending on the claim the

superhedge may not be unique, in that in addition to the static superhedge there are also

dynamic superhedging strategies requiring the same initial investment. This is due to the

fact that the worst-case model in the SV setup is a degenerated one with no stochastic

movement. These findings extend the main result in Cvitanic, Pham, and Touzi (1999).
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For the sake of completeness, although we do not discuss this scenario in our paper, it

should be mentioned that when volatility is bounded as in Avellaneda, Levy, and Parás

(1995) the value of the superhedge is given by the solution to a Black-Scholes-Barenblatt

equation, and a static superhedge is in general not optimal.

In an economy characterized by stochastic jumps either a static or a dynamic super-

hedge is optimal for any given claim, but there will never be the case described above for

SV models that both types of superhedges can be optimal at the same time. Incomplete-

ness can also be introduced into a pricing model via a stochastic short rate. Although there

is by now a wide class of models with a complete market segment for interest sensitive

assets, like the Heath-Jarrow-Morton family of models, approaches with only a stochastic

short rate are still popular in equity option pricing. For example, the very general option

pricing model developed by Bakshi, Cao, and Chen (1997) contains interest rate risk as a

factor, and the stochastic behavior of the short rate is modeled by a square root process

suggested in Cox, Ingersoll, and Ross (1985). For the subject of superhedging the type

of short rate process assumed in the given model is of crucial importance. When interest

rates are unbounded, as it is the case in a Gaussian short model like the one proposed

by Vasicek (1977), only static superhedges where we just hold the stock are optimal.

The intuition for this result is that the superhedging strategy will contain neither a long

nor a short position in the money market account, since the short position can drop in

value to minus infinity, and the long position cannot guarantee a positive payoff. With

non-negative interest rates, a long position in the money market account will ensure a

terminal value at least equal to the initial investment, so that now a long position can be

used to superhedge a constant. However, it will still be the case that either a static or a

dynamic superhedge is optimal, but never both. Finally, with bounded interest rates, in

general only dynamic superhedges will be optimal.

To highlight the fact that the optimality of static or dynamic strategies depends

on both the model setup and the type of claim, we present some examples of contingent

claims for which a superhedge is set up in various incomplete models. We analyze plain

vanilla call and put options as convex claims, a ’corporate bond’, i.e. the combination of
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the asset and a short put option, as a concave claim, and an option on a power of the

stock price with an exponent less than one as a case for a claim which is neither convex

nor concave. As indicated above both the type of claim and the type of model are relevant

for the optimality of static or dynamic strategies.

Due to the popularity of ’bigger’ models with combinations of SV, SJ, and SI like

in Bakshi, Cao, and Chen (1997) we also investigate the optimality of strategies in such

a more general framework. It turns out that the conditions for the optimality of a static

superhedge in the different models (SV, SJ, SI) have to be met simultaneously, since

otherwise only a dynamic strategy can be optimal.

The rest of the paper is organized as follows. In Section 2 we derive the main results.

Section 3 gives some examples. Section 4 discusses models with more than one non-traded

source of risk. Section 5 contains some concluding remarks.

2 Superhedging Strategies in Incomplete Markets

2.1 General remarks

In the following we consider a European path-independent claim with a terminal payoff

at time T given by h(ST ). Unless otherwise noted we assume that for each investigated

claim there is at least one superhedge. The basic model setup consists of Markov pro-

cesses in incomplete markets, where the incompleteness is caused by either stochastic

volatility, stochastic jumps or stochastic interest rates. The only attainable European

path-independent claims are affine-linear (or even only linear) in the stock as shown in

Branger, Esser, and Schlag (2003), and the hedge criterion for a general claim is to find

the cheapest superhedge, i.e. to find the cheapest payoff X with X ≥ h(ST ) almost surely.

We define a superhedge to be a trading strategy with terminal payoff X ≥ h(ST )

almost surely. We do not assume that the associated trading strategy is self-financing. We

only assume that there are no injections of money, i.e. the strategy is allowed to generate
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a cash outflow. Furthermore we do not assume that X is path-independent, i.e. the payoff

may depend on the complete history of the state variables from t = 0 to t = T .

The main question in this context is when we can restrict ourselves to static, i.e.

to buy-and-hold strategies, and under what scenarios we also have to consider dynamic

trading strategies in order to find a cheapest superhedge. In the following a strategy is

called dynamic only if there is at least one change in the composition of the portfolio over

time, i.e. we would not call a pure buy-and-hold strategy dynamic.

Before going into the details of the different models we briefly want to sketch the

intuition behind the proofs of our main theorems and propositions: In each model, we first

show how to construct a superhedge, which stands in contrast to papers that maximize

the price of a given claim over all equivalent martingale measures. For a claim represented

by a certain payoff h(ST ), the cheapest superhedge is characterized by some dominating

claim ĥ, which is not necessarily attainable (but may be). For this dominating claim ĥ, we

have to determine the replicating strategy in some worst-case model which is ’artificially’

complete. For example, in an SV model the worst-case hedge is based on a volatility of

zero, which creates a (degenerate example for a) complete market with no uncertainty at

all. This replicating strategy for ĥ in the worst-case model is a superhedge in the true

model if ĥ meets certain criteria like, e.g., concavity. As h does not necessarily meet these

criteria, we cannot simply choose ĥ to be equal to h.

The cheapest superhedge for h is thus found by first determining the optimal dom-

inating payoff ĥ which is the payoff as close as possible to h (so that this optimal payoff

has the lowest price in the worst-case model), and, second, by implementing the optimal

superhedge for this dominating payoff (which is achieved by using the replicating strategy

from the worst-case model). From now on, we always understand a superhedge to be a

cheapest superhedge.
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2.2 Stochastic volatility

The SV model is given by the stochastic differential equations

dSt = µS(t, St, Vt)Stdt + VtStdW S
t (1)

dVt = µV (t, St, Vt)dt + σV (t, St, Vt)
(
ρ dW S

t +
√

1 − ρ2 dW V
t

)
, (2)

where −1 < ρ < 1 to exclude the degenerate case of deterministic volatility for which the

model would be complete, and σV 6≡ 0. Furthermore we assume a deterministic money

market account B with dynamics dBt = rBt dt. As demonstrated in Branger, Esser, and

Schlag (2003) attainable path-independent payoffs in the SV setup have to be affine-

linear in the stock price. For a general path-independent payoff h(ST ) we now turn to

the problem of finding the superhedge. In the case of bounded volatility it is well known

that the price of the superhedge satisfies the Black-Scholes-Barenblatt partial differential

equation as shown in Avellaneda, Levy, and Parás (1995). For unbounded volatility the

result is given in the next proposition.

Proposition 1 (SV: Superhedge a Concave Dominating Payoff) Let the SV model

be given by (1) and (2). Volatility V can take on any value in R
+. Then, each superhedge

for the payoff h(ST ) is identical to a superhedge for the optimal concave payoff ĥ dom-

inating h. This optimal dominating payoff is characterized by having the smallest price

among all dominating payoffs in the worst-case model with volatility equal to zero, and

the replicating strategy in the worst-case model is a superhedge in the SV model.

To prove the proposition we derive the properties of a superhedge which is in general

characterized by a dynamic trading strategy. In particular, we show that the superhedge

is equal to the replicating strategy for a certain dominating payoff in the worst case model

with zero volatility.

For every point in time t let Ft be the smallest amount of money we need for

superhedging the payoff h(ST ) from t onwards so that F will generally depend on all

possible future paths. Since (1) and (2) describe a Markov model, F can be written as a
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function f depending on t, St, and Vt only:

Ft ≡ f(t, St, Vt).

At time t we have to invest f(t, St, Vt) to run the superhedge. If the current value of the

hedge portfolio before reinvesting is higher, funds can be withdrawn.

The number of stocks in the hedge portfolio is given by the hedge ratio Ht, and

the investment into the money market account is equal to f(t, St, Vt)−HtSt. To actually

represent a superhedge both f and H have to satisfy certain restrictions. First, the trading

gains generated by the hedge portfolio have to be greater than or equal to the change in

the required capital Ft which implies

r f(t, St, Vt) dt + Ht (dSt − r St dt) ≥ df(t, St, Vt). (3)

Second, the terminal value of the hedge portfolio has to dominate the payoff of the claim:

f(T, ST , VT ) ≥ h(ST ).

The left-hand side (LHS) of inequality (3) represents the trading gains when we buy Ht

stocks and invest Ft−HtSt in the money market account, the right-hand side (RHS) gives

the change in the required minimal capital. Any non-negative difference between LHS and

RHS in (3) can be withdrawn. Applying Itô to the RHS of (3) yields

rf dt + Ht (dSt − r St dt) ≥
∂f

∂t
dt +

∂f

∂s
dSt +

∂f

∂v
dVt

+
1

2

∂2f

∂s2
V 2

t S2
t dt +

1

2

∂2f

∂s2
σ2

V dt +
∂2f

∂s∂v
Vt StσV ρ dt,

which is equivalent to
(

∂f

∂s
− Ht

)
dSt +

∂f

∂v
dVt +

(
∂f

∂t
+

1

2

∂2f

∂s2
V 2

t S2
t +

1

2

∂2f

∂v2
σ2

V

+
∂2f

∂s∂v
Vt StσV ρ + Ht r St − r f

)
dt ≤ 0. (4)

This last inequality has to hold for all values of dSt and dVt, implying

Ht =
∂f

∂s
(t, St, Vt) (5)

∂f

∂v
= 0, (6)
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and furthermore

∂f

∂t
+

1

2

∂2f

∂s2
V 2

t S2
t +

1

2

∂2f

∂v2
σ2

V +
∂2f

∂s∂v
Vt StσV ρ + Ht r St − r f ≤ 0. (7)

Condition (5) shows that the hedge ratio Ht has to be equal to the partial derivative of

the value function of the price bound with respect to the stock price (similar to a classical

delta hedge), so that once we know f , we can implement a superhedge. Condition (6)

means that the price bound must not depend on the non-traded risk factor volatility

(similar to the result for attainability as shown in Branger, Esser, and Schlag (2003)).

This implies that the function f can be simplified to

f(t, s, v) = f(t, s),

and all derivatives with respect to v vanish. Together with equations (5) and (6) this

implies that inequality (7) simplifies to

∂f

∂t
+

∂f

∂s
r St +

1

2

∂2f

∂s2
V 2

t S2
t ≤ r f. (8)

This inequality has to hold for all possible realizations of Vt, and is therefore equivalent

to

∂f

∂t
+

∂f

∂s
r St +

1

2
sup
Vt

{
∂2f

∂s2
V 2

t

}
S2

t ≤ r f. (9)

For ∂2f

∂s2 (t, St) > 0, this inequality can only hold if Vt is bounded from above, and the

superhedge for this scenario is derived in Avellaneda, Levy, and Parás (1995). For un-

bounded volatility inequality (9) can thus only be satisfied for ∂2f

∂s2 (t, St) ≤ 0 so that f has

to be a concave function of the stock. We further assume that volatility can be arbitrarily

close to zero so that inequality (8) reduces to

∂f

∂t
+

∂f

∂s
r s ≤ r f.

We denote the difference between the RHS and the LHS by the non-negative function

g(t, s):

∂f

∂t
+

∂f

∂s
r s + g = r f. (10)

8



Furthermore, we define the function ĥ by f(T, s) = ĥ(s). Then, by applying Feyman-Kac

to (10) the function f is found to be given by

f(t, s) = Ẽ

[∫ T

t

e−r(u−t) g(u, Su) du + e−r(T−t) ĥ(ST )
∣∣ St = s

]
, (11)

where for calculating the expectation Ẽ we use the stochastic process

dSt = rStdt

which follows directly from (10). As the future stock price is certain in this case and just

earns the risk-free rate, the function f simplifies to

f(t, s) =

∫ T

t

e−r(u−t) g(u, ser(u−t)) du + e−r(T−t) ĥ(ser(T−t)). (12)

The function f depends on the function ĥ and on the non-negative function g. It can

be interpreted as the price of a claim where ĥ is the terminal payoff function of this

special claim, while the function g can be regarded as its continuous dividend stream.

The price is calculated in a model with zero volatility. It is important to note that, since

f is concave, its price will be highest in this worst-case model compared to models with

non-zero volatility.

The strategy described by f and the hedge ratio Ht = ∂f

∂s
(t, St) is the replicating

strategy for the claim with terminal payoff ĥ in the worst-case model with zero volatility.

When volatility is stochastic, the strategy will in general be no longer self-financing.

However, the concavity of f ensures that condition (7) is met for all possible realizations

of V , and so no additional funds will have to be injected at any point in time, whereas

sometimes the strategy will generate an outflow.

Each non-negative function g and each terminal payoff ĥ define a candidate function

f via equation (12). To represent the desired superhedge the functions have to satisfy some

conditions. The original claim has to be dominated, yielding ĥ(s) ≥ h(s), f(t, s) has to

be concave in s, and f also has to be optimal in that f(0, S0) has to be minimal over all

candidate functions.
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From these conditions we can derive that ĥ(s) is a concave function of s, since

f(T, s) = ĥ(s). Furthermore the optimal g will be identically equal to zero, given that g is

non-negative, since any choice other than g ≡ 0 would lead to a positive dividend stream

and therefore to a higher price for the superhedge. For g ≡ 0 the candidate function is

given by

f(t, s) = e−r(T−t) ĥ(ser(T−t)),

which is indeed concave in s. We then choose the dominating concave function ĥ such

that the price f(0, S0) today is minimal. This completes the proof of Proposition 1. 2

Note that there may be more than one superhedge. If we consider the set of all

superhedges, then it is of interest whether this set includes both static and dynamic

strategies or only one of the two types. The answer is given in the next two corollaries:

Corollary 1 (SV: Optimality of Static Superhedge) Let the SV model be given by

(1) and (2). Volatility V can take on any value in R
+. Then, in the set of superhedging

strategies, there is at least one static strategy.

To prove the corollary we only have to explicitly construct one static superhedge.

From Proposition 1 we know that each superhedge is characterized by the optimal dom-

inating function ĥ for which the initially required capital is minimal. We then set up

the static hedge as follows. The initial capital f(0, S0) = e−rT ĥ(S0e
rT ) is used to buy

∂f

∂s
(0, S0) = ĥ′(S0e

rT ) stocks, and the rest is invested into the money market account. The

payoff at time T of this static strategy is given by

∂f

∂s
(0, S0) ST +

(
f(0, S0) −

∂f

∂s
(0, S0)S0

)
erT .

This payoff indeed dominates h, since

∂f

∂s
(0, S0)

(
ST − S0e

rT
)

+ f(0, S0)e
rT = ĥ′(S0e

rT )
(
ST − S0e

rT
)

+ ĥ(S0e
rT )

≥ ĥ(ST )

≥ h(ST ).
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The first inequality follows from the concavity of ĥ, the second inequality from the fact ĥ

dominates the payoff h. The static strategy needs the same initial capital as a superhedge,

and the terminal payoff also dominates the claim payoff h. Therefore, the static strategy

is also a superhedge. 2

The corollary shows that in an SV model with unbounded volatility we can restrict

ourselves to static strategies in order to find a superhedge. For any dynamic trading strat-

egy with a terminal payoff dominating h and with an initially lower price the probability

that we would have to inject funds at some point in time would be strictly positive.

Since the proof is very technical, it may be useful to review the intuition behind

the analysis presented so far. The main point in finding a superhedge is to determine an

optimal dominating payoff ĥ. The price of this payoff in the worst case model is the initial

capital needed for the superhedge, and the replicating strategy for ĥ in the worst case

model is a superhedge for ĥ and therefore also for the smaller payoff h in the original

model. In the case of SV with unbounded volatility the only possible worst case is a

volatility which is identically equal to zero, and ĥ has to be concave in the stock price.

Furthermore, ĥ has to be chosen such that its price in the worst case model is minimal.

In the worst case model, volatility is zero, which implies that the stock price is

deterministic. We then ’know’ that the terminal stock price will be S0e
rT , and the price

of ĥ in the worst case model at time t = 0 is e−rT ĥ(S0e
rT ).

We now consider an affine-linear payoff which is tangent to ĥ in ST = S0e
rT . Since ĥ

is concave, this affine-linear payoff dominates the payoff ĥ and thus also the smaller payoff

h. The replicating strategy for this payoff in the worst case model is a static strategy with

a terminal payoff dominating h. Furthermore, the initial capital for this static strategy

is given by e−rT ĥ(S0e
rT ), and this coincides with the capital needed for the superhedge

implied by ĥ. These two properties show that the static strategy is also a superhedge in

the original model with non-zero volatility.

So both ĥ and the affine-linear payoff tangent to it at ST = S0e
rT define a super-

hedge. If ĥ is not itself affine-linear, then it is dominated by the affine-linear payoff given
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by the tangent. In this case, it may seem surprising that both payoffs describe a super-

hedge, since our aim is to find the cheapest claim in the worst case model which should

exclude such dominating payoffs. However, in the worst case model, there is only one

possible stock price at time T , and for this stock price both payoffs coincide, so that in

this sense the affine-linear payoff is no longer dominating ĥ. The joint optimality of dy-

namic strategies and static strategies is therefore special to an SV model with unbounded

volatility.

Corollary 1 shows that there is a static superhedge in this model. The conditions

for the optimality of dynamic superhedges are given in the next corollary.

Corollary 2 (SV: Dynamic Superhedges) If the cheapest dominating payoff ĥ is not

affine-linear, then there are infinitely many dynamic superhedging strategies. If ĥ is affine-

linear, then there is no dynamic superhedge.

To prove the corollary note that by Proposition 1, the following strategy is a su-

perhedge: At time t the funds needed to run the strategy are given as f(t, St), the hedge

ratio is ∂f

∂s
(t, St). We can now compute the amount of money we can withdraw at time t:

f(t, St) r dt +
∂f

∂s
(t, St) (dSt − r St dt) − df(t, St)

= f(t, St) r dt +
∂f

∂s
(t, St) (dSt − r St dt)

−

(
∂f

∂t
(t, St)dt +

∂f

∂s
(t, St)dSt +

1

2

∂2f

∂s2
(t, St)V

2
t S2

t dt

)

=

(
f(t, St) r −

∂f

∂s
(t, St)r St −

∂f

∂t
(t, St) −

1

2

∂2f

∂s2
(t, St)V

2
t S2

t

)
dt

= −
1

2

∂2f

∂s2
(t, St)V

2
t S2

t dt

≥ 0,

where we have used the concavity of f and equation (10) with g ≡ 0 to conclude that

f(t, St) r −
∂f

∂s
(t, St)r St −

∂f

∂t
(t, St) = 0.

If ĥ is not affine-linear, ∂2f

∂s2 will not be identically equal to zero, and the probability

that we withdraw money is strictly positive. We can invest the free cash flow of this
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strategy into some limited liability asset. The resulting overall trading strategy is again

a superhedge. Its terminal payoff is equal to ĥ(ST ) plus some non-negative term . Since

there are infinitely many possibilities for such a limited liability investment, there must

also be infinitely many dynamic superhedging strategies.

If ĥ is affine-linear, we have to superhedge an affine-linear payoff. In this case, there

is even a unique replicating strategy for ĥ, and this replicating strategy is obviously static.

This precludes the existence of any other superhedge. 2

In summary for an SV economy with unbounded volatility there is always a static

superhedge, given that a superhedge exists at all, that is given that there is a dominating

concave payoff. The consideration of dynamic trading strategies does not offer any im-

provement. If the concave payoff dominating the original claim is affine-linear, there is no

dynamic superhedge. Otherwise, there are infinitely many dynamic superhedges.

2.3 Stochastic jumps

The SJ model is given by the stochastic differential equation

dSt = µS(t, St)Stdt + σS(t, St)StdWt + XtStdNt. (13)

The counting process N , the Brownian motion W and the jump size X, which

can take on any value greater than −1, are assumed to be independent. Furthermore we

assume that the money market account is deterministic with dynamics dBt = r Bt dt. The

following proposition shows how to find the superhedge for a given claim:

Proposition 2 (SJ: Superhedge for a Concave Dominating Payoff) Let the SJ mo-

del be given by (13). In this model a superhedge for the payoff h(ST ) is identical to a

superhedge for an optimal concave payoff ĥ dominating h. The optimal dominating payoff

is characterized by the smallest price in the worst case model with no jumps, and the

replicating strategy in the worst case model is a superhedge in the SJ model.
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For the proof of this proposition let again Ft be the smallest amount of money we

need to superhedge the payoff h from time t onwards, and let Ht be the associated hedge

ratio. Since (13) describes a Markov model, Ft can be written as a function of t and St:

Ft = f(t, St).

As in the proof of Proposition 1, the conditions for f and H to describe a superhedge are

that the trading gains of the hedge portfolio are greater than or equal to the change in

the lower bound f and that the terminal value of the strategy dominates the claim. These

conditions can be written as

r f(t, St) dt + Ht (dSt − r St dt) ≥ df(t, St) (14)

and

f(T, ST ) ≥ h(ST ).

Applying Itô to the RHS of (14) – the formula can for example be found in Duffie

(2001, p. 348) – and rearranging terms yields

(
∂f

∂s
(t, St−) − Ht

)
dSt +

{
f(t, St− + St−Xt) − f(t, St−) −

∂f

∂s
(t, St−)Xt St−

}
dNt

+

(
∂f

∂t
(t, St−) +

1

2

∂2f

∂s2
(t, St−)σS(t, St−)2 S2

t− + Ht r St− − r f(t, St−)

)
dt ≤ 0.

This inequality has to hold for all values of dSt, Xt, and dNt implying

Ht =
∂f

∂s
(t, St−), (15)

f(t, St− + St−Xt) − f(t, St−) −
∂f

∂s
(t, St−)Xt St− ≤ 0. (16)

To obtain inequality (16), note that dNt is either 0 or 1. Furthermore, f has to satisfy

∂f

∂t
(t, St−) +

∂f

∂s
(t, St−)r St− +

1

2

∂2f

∂s2
(t, St−)σS(t, St−)2 S2

t− ≤ r f(t, St−), (17)

where we have already used the result from equation (15).

From (16) we can conclude that f(t, s) is a concave function of s. As above in the case

of SV we denote the difference between the RHS and the LHS of (17) by the non-negative

14



function g(t, s):

∂f

∂t
(t, s) +

∂f

∂s
(t, s)r s +

1

2

∂2f

∂s2
(t, s)σS(t, s)2 s2 + g(t, s) = r f(t, s).

Furthermore, we define ĥ by ĥ(s) = f(T, s). Then, by Feyman-Kac, the function f is

given by

f(t, s) = Ẽ

[∫ T

t

e−r(u−t)g(u, Su) du + e−r(T−t)ĥ(ST )
∣∣ St = s

]
, (18)

where the dynamics of S are given by

dSt = r St dt + σS(t, St) St dW̃t, (19)

i.e. without the jump component. The function f depends on the function ĥ and on the

non-negative function g. We can interpret f as the price of a claim with terminal payoff

ĥ and dividend stream g in a model with no jumps given by (19), representing again the

worst-case model. Note that this worst-case model is complete, with volatility being a

deterministic function of t and St.

Since f is concave, the price of the claim is maximal under the assumption of no

jumps. Formally, this is derived from the fact that the price of a concave claim is a

decreasing function of the jump intensity. To see this intuitively, note that for pricing

purposes the presence of jumps can be regarded as an increase in volatility, and the value

of a concave claim is maximal at the lower volatility bound. The trading strategy given by

f and Ht is the replicating strategy for the payoff ĥ in the worst-case model. In the true

model with jumps, this strategy is of course no longer replicating. However, the concavity

of f ensures that there are only withdrawals, but no injections of money (which is just

condition (14)).

Each non-negative function g and each terminal condition ĥ define by (18) a can-

didate function f . As in the SV case the functions that describe the superhedge are

characterized by the fact that ĥ(ST ) ≥ h(ST ), by the concavity of f(t, s) with respect to

s, and by the optimality of f(0, S0), which has to be minimal over all possible choices of

functions.
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From these conditions we get that, since f has to be concave, f(T, s) and therefore

also ĥ(s) are concave functions of s. Given a concave and dominating function ĥ, the

optimal g is equal to zero. To see this, note that for g identically equal to zero the

candidate function is given by

f(t, s) = Ẽ
[
e−r(T−t)ĥ(ST )

∣∣ St = s
]
,

which is indeed concave in s. This follows from what Bergman, Grundy, and Wiener (1996)

call inherited concavity, i.e. the fact that the pricing function inherits concavity from the

terminal payoff. For any choice of the non-negative dividend stream g other than g ≡ 0,

the resulting candidate function is greater so that it cannot be optimal. Finally, we have

to choose the dominating function ĥ such that the price f(0, S0) today is minimal where

the price is calculated in the worst case model with no jumps. 2

Now, the question arises whether the set of superhedges contains both static and

dynamic strategies or just one of the two types. The following corollary provides the

answer.

Corollary 3 (SJ: Either Static or Dynamic Superhedge) Let the SJ model be given

by (13). If the cheapest dominating claim ĥ is affine-linear, then the superhedge is static,

and there is no dynamic superhedge. If ĥ is not affine linear, then there are infinitely

many dynamic superhedging strategies, but there is no static superhedge.

The proof builds on Proposition 2, which shows that we obtain a superhedge if we

use the unique replicating strategy in the worst case model. We now have to check whether

there are more superhedges than these fundamental ones.

The replicating strategy in the worst-case model is given by the required capital at

time t, f(t, St−), and the hedge ratio ∂f

∂s
(t, St−). If a jump occurs over the next interval,

then we may be able to withdraw money immediately afterwards, since

f(t, St−) r dt +
∂f

∂s
(t, St−) (dSt − r St− dt) − dFt

= −

{
f(t, St− + St−Xt) − f(t, St−) −

∂f

∂s
(t, St−)Xt St−

}
dNt,
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and the term in brackets is less than or equal to zero due to the concavity of f . Fur-

thermore, dNt is non-negative (it is either 0 or 1), so that indeed no additional funds are

required along any path from t = 0 to t = T .

If ĥ is not affine-linear, the term in brackets is not identically equal to zero, and

the probability at time t that we can withdraw money an instant after time t is strictly

positive. In this case, we can invest the free cash flow into some limited liability strategy,

which again results in a superhedge. Since there are infinitely many such limited liability

strategies, there are also infinitely many dynamic superhedges.

If the dominating payoff ĥ is affine-linear, the term in brackets is identically equal

to zero. There are no intermediate withdrawals of money, and therefore, there is only the

static superhedge, but no dynamic superhedge. 2

2.4 Stochastic interest rates

The SI model is represented by the stochastic differential equations

dSt = µS(t, St, Rt)Stdt + σS(t, St)StdW S
t (20)

dRt = µR(t, St, Rt)dt + σR(t, Rt)
(
ρ dW S

t +
√

1 − ρ2 dW R
t

)
, (21)

where −1 < ρ < 1 to ensure that the market is incomplete. Although there are by now

a number of models with a complete market segment for interest sensitive assets, like

the Heath-Jarrow-Morton family, short rate models are still popular in equity option

pricing, with a prominent example given by the general model derived in Bakshi, Cao,

and Chen (1997). So models of the type represented by equations (20) and (21) are still

worth investigating. As mentioned in Branger, Esser, and Schlag (2003) attainable path-

independent payoffs in this model are linear, not affine-linear, in the stock price, since the

constant cannot be replicated.

First we consider the case of an unbounded short rate (SIUSR)

Proposition 3 (SIUSR: Superhedge) Let the SI model be given by (20) and (21).

17



Assume that the short rate Rt can take on any value in R. Then the superhedge for the

claim h(ST ) is identical to the superhedge for the linear claim ĥ ≥ h with minimal price.

Like in the proof of Proposition 1, let Ft be the smallest amount we need for super-

hedging the payoff h from time t onwards, and let Ht be the hedge ratio. (20) and (21)

describe a Markov model, so Ft is a function of t, St, and Rt only:

Ft = f(t, St, Rt).

The condition that the trading gains of the hedge portfolio are greater than or equal to

the change in the lower bound Ft can be written as

Rt f(t, St, Rt) dt + Ht (dSt − Rt St dt) ≥ df(t, St, Rt). (22)

This inequality implies, as usual, that no additional funds are needed, but in some sce-

narios money can be withdrawn from the hedge portfolio. Furthermore the terminal value

has to be greater than or equal to the payoff h, i.e.

f(T, ST , RT ) ≥ h(ST ).

Applying Itô to the RHS of (22) and rearranging gives

(
∂f

∂s
− Ht

)
dSt +

∂f

∂r
dRt +

(
∂f

∂t
+

1

2

∂2f

∂s2
σ2

S S2
t

+
1

2

∂2f

∂r2
σ2

R +
∂2f

∂s∂r
σS StσRρ + Ht Rt St − Rt f

)
dt ≤ 0.

The inequality has to hold for all values of dSt and dRt so that

Ht =
∂f

∂s
(t, St, Rt), (23)

∂f

∂r
(t, St, Rt) = 0, (24)

implying that f does not depend on the short rate. We can thus write f(t, s, r) = f(t, s).

Furthermore, with (23) and (24) we obtain

∂f

∂t
+

∂f

∂s
Rt St +

1

2

∂2f

∂s2
σ2

S S2
t ≤ Rt f,
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which is equivalent to

∂f

∂t
+

(
∂f

∂s
St − f

)
Rt +

1

2

∂2f

∂s2
σ2

S S2
t ≤ 0. (25)

In the case of unbounded interest rates, e.g. in a Gaussian model like Vasicek (1977),

inequality (25) can only hold if

f(t, s) −
∂f

∂s
(t, s)s ≡ 0, (26)

so f is linear in s, and f(t, s) = b(t)s, where b is at most a deterministic function of time.

Then, the last term on the LHS of equation (25) vanishes and the inequality can indeed

be solved by a linear function.

The superhedge amounts to holding b(t) stocks at time t. It can easily be seen that

b(t) has to be constant, since otherwise we would need additional funds at some point in

time to buy more units of the stock (and these funds are not available) or we would have

already held too much of the stock at time t (so that the strategy would not have been

the cheapest possible hedge). This shows that we can set b(t) ≡ β, where β is chosen such

that βs ≥ h(s) and βS0 is as small as possible. 2

Note that restriction (26) basically says that there must be no investment in the

money market account. This makes sense, since interest rates are not bounded from below.

Each positive investment in the money market account could thus drop to zero. However,

to guarantee a payoff of zero, it is cheaper to do nothing than to invest in the money market

account. Analogously, since interest rates are not bounded from above, each negative

investment in the money market account can go to minus infinity. So with the stock

only one of the two traded instruments will be included in our hedge portfolio, which

automatically implies that the strategy has to be static. Thus, we have already proved

the following corollary:

Corollary 4 (SI with Unbounded Short Rate: Only Static Superhedge) Let the

SI model be given by (20) and (21). The short rate Rt can take on any value in R. Then,

any superhedge for a payoff h(ST ) is a static strategy.
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If interest rates are bounded below by zero in an SI model with non-negative short

rates (SINSR), the results change. In this case, also dynamic strategies can be optimal.

We start with the characterization of the superhedge:

Proposition 4 (SINSR: Superhedge) Let the SI model be given by (20) and (21).

Assume that the short rate Rt can take on any value in R
+. Then, each superhedge for

the payoff h(ST ) is equal to a superhedging strategy for the optimal dominating payoff ĥ

for which

ĥ(s) −
∂ĥ(s)

∂s
s ≥ 0. (27)

The optimal dominating payoff is characterized by the smallest price in the worst case

model with zero interest rates, and the replicating strategy in the worst case model is a

superhedge in the SI model. Finally, for ĥ(0) = 0 the function ĥ is concave.

The first part of the proof is identical to the proof of Proposition 3. Again, inequality

(25) has to hold, which in a scenario of non-negative unbounded rates implies

f(t, s) −
∂f

∂s
(t, s)s ≥ 0. (28)

Using this result we can rewrite inequality (25) as

∂f

∂t
(t, s) +

1

2

∂2f

∂s2
(t, s)σ2

S s2 ≤ 0.

Again, we introduce a non-negative function g(t, s) to enforce equality:

∂f

∂t
(t, s) +

1

2

∂2f

∂s2
(t, s)σ2

S s2 + g(t, s) = 0, (29)

where we can interpret ĥ(ST ) = f(T, ST ) as a terminal payoff and g again as a dividend

stream. The function f can be seen as the price of the claim in a model with zero interest

rates, which is the (complete) worst case model in this setting.

Note that inequality (28) says that the investment in the money market account

must be non-negative. Any negative investment in the money market account can drop

in value to minus infinity if interest rates increase without bounds, which is the same
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argument as the one used above in the case of unbounded rates. A positive investment in

the money market account earns an interest rate of zero in the worst case. So a positive

investment in the money market account can at least guarantee a constant payoff at time

T .

The same line of arguments as in the proof of Proposition 1 now shows that the

function g is identically equal to zero, which reduces the partial differential equation (29)

to

∂f

∂t
(t, s) +

1

2

∂2f

∂s2
(t, s)σ2

S s2 = 0.

For the function ĥ, the inequality

ĥ(s) −
∂ĥ(s)

∂s
s ≤ 0

has to hold. Then, for the function f , inequality (28) and therefore also inequality (25)

hold. This ensures that the replicating strategy for ĥ in the worst case model never needs

additional funds in the original SI model with non-negative interest rates. 2

We now show that either a static or a dynamic superhedge will be optimal, but

never both.

Corollary 5 (SINSR: Static or Dynamic Superhedge) Let the SI model be given

by (20) and (21). Assume that the short rate Rt can take on any value in R
+. If for a

payoff h the cheapest dominating payoff ĥ is an affine-linear function of the stock price,

then there is only a static superhedges. Otherwise, there are no static, but infinitely many

dynamic superhedges.

By Proposition 4, we get a superhedge if we use the unique replicating strategy for

ĥ in the worst case model with zero interest rates. It is static if ĥ is affine-linear, and it

is dynamic otherwise. It remains to be checked whether there are other superhedges.

The replicating strategy in the worst-case model is characterized by the necessary

capital at time t, f(t, St), and the hedge ratio ∂f

∂s
(t, St). The amount of money we can
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withdraw from our hedge portfolio an instant afte time t is given by

f(t, St) Rt dt +
∂f

∂s
(t, St) (dSt − Rt St dt) − df(t, St) = Rt

(
f(t, St) −

∂f

∂s
(t, St)St

)
dt.

This is just the interest earned on the position in the money market account. As this

position has to be non-negative, the RHS is also non-negative.

When ĥ is not affine-linear, the term is brackets is not identically equal to zero, so

that there will be some scenarios under which we can take funds out of the hedge and

invest it into some other strategy with limited liability, implying that there are infinitely

many dynamic superhedges. If on the other hand the dominating payoff ĥ is affine-linear,

the term in brackets is identically equal to zero. This means that we cannot withdraw

funds from the hedge, and the only superhedge is static. 2

The case of a bounded short rate is analogous to the scenario studied Avellaneda,

Levy, and Parás (1995) for a bounded volatility. In the latter setup, the claim is hedged

at the upper volatility bound for a positive gamma and at the lower volatility bound for

a negative gamma. Here, we switch between the upper and the lower bound on interest

rates. The worst case is given by the upper bound when there is a short position in the

money market account, and it is given by the lower bound for a long position in the money

market account.

3 Examples

The analysis in Section 2 is rather technical, so that some examples may help to clarify

the structural differences between the respective sources of incompleteness when it comes

to superhedging. The key finding of the previous section certainly is that the optimality of

static or dynamic superhedges is largely determined by which risk factors are non-traded.

This means that in different incomplete models the superhedges for the same claim can

be fundamentally different.

We look at superhedges for a number of different derivative contracts in the various

types of incomplete markets (SV, SJ, SI) discussed before: Standard call and put options
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represent claims which are convex in the stock price, whereas a position consisting of the

underlying plus a short put is concave. In a firm value model for defaultable securities this

claim would represent the payoff of a corporate bond. Finally, we also consider a claim

which is neither convex nor concave, namely a call option on a power of the stock price

with an exponent less than one. The results of this section are summarized in Table 1.

3.1 Call

It turns out that in all of the incomplete models analyzed here there is no dynamic

superhedge for the call payoff h(ST ) = (ST − X)+, so that we are left with the trivial

static superhedge, which consists of holding the stock. In the case of an SV model with

unbounded volatility the optimal dominating concave payoff for the convex call is given

by the affine-linear function ĥ(s) = s. This gives a static superhedge, and from Corollary

2 we can conclude that there is no dynamic superhedge.

In the SJ model the dominating payoff has to be concave according to Proposition

2, which yields the stock as the dominating claim, implying a static, but no dynamic

superhedge, as can be derived from Corollary 3.

In an SI model with unbounded interest rates the dominating payoff has to be the

stock, since the optimal superhedge will not contain an investment in the money market

account. When interest rates are non-negative the dominating payoff will again be the

stock, since the replicating strategy in the worst-case model with a zero interest rate

must not involve a short position in the money market account according to Proposition

4. This condition would not be met by the call itself, since the call is a levered investment

in the stock, and a short position in the money market account is needed. However, the

condition is met by a hedge which consists of the stock only. The fact that there is no

dynamic superhedge follows from Corollary 5.
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3.2 Put

Although calls and puts are both convex claims the fact that there is a finite upper bound

for the payoff of a put, h(ST ) = (X − ST 2)+, creates substantial differences between the

superhedges for the two types of options in the various incomplete models. There is just

a static superhedge for the put in the SV and SJ case. In the SI model with non-negative

interest rates all superhedges are dynamic, and in the case of unbounded interest rates

there is no superhedge at all.

In the SV model with unbounded volatility the dominating concave payoff is the

constant payoff equal to the strike price, i.e. ĥ(s) = X. Since the put is convex, the cheap-

est dominating concave payoff is affine-linear with a static, but no dynamic superhedge

according to Corollary 2.

In the SJ model the analysis is structurally equal to the SV case. The dominating

payoff is again the constant X with the same implications for the superhedge as those

presented for the SV case.

In the SI model with unbounded interest rates, we obtain the extreme result that

there is no superhedge for a standard put. The intuition here is that the maximum payoff

of the put is equal to the strike price X for ST = 0. In the given model there is no way to

guarantee this payoff, because the stock obviously pays zero in this case, and the money

market account cannot guarantee a positive payoff either, since interest rates can go to

minus infinity. With non-negative interest rates the dominating payoff is the put itself,

since it satisfies the condition stated in inequality (27) in Proposition 4. The structure

of the dominating payoff implies a dynamic superhedge from which for R > 0 money

can be withdrawn and reinvested into a limited liability strategy. This generates infinitely

many dynamic superhedges, but no static superhedge as stated in Corollary 5. Note the

structural difference to the call for which there is a static, but no dynamic superhedge.
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3.3 Corporate Bond

The terminal payoff structure of the corporate bond is given by h(s) = X − (X − s)+ =

min{s, X}, i.e. h is concave in s. Again, we obtain different superhedges in the different

models. When interest rates are stochastic and unbounded there is only a static super-

hedge, whereas in the case of non-negative interest rates or with jumps, only dynamic

superhedges exist. Finally, in the SV economy both dynamic and static superhedges ex-

ist.

In the SV case we have to find a concave dominating claim, which is in this case

equal to the claim itself. Dynamic superhedges for this claim exist according to Corollary

2, since in the worst case model with zero volatility money can be withdrawn whenever

the true volatility is greater than zero. The existence of a static superhedge follows from

Corollary 1. There is no more uncertainty in the worst-case model, so the strategy has to

yield a payoff h(S0e
rT ) for the deterministic future stock price S0e

rT , and the payoff of the

strategy has to dominate h in the original model. For S0e
rT < X the static superhedge

is unique and consists of one unit of the stock, for S0e
rT > X it is also unique with an

investment equal to Xe−rT into the money market account. For the special case S0e
rT = X

it is not unique, since we can buy α shares of stock with α ∈ [0, 1], and invest the remaining

funds into the money market account.

In the SJ model the dominating payoff is also the corporate bond itself, i.e. ĥ(s) =

min{s, X}. The superhedge given by the replicating strategy in the worst-case model is

dynamic, and we can withdraw funds whenever there is a jump so that there are infinitely

many dynamic superhedges. Corollary 3 shows that there is no static superhedge, since ĥ

is not affine-linear.

With unbounded stochastic interest rates the dominating payoff is the stock, since

the superhedge must not contain a position in the money market account. By the same

token the superhedge must be static, implying on the other hand that there is no dynamic

superhedge.

When interest rates are non-negative the dominating payoff is the corporate bond
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itself, since the only restriction on the replicating strategy in the worst-case model with

a zero interest rate is that it must not involve a short position in the money market

account as shown in Proposition 4. This already holds for the corporate bond itself. The

superhedge is therefore dynamic, and in addition, Corollary 5 tells us that there is no

static superhedge.

3.4 Power Call

A power call has a payoff equal to either (Sγ
T − X)+ or [(ST − X)+]

γ
with γ > 0. When

γ > 1 there is no superhedge at all, since there is no dominating payoff (neither concave

nor linear) in either of the models. So the interesting case is γ < 1, creating a payoff which

is neither convex nor concave.

In the different models all possible scenarios with respect to the optimality of static

or dynamic superhedges indeed occur. In the SI model with unbounded interest rates,

only the static superhedge is optimal, whereas in the SJ model and in the SI model with

non-negative interest rates all superhedges are dynamic. Finally in the SV economy there

are both static and dynamic superhedges.

In the SV model the dominating payoff is shown in the left graph in Figure 1. It

is composed of two ’pieces’. The first is given by the straight line which goes through

the origin and which is tangent to the payoff graph. To the right of the tangency point

the second piece is given by the claim itself. Since this claim is concave the associated

superhedge in the worst-case model with zero volatility is dynamic. Corollary 1 shows that

there is also a static superhedge. In the worst-case model there is no more uncertainty, so

the strategy has to generate a payoff of h(S0e
rT ) for the deterministic future stock price

S0e
rT , and the strategy has to dominate the payoff h in the original model, which implies

that the graph of the payoff of the strategy is tangent to the graph of the dominating

concave payoff.

The dominating payoff in the SJ model is the same as in the case of SV. The

superhedge is therefore also dynamic, and we can withdraw money whenever there is
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a jump. As we can see from Corollary 3 there is no static superhedge, since ĥ is not

affine-linear.

Similar to the case described above the dominating payoff in the SI economy with

unbounded interest rates is a straight line through the origin tangent to the payoff graph

which is shown in the right graph in Figure 1. The reason why this tangent has to go

through the origin is given in Proposition 3 which shows that the position will not contain

an investment in the money market account. The superhedge in this case will be static,

and Corollary 4 states that there will be no dynamic superhedging strategy.

If the interest rate is non-negative the dominating payoff is the same as in the case

of SV. The replicating strategy in the worst-case model with a zero interest rate only

precludes a short position in the money market account according to Proposition 4, but

the claim would not require such a short position anyway. The superhedge is dynamic and

for R > 0, money can be withdrawn, which can be reinvested into an arbitrary limited

liability strategy. Corollary 5 shows that there is no static superhedge.

4 Bigger Models

Bakshi, Cao, and Chen (1997) have proposed a model which simultaneously includes SV,

SJ, and SI. Given that a user would like to apply such a model, the natural question is how

superhedges for contingent claims should be set up when more than one non-traded risk

factor is present. The superhedge will again be characterized by some optimal dominating

claim, which has to meet all the restrictions derived for the respective risk factors. It will

then be determined in a worst-case model which will also be derived from the worst-case

models for the respective risk factors.

For example, in a model which includes both a jump component and an extra dif-

fusion for volatility the dominating claim has to be concave, since it has to be concave in

both individual models. The worst-case model will then be one without jumps and with

a zero volatility. The stock price in this model is no longer stochastic, and as in the case
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of SV, there is always a static superhedge. Futhermore, if the dominating payoff is not

affine-linear, there are also infinitely many dynamic superhedes.

When all three risk factors are present we have to distinguish between the cases

of unbounded and non-negative interest rates. In the first scenario the dominating claim

has to be concave in the SV and in the SJ economy and linear in the SI case. So in the

combined model the dominating claim has to be linear. The worst case model will be

one with no jumps and zero volatility. However, the hedging strategies will not contain

investments in the money market account due to the reasons described in Subsection 2.4.

Concerning the actual superhedges for the claims discussed in Section 3 we find that for

the call the dominating claim is the stock with a static strategy. For the put there is no

superhedge, which is caused by the impossibility to find such a hedge in the SI model.

For the corporate bond the dominating claim is the stock with a static hedge, and for the

power call with γ < 1 the dominating claim is a linear tangent, also with a static hedge.

When interest rates are non-negative in this big model the dominating payoff has

to be concave based on the SV and SJ model, and from the SI part we get the further

restriction that the hedge cannot contain a short position in the money market account.

The worst-case model is one with zero volatility, no jumps, and with a zero interest rate.

For the call the dominating claim will again be the stock, whereas for the put it will be the

constant payoff equal to the strike price, with the strategies being static in both cases. For

the corporate bond the dominating claim will be the corporate bond itself with a dynamic

hedge. Again, since the future stock price is certain in the worst-case model, there is also

a static superhedge for the corporate bond. And for the power call with exponent γ < 1,

the dominating claim is equal to the dominating claim in the SV model.

5 Summary and Conclusion

The main contribution of this paper is the structural analysis of superhedges on various

types of incomplete markets. The incompleteness can be caused by SV, SJ, SI, or an

arbitrary combination of these three risk factors. Our particular interest has been in the
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question whether static or dynamic superhedging strategies are optimal for the contingent

claims under consideration.

A key result of our investigation is that the optimality of the respective type of su-

perhedge depends on both the model and the payoff of the claim. We provide an economic

interpretation for the structure of optimal superhedges by showing that they can be char-

acterized by dominating payoffs which have to meet certain model-dependent conditions

for the implied strategy to be a candidate for a superhedge.

In the SV and SJ case the volatility of the underlying asset is the main item of

interest. The worst case model eliminates (parts of) this volatility, since there is no more

volatility risk in the SV economy, and no more jump risk in the SJ case. For the super-

hedges we only have to consider concave payoffs the prices of which decrease in volatility,

and which are consequently maximal in the worst case model. In the SI model the be-

haviour of the short rate determines whether the hedge position can contain a long or a

short position in the money market.

By construction, the worst case model is always one with a complete market. This

is especially true for the SV economy, since here the worst-case model is even degenerate

with a deterministic evolution of the stock price. In this special case we find that for

certain types of claims both static and dynamic superhedges exist, which is not true for

the other models.

As a common feature of all models we find that the existence of one dynamic su-

perhedge implies that there are infinitely many such dynamic superhedges. The intuition

here is that the strategy allows the withdrawal of funds from the superhedge portfolio

in certain states of the world. These funds can then be invested in any limited liability

strategy, and the new strategy will of course still be a superhedge.
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Call Put Corporate Bond Power Call

(ST − X)+ (X − ST )+ min{ST , X} (Sγ
T − X)+

SV static static static + dynamic static + dynamic

SJ static static dynamic dynamic

SIUSR static — static static

SINSR static dynamic dynamic dynamic

Table 1: Example: Structure of Superhedges

The table shows for four different claims and for several models whether the

superhedge is static or dynamic or whether both strategies can be applied. ST

is the terminal stock price, X denotes the strike price, and the exponent γ for

the power call is less than one.
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Figure 1: Power Call: Optimal dominating payoff ĥ

Both graphs show the payoff of a power call with strike X = 1 and exponent

γ = 0.25 as a function of the terminal stock price. The optimal dominating

payoff for an SI model with non-negative interest rates, for an SJ model and

for an SV model is given by the solid line in the left graph. The optimal

dominating payoff for an SI model with unbounded interest rates is given by

the solid line in the right graph.
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