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I. Introduction

A decade ago, the electricity sector worldwide was a
vertically integrated industry in which prices were set
by regulators and reflected the costs of generation,
transmission, and distribution. In this setting, power
prices used to change rarely, and in an essentially
deterministic manner. Over the last 10 years, major
countries have been experiencing deregulation in gen-
eration and supply activities. One of the important
consequences of this restructuring is that prices are
now determined according to the fundamental eco-
nomic rule of supply and demand: there is a “market
pool” in which bids placed by generators to sell elec-
tricity for the next day are compared to purchase
orders.

In a parallel way, deregulation of the energy in-
dustry has paved the way for a considerable amount
of trading activity, in both the spot and derivative
markets. Price risk in particular has forced the industry
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remaining errors are our own. The work was financially supported
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roncoroni@essec.fr.

This paper analyzes the
special features of elec-
tricity spot prices derived
from the physics of this
commodity and from the
economics of supply and
demand in a market pool.
Besides mean reversion,
a property they share
with other commodities,
power prices exhibit the
unique feature of spikes
in trajectories. We intro-
duce a class of discontin-
uous processes exhibiting
a “jump-reversion” com-
ponent to properly repre-
sent these sharp upward
moves shortly followed
by drops of similar mag-
nitude. Our approach al-
lows to capture—for the
first time to our knowl-
edge—both the trajecto-
rial and the statistical
properties of electricity
pool prices. The quality
of the fitting is illustrated
on a database of major
U.S. power markets.
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to identify, price, and hedge the options granted in energy contracts that have
been written for decades.

Given the unique nonstorability (outside of hydro) of this commodity, elec-
tricity prices are much more likely to be driven by spot demand and supply
considerations than any other good, with demand in the short-term market
being fairly inelastic. As a result, sizable shocks in production or consumption
may give rise to the price jumps that have been observed since 1998 in various
parts of the United States. If one leaves aside the California 2000 events that
were possibly driven by flaws in market design and wrongdoings on the part
of some major players, spike prices have been motivated by disruption in
transmission, generation outages, extreme weather, or a conjunction of these
circumstances.

Today, an important fraction of the literature on electricity belongs to the
economics arena and analyzes deregulated electricity markets from the reg-
ulatory viewpoint (see, e.g., Joskow and Kahn 2001). It is clear that a proper
mathematical representation of spot prices is at the same time a necessary
exercise and the cornerstone for the optimal scheduling of physical assets and
the valuation of financial and real options in the electricity industry.

Some initial papers on the modeling of power price processes include Deng
(1999), Bhanot (2000), Knittel and Roberts (2001), Pirrong (2001), Barlow
(2002), Barone-Adesi and Gigli (2002), Escribano, Peña, and Villaplana
(2002), and Lucia and Schwartz (2002). We extend this literature by proposing
a family of stochastic processes meant to represent the trajectorial and sta-
tistical features displayed by electricity spot prices in deregulated power mar-
kets. We also introduce an effective method to identify spikes in historical
raw data. In order to empirically investigate the information content of ob-
served power price dynamics, we design a procedure for best fitting our model
to market data in terms of both trajectories and moments. Since we focus on
an analysis of the empirical properties of electricity prices, we shall work
solely under the real probability measure. Yet, our concern is to preserve the
Markov property in the view of future developments on the valuation of
derivatives.

The paper is organized as follows. Section II discusses the main features
of power prices and of the stack function. Section III introduces a class of
processes that may encompass prices observed in a variety of regional markets.
Section IV contains the description of data for three major U.S. power markets
that exhibit different degrees of mean reversion and spike behavior. Section
V analyzes the statistical methods allowing us to select a process matching
observed spot prices. Section VI presents empirical results for all models and
markets under investigation. Section VII concludes with a few comments and
suggestions for future research.
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II. The Key Features of Power Prices

Most of the important literature on commodities has focused on storable
commodities (see, e.g., Fama and French 1987). The same property applies
to the specific case of energy commodities since deregulated power markets
were established fairly recently. Bessembinder and Lemmon (2002) build an
equilibrium model for electricity forward markets derived from optimal hedg-
ing strategies conducted by utilities. In this setting, they compare forward
prices to future spot prices and show that the forward premium increases when
either expected demand or demand risk is high. Geman and Vasicek (2001)
empirically confirm Bessembinder and Lemmon’s findings and demonstrate,
with a U.S. database, that short-term forward contracts are upward-biased
estimators of future spot prices, in agreement with the high volatility and risk
attached to U.S. spot power markets.

Our perspective in this paper is complementary and distinct at several levels.
First, we are interested in the modeling of the spot price of electricity since
we believe that in the wake of deregulation of power markets, a proper rep-
resentation of the dynamics of spot prices becomes a necessary tool for trading
purposes and optimal design of supply contracts. As discussed in Eydeland
and Geman (1998), the nonstorability of electricity implies the breakdown of
the spot-forward relationship and, in turn, the possibility of deriving the fun-
damental properties of spot prices from the analysis of forward curves. More-
over, as exhibited empirically in markets as different as the Nordpool, the
United Kingdom, or the United States, electricity forward curve moves are
much less dramatic than spot price changes.

If we turn to the wide literature dedicated to commodity prices in general,
we observe that the convenience yield plays an important role in many cases.
The interesting concept of convenience yield was introduced for agricultural
commodities in the seminal work by Kaldor (1939) and Working (1949) to
represent the benefit from holding the commodity as opposed to a forward
contract. Our view is that a convenience yield does not really make sense in
the context of electricity: since there is no available technique to store power
(outside of hydro), there cannot be a benefit from holding the commodity,
nor a storage cost. Hence, the spot price process should contain by itself most
of the fundamental properties of power, as listed below.

A first characteristic of electricity (and other commodity) prices is mean
reversion toward a level that represents marginal cost and may be constant,
periodic, or periodic with a trend. Pindyck (1999) analyzes a 127-year period
for crude oil and bituminous coal and a 75-year period for natural gas. He
concludes that prices that deflated (and that are represented by their natural
logarithms) exhibit mean reversion to a stochastically fluctuating trend line.
In the case of power and with a few years’ horizon in mind, we propose to
represent the diffusion part of the price process as mean reverting to a de-
terministic periodical trend driven by seasonal effects. As we shall see, the
mean reversion will be more or less pronounced across different markets.
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A second feature of the price process, unsurprisingly, is the existence of
small random moves around the average trend, which represent the temporary
supply/demand imbalances in the network. This effect is locally unpredictable
and may be represented by a white-noise term affecting daily price variations.

A third and intrinsic feature of power price processes is the presence of
so-called spikes, namely, one (or several) upward jump shortly followed by
a steep downward move, for instance, when the heat wave is over or the
generation outage is resolved. Since shocks in power supply and demand
cannot be smoothed away by inventories, our view is that these spikes will
persist beyond the transition phase of power deregulation. The California
situation has been widely discussed over the last two years, but many studies
neglect to mention that the first event of this nature was totally unrelated to
the possible exercise of market power by some key providers: in the East
Center Area Reliability (ECAR) region (covering several midwestern states
of the United States), prices in June 1998 went to several thousand dollars
up from $25 per megawatt-hour. This spectacular rise was due to the con-
junction of a long heat wave, congestion in transmission of hydroelectricity
coming from Canada, and production outage of a nuclear plant. Within two
days, prices fell back to a $50 range as the weather cooled down and trans-
mission capacity was restored. In Europe, where weather events are usually
less dramatic than in the United States (and capacity reserves probably higher),
prices went from 25 to 500 on the Leipzig Exchange during a long cold spell
in December 2001. From an economic standpoint, this phenomenon is illu-
minated by the graph of the marginal cost of electricity supply, called power
stack function (see Eydeland and Geman 1998). Knowing the characteristics
of the different plants in a given region, one can build the supply function
by stacking the units in “merit order” from the lowest to the highest cost of
production. The part corresponding to low-cost plants (coal-fired or hydro) is
fairly flat or has a small upward slope; then the curve reaches a point at which
there is an exponential price increase corresponding to the activation of very
expensive units such as “peakers.”

Figure 1 represents the merit order stack for the ECAR region and shows
the electricity price as determined by the intersection point of the aggregate
demand and supply functions. A forced outage of a major power plant or a
sudden surge in demand due to extreme weather conditions would either shift
the supply curve to the left or lift up the demand curve, in both cases causing
a price jump. These spikes are a major subject of concern for practitioners
and a key characteristic of electricity prices. Hence, they deserve to be the
subject of a careful analysis.

Following the jump diffusion model proposed by Merton (1976) to account
for discontinuities in stock price trajectories, a number of authors have intro-
duced a Poisson component to represent the large upward moves of electricity
prices; then, the question of bringing prices down is posed. Deng (1999)
introduces a sequential regime-switching representation that may be a good
way of addressing the dramatic changes in spot prices; the trajectories pro-
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Fig. 1.—The power stack function for the ECAR market. The generation cost is
mildly increasing until a load threshold is reached; then the supply curve exhibits
strong convexity.

duced by the model, however, are fairly different from the ones observed in
the market.

Lucia and Schwartz (2002) examine the Nordpool market and choose not
to introduce any jump component in the price process. Data from this market
show that despite the significant part of hydroelectricity in the northern part
of Europe, power prices do not have continuous trajectories; for instance,
there is a quasi-yearly violent downward jump in early April at the end of
the snow season when uncertainty about reservoir levels is resolved. This
tends to support our view that jump components are hard to avoid when
modeling power prices, since they are structurally related to the physical
features of this commodity. The class of models presented below is meant to
translate the existence of several regimes for electricity prices, corresponding
respectively to the quasi-flat and sharply convex parts of the merit order stack.
Under the normal regime, the aggregate capacity of generation in the region
under analysis is sufficient to meet consumers’ demand. In the case of a plant
outage, inelastic demand drives spot prices to very high values until the supply
problem is resolved; hence the observed large spikes. We can note that in the
case of storable commodities (such as oil or wheat), prices are determined
not only by supply from existing production and demand for current con-
sumption but also by the level of inventories. The buffering effect of these
inventories does not exist in the case of electricity.

We argue in this paper that the classical setting of continuous-path diffusion
processes does not deliver a viable solution to this problem for reasons linked
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to trajectorial and statistical features of daily power prices. A jump component
should account for the occurrence of spikes through an appropriate jump
intensity function and also explain the significant deviations from normality
in terms of high-order moments observed in logarithmic prices. As an example,
figure 2 compares the empirical distribution in the ECAR market to a normal
density with the same mean and variance.

III. The Model

We model the behavior of the price process of 1 megawatt-hour of electricity
traded in a given pool market.1 In order to ensure strict positivity of prices
and enhance the robustness of the calibration procedure, we represent the
electricity spot price in natural logarithmic scale.2 Throughout the paper, except
for the pictures representing trajectories, the term price will refer to “log price.”

The spot price process is represented by the (unique) solution of a stochastic
differential equation of the form

� �dE(t) p Dm(t)dt � v [m(t) � E(t )]dt � jdW(t) � h(t )dJ(t), (1)1

where D denotes the standard first-order derivative and stands for the�f (t )
left limit of f at time t.

The deterministic function m(t) represents the predictable seasonal trend of
the price dynamics around which spot prices fluctuate. The second term en-
sures that any shift away from the trend generates a smooth reversion to the
average level m(t). The positive parameter v1 represents the average variation
of the price per unit of shift away from the trend m(t) per unit of time. Note
that the speed of mean reversion depends on the current electricity price level
since the constant v1 is multiplied by , a difference that may be�m(t) � E(t )
quite large in electricity markets (in contrast to interest rates or stochastic
volatility models for which mean reversion is classically present). The process
W is a (possibly n-dimensional) standard Brownian motion representing un-
predictable price fluctuations and is the first source of randomness in our
model. The constant j defines the volatility attached to the Brownian shocks.
Note that the instantaneous squared volatility of prices is represented by the
conditional second-order moment of absolute price variations over an infin-
itesimal period of time: in the present context, it is the sum of the squared
Brownian volatility and a term generated by the jump component (see, e.g.,
Gihman and Skorohod 1972).

The discontinuous part of the process reproduces the effect of periodically
recurrent spikes. A spike is a cluster of upward shocks of relatively large size
with respect to normal fluctuations, followed by a sharp return to normal price

1. In most markets, this price for date t is defined the day before by the clearing of buy and
sell orders placed in the pool.

2. Up to now, negative electricity prices have rarely been observed.
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Fig. 2.—Empirical price returns distributions vs. normal distributions with equal
means and variances. For each market, the empirical density of price returns is reported
together with a normal density matching the first two moments. All markets display
strong deviations from normality due to the presence of upward and downward jumps.

levels. We represent this behavior by assigning a level-dependent sign for the
jump component. If the current price is below some threshold, prices are in
the normal regime and any forthcoming jump is upward directed. If instead
the current price is above the threshold, the market is experiencing a period
of temporary imbalance between demand and supply reflected by abnormally
high prices, and upcoming jumps are expected to be downward directed.

Jumps are characterized by their time of occurrence, size, and direction.
The jump times are described by a counting process specifying the numberN(t)
of jumps experienced up to time t. There exists a corresponding intensity
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process i defining the instantaneous average number of jumps per time unit.
We choose for i a deterministic function that we write as

i(t) p v # s(t), (2)2

where represents the normalized (and possibly periodic) jump intensitys(t)
shape, and the constant v2 can be interpreted as the maximum expected number
of jumps per time unit.

The jump sizes are modeled as increments of a compound jump process
. Here the ’s are independent and identically distributed randomN(t)J(t) p � J Ji iip1

variables with common density

p(x; v , w) p c(v ) # exp [v f (x)], 0 ≤ x ≤ w, (3)3 3 3

where is a constant ensuring that p is a probability distribution density,c(v )3

and w is the maximum jump size. The choice of a truncated density within
the exponential family is meant to properly reproduce the observed high-order
moments.

The jump direction determines the algebraic effect of a jump size on theJi

power price level. It is represented by a function h, taking values plus one
and minus one according to whether the spot price is smaller or greaterE(t)
than a threshold T:

�1 if E(t) ! T (t)
h(E(t)) p (4){�1 if E(t) ≥ T (t).

This function plays an important role in our model for two sets of reasons
related to the trajectorial properties of the process and the descriptive statistics
of daily price returns. Some authors have proposed to model spikes by in-
troducing large positive jumps together with a high speed of mean reversion,
in particular Deng (1999), who was among the first ones to address the specific
features of electricity prices. However, models with upward jumps only are
deemed to display a highly positive skewness in the price return distribution,
in contrast to the one observed in the markets. Other authors model spikes
by allowing signed jumps (e.g., Escribano et al. 2002), but if these jumps
randomly follow each other, the spike shape has obviously a very low prob-
ability of being generated. Finally, another type of solution proposed in par-
ticular by Huisman and Mahieu (2001) and Barone-Adesi and Gigli (2002)
is the introduction of a regime-switching model. This representation does not
allow the existence of successive upward jumps; moreover, a return to normal
levels through a sharp downward jump would require in this case a non-
Markovian specification. As a consequence, calibrating a regime-switching
model is often quite problematic.

In our setting a proper choice of the barrier T coupled with a high jump
intensity can generate a sequence of upward jumps leading to high price levels,
after which a discontinuous downward move together with the smooth mean
reversion brings prices down to a normal range. Moreover, our representation
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has the merit of preserving the Markov property in a single state variable (see
Roncoroni 2002).

Let us observe that general results about stochastic differential equations
of the proposed type ensure that equation (1) admits a unique solution (see
Gihman and Skorohod 1972). Hence, the level-dependent signed-jump model
with time-varying intensity is fully described.

IV. Electricity Data Set

We calibrate the model on a data set consisting of a series of 750 daily average
prices compiled from the publication Megawatt Dailyfor three major U.S.
power markets: COB (California Oregon Border), PJM (Pennsylvania–New
Jersey–Maryland), and ECAR (East Center Area Reliability coordination
agreement). These markets may be viewed as representative of most U.S.
power markets because of their various locations (California, East Coast, and
Midwest), because of the different mix of generation (e.g., an important share
of hydroelectricity in California), and, finally, because of the type of trans-
mission network servicing the region. Moreover, the market design in ECAR
and PJM has proved to have functioned properly so far; the choice of the
period of analysis (ending in 1999) was meant to leave aside the California
crisis and its effects on the COB pool. In terms of price behavior, the COB
market is typical of “low-pressure” markets (such as Palo Verde, Mid Co-
lumbia, and Four Corners), with high prices ranging between $90 and $115
per megawatt-hour in the examined period. The PJM market represents a
“medium-pressure” market (such as western New York, eastern New York,
and Ercott), with highs between $263 and $412 per megawatt-hour during
that period. Finally, the ECAR market portrays “high-pressure” markets (such
as the Manchester Area Aggregation Program, Georgia-Florida Border, North
and South Southwest Power Pool, and Middlewest Area Interregion Network),
experiencing spikes between $1,750 and $2,950 per megawatt-hour.

Figures 3, 4, and 5 depict absolutehistorical price paths in these markets
for the period between January 6, 1997, and December 30, 1999. As stated
earlier, our goal is to adjust our class of processes to both trajectorial features
(i.e., average trend, Brownian volatility, periodical component, and spikes)
and statistical features (i.e., mean, variance, skewness, and kurtosis of daily
price returns) of historical prices.

In order to start the calibration procedure, we need to detect jumps in the
raw market data. The estimation of a mixed jump diffusion over a discrete
sequence of observations may result in an ill-posed problem:E p (E , … , E )1 n

standard methods in statistical inference require samples to represent whole
paths over a time interval. In the case of discretely sampled observations,
there are infinitely many ways a given price variation over a discrete time
interval can be split into an element stemming from the continuous part of
the process and another from the discontinuous one. Hence, the problem of
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Fig. 3.—ECAR price path (January 6, 1997–December 30, 1999). Spikes concentrate
in summer, when prices may rise as high as US$2,000 per kilowatt-hour.

Fig. 4.—PJM price path (January 6, 1997–December 30, 1999). Spikes concentrate
in summer, when prices move up to a level of US$400 per kilowatt-hour.
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Fig. 5.—COB price path (January 6, 1997–December 30, 1999). Spikes concentrate
in summer, when prices rise to values around US$100 per kilowatt-hour.

disentangling these two components on a discrete sample cannot be resolved
in a theoretically conclusive way; yet, the situation is better in a continuous-
time representation, which is our case. All examined data exhibit excess kur-
tosis in the empirical distribution of daily price variations. These changes tend
to cluster close to either their average mean or the largest observed values
(see fig. 2). In other words, data suggest that either there is a jump, in which
case the variation due to the continuous part of the process is negligible, or
there is no jump and the price variation is totally generated by the continuous
part of the process. This observation leads us to identify a price change
threshold G allowing one to discriminate between the two situations. In this
order, we extract from the observed data set two important elements of the
calibration procedure: the set of sampled jumps and the “G-filtered”dDE
continuous sample path obtained by juxtaposition of the continuous var-cE
iations starting at the initial price.3 A discussion of possible selection schemes
in a general mathematical setting may be found in Yin (1988). We include G

as a parameter to be estimated within the calibration procedure: for each market
under investigation, we perform our calibration procedure over different G-
filtered data sets for values of G chosen in the set of observed daily price
variations. Then we select the value of G leading to the best calibrated model
in view of its ability to match descriptive statistics of observed daily price

3. If t is a jump date, the continuous part of the path is assumed to be constant between t and
the next sample date. Since spikes are rare and typical price variations are much smaller than
those occurring during a spike, this simplification does not introduce any significant bias in the
estimation procedure.
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variations. From now on, we suppose that a value for G has been identified
for the market under analysis and input data are described by the corresponding
G-filtered pair .c d(E , DE )

V. Calibration

We propose a two-step calibration procedure. The first step is the assignment
of a specific form for the “structural” elements in the dynamics described in
equation (1) and defined as (1) the mean trend m(t), (2) the jump intensity
shape , (3) the threshold T defining the sign of the jump, and (4) the jumps(t)
size distribution . These quantities translate into path properties of thep(x)
price process.

The second step consists in statistically estimating the four parameters of
the selected model, namely, (1) the mean reversion force v1, (2) the jump
intensity magnitude v2, (3) the jump size distribution parameter v3, and (4)
the Brownian volatility j. The resulting parametric model is fit to the filtered
prices by a new statistical method described further on and based on likelihood
estimation for continuous-time processes with discontinuous sample paths.

We now illustrate the implementation of this calibration procedure for the
ECAR market, propose possible alternatives to the resulting model, and defer
results and comments to the next section.

A. Selection of the Structural Elements

The mean trend m(t) can be determined by fitting an appropriate parametric
family of functions to the data set. As mentioned earlier, power prices exhibit
a weak seasonality in the mean trend and a sharper periodicity in the occur-
rences of turbulence across the year. The latter periodicity may be an effective
estimate for the one displayed by mean trend: for instance, ECAR market
data show price pressure once a year, during the warm season. Some markets
display price pressure twice a year, with winter average prices lower than
summer average prices (which requires a lower local maximum in the former
case). In general, we find that a combination of an affine function and two
sine functions with, respectively, a 12-month and a six-month periodicity is
appropriate for the U.S. historical data under investigation. We accordingly
define the mean trend by a parametric function:

m(t; a, b, g, d, �, z ) p a � bt � g cos (� � 2pt) � d cos (z � 4pt). (5)

The first term may be viewed as a fixed cost linked to the production of
power. The second one drives the long-run linear trend in the total production
cost. The overall effect of the third and fourth terms is a periodic path dis-
playing two maxima per year, of possibly different magnitudes. Observed
prices over the three-year period are averaged into a one-year period and
bounded from above by a suitable quantile n of their empirical distribution.
The trend function m is fitted to the resulting average data by a sequential
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Fig. 6.—Time-dependent jump intensity function. The time-dependent jump inten-
sity function is designed to concentrate jump occurrence during the warm season.
Parameter d drives the degree of cluster.

ordinary least squares (OLS) method providing parameters a, b, g, d, �, and
z.

We now turn to the identification of the jump intensity shape s. Since spikes
occur over short time periods, we select an intensity function exhibiting pro-
nounced convex peaks with annual periodicity. This is meant to reflect the
shape of the power stack function, which, as shown in figure 1, becomes very
convex (and quasi-vertical) at some demand level. Sharp convexity also en-
sures that the occurrences of price jumps tend to cluster around the peak dates
and rapidly fade away. In this order we choose

d

2
s(t) p � 1 . (6){ }1 � F sin [p(t � t)/k]F

Here the jump occurrences exhibit peaking levels at multiples of k years,
beginning at time t.4 For instance, price shocks concentrating twice a year at
evenly spaced dates, with a maximum on August 1, are recovered by the
choice and . The exponent d allows us to adjust the dis-t p 7/12 k p 1/2
persion of jumps around peaking times and is included among parameters to
be estimated within the calibration procedure. Figure 6 shows intensity func-
tions across different coefficients d, and figure 7 reports a sample of jump
times.

4. Time t is called “the phase” in the language of sinusoidal phenomena.
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Fig. 7.—Sample jumps of a time-dependent jump intensity function. The time-
dependent jump intensity function is designed to concentrate jump occurrence during
the warm season. Dotted tags signal the sample jump times of a Poisson process
corresponding to the displayed time-dependent intensity function.

We found that in all three examined markets the best value for d is two.
We have discussed earlier the introduction of a barrier T above which all
occurring jumps are downward directed. This threshold may reasonably be
defined by a constant spread D over the selected average trend:

T(t) p m(t) � D. (7)

The choice of D results from a balance between two competing effects: the
greater the value of D, the higher the level power prices may reach during
pressure periods; the smaller this value, the sooner the downward jump effect
moves toward normal levels. Equally important, this number has an impact
on the moments of daily price variations. We select D in such a way that the
corresponding calibrated model generates paths whose average maximal val-
ues equal the maximal prices observed in the market under analysis.

The last structural element to be determined is a probability distribution
for the jump size. We select a truncated version of an exponential density
with parameter v3:

v exp (�v x)3 3
p(x; v , w) p , 0 ≤ x ≤ w, (8)3 1 � exp (�v w)3

where w represents an upper bound for the absolute value of price changes.
This distribution belongs to the family described in equation (3), where
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and . The resulting price process is ac(v ) p v /[1 � exp (�v w)] f (x) p �x3 3 3

“special semimartingale,” a property required to obtain the statistical estimator
proposed in the next section. This completes the first calibration step.

B. Model Parameter Estimation

The issue of estimating discontinuous processes has been the subject of par-
ticular attention in the financial econometric literature. The proposed methods
mainly draw on the extension of statistical techniques well established in the
case of continuous processes. Beckers (1981), Ball and Torous (1983), and
Lo (1988) develop estimators based on moment matching; Johannes (1999)
and Bandi (2000) propose nonparametric methods based on higher-order con-
ditional moments of instantaneous returns. We choose to focus on maximum
likelihood methods. The transition densities they typically require can rarely
be computed in analytical terms; in our case, the mixed effect of continuous
and jump terms makes the task even more arduous since one has to deal with
mixtures of probability distributions. Several numerical devices have been
recently proposed in order to overcome these difficulties. Broadly speaking,
these methods start by discretizing the process and then computing approx-
imated versions of the targeted transition densities. Pedersen (1995) explores
simulation-based schemes, and Andersen, Benzoni, and Lund (2002) make
use of auxiliary model approximations. Unfortunately, all these methods suffer
from computational complexity because of the necessary double approxi-
mation of the process and of the transition densities.

We propose an estimator based on the exact likelihood of the unknown
process with respect to a prior process chosen as a reference within the same
class. Plugging a piecewise constant sample path agreeing with actual data
at the sample dates into this likelihood delivers an approximated likelihood
function process. The estimator is provided by the parameter vector maxi-
mizing this process over a suitable domain. This method has two major ad-
vantages: first, the analytical form of the exact likelihood function under
continuous-time observations can be computed for nearly all semimartingales
through a generalized version of the Girsanov theorem (see Roncoroni 2002).
Second, the discrete sample estimator converges to the continuous sample
one, and a well-established estimation theory exists in this latter case. We
now explain the details of the procedure.

We compute the log likelihood function L for the law of the diffusion
process corresponding to an arbitrary parameter vector v with respect to the
law of the process under a prior reference parameter v0. Its exact analytical
expression is derived in Appendix A. We decide to choose as starting parameter
values , , and , which correspond to an absence of drift,v p 0 v p 1 v p 11 2 3

a normalized jump intensity, and a jump amplitude drawn from a truncated
exponential distribution with parameter one.



1240 Journal of Business

The approximate logarithmic likelihood function reads as

n�1 [m(t ) � E ]vi i 10 cL (vFv , E) p [DE � Dm(t )Dt]�D i i2jip0

2
n�1Dt [m(t ) � E ]vi i 1

� � { }2 jip0

n�1

� (v � 1) s(t )Dt � log v N(t)�2 i 2
ip0

n�1 d �v w3DE 1 � ei
� �(v � 1) � N(t) log ,� 3 �w[ ] [ ]h(E ) v (1 � e )ip0 i 3

where denotes the first-order derivative of m at time . The first partDm(t ) ti i

is a discretized version of the Doléan-Dade exponential for continuous pro-
cesses. The remaining terms come from the jump part of the process. The
log likelihood function explicitly depends on v1, v2, and v3 and on the filtered
data set , which in turn is derived from the original market data setd c(DE , E )
E and the choice of parameter G. We maximize this function with respect to
v over a bounded parameter set V identified through economic interpretation
of the model parameters. One may alternatively use Monte Carlo simulated
samples to infer a reasonable parameter domain and starting values for the
numerical optimization algorithm. We finally obtain a nonlinear maximization
program of a continuous function over a compact set, and classical theorems
ensure the existence of a local maximum, which will be our estimate for .∗v

The constant Brownian volatility over observation dates 0 p t ! t !0 1

can be obtained as… ! t p tn

n�1
2�j p � DE(t ) , (9)i

ip0

where each summand represents the square of the continuous part2DE(t )i
of observed price variations (in a logarithmic scale) between consec-cDE (t )i

utive days and , net of the mean reversion effectt t Fv # [m(t ) � E(t )]Fi i�1 1 i i

for all times in which no jump occurs (i.e., ).5 This estimatordt DE (t ) p 0i i

converges to the exact local covariance estimator for diffusion processes under
continuous-time observations (Genon-Catalot and Jacod 1993). We note that
numerical experiments not reported here suggest that a time-dependent vol-
atility does not produce a significant improvement in the estimated process
(given the other specifications of our model); moreover, in this case a joint

5. Note that in contrast to classical settings in which the mean reversion feature was introduced
(e.g., interest rates, stochastic volatility), the difference may be quite large in the casem(t) � E(t)
of electricity prices. This observation was made in Sec. III of the paper.
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estimation of volatility and mean reversion parameters would become
necessary.

C. Alternative Model Specifications

We now consider two models displaying in their discontinuous component
features either proposed in existing papers on electricity or that may be en-
visioned as improvements of some kind.

First, by setting to plus one the jump direction function h defined in formula
(4), we obtain a restricted model in which upcoming jumps are all upward
directed and reversion to normal levels is exclusively carried over by the
smooth drift component. This upward-jump model represents the classical
jump diffusion extension of the continuous diffusion models proposed over
the years by Pilipovich (1997), Barlow (2002), and Lucia and Schwartz (2002).
All the remaining model specifications are the same as those of our signed-
jump model. As a consequence, calibration to market data follows the steps
described above, with one major exception: price variations of negative size
all enter the estimation of the continuous part of the process (i.e., containsdDE
only positive jumps).

Alternatively, we may allow the jump intensity function i defined in formula
(2) to be stochastic. In order to account for the dependence of the likelihood
of jump occurrence on the price level following upward shocks, we consider
the following function of the spot price and time:

� �i(t, E(t )) p v # s(t) # (1 � max {0, E(t ) � E(t)}). (10)2

As in the case of the threshold defining the sign of the jump, we defineT(t)
as a constant c over the mean trend m. If the spot price is below the meanE(t)

trend m plus this spread c, then intensity is purely time dependent. Each price
unit beyond this boundary amplifies accordingly the time-dependent intensity.
We determined that the best intensity function was provided by a choice of
c equal to (i.e., an increasing jump occurrence when prices are above theD/2
median line between the mean trend m(t) and the threshold T(t)). The “max”
function ensures that the jump intensity never goes below the “standard level”

(which may be viewed as the effect of random outages that strikev # s(t)2

power plants). This effect is depicted in figure 8, where stochastic intensity
is displayed as a function of time and log price. In this signed-jump model,
jump occurrence is both time and level dependent. Because all the other model
specifications are the same as those in the signed-jump model with deter-
ministic intensity, calibration to market data follows the same steps as de-
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Fig. 8.—Stochastic jump intensity function. Jump intensity depends on time and
electricity price level. If the spot price is below the mean trend m plus the spread

, then intensity is only time dependent. Each price unit beyond this boundaryD/2
amplifies accordingly the time-dependent intensity.

scribed above. The log likelihood estimator, denoted in this case as , be-LR

comes slightly more complex:

n�1 [m(t ) � E ]vi i 10 cL (vFv , E) p [DE � Dm(t )Dt]�S i i2jip0

2
n�1Dt [m(t ) � E ]vi i 1

� � { }2 jip0

n�1

� (v � 1) s(t ) max {1, E � m(t ) � c}Dt � log v N(t)�2 i i i 2
ip0

n�1 d �v w3DE 1 � ei
� �(v � 1) � N(t) log .� 3 �w[ ] [ ]h(E ) v (1 � e )ip0 i 3

This expression shows that parameters v1 and v3 are unaffected by a change
in the jump intensity function since the corresponding term can be factored
out of the likelihood estimator in absolute scale .exp (L )S

VI. Empirical Results

The calibration procedure has been implemented on the U.S. data set described
in Section IV. We first present results for the signed-jump model, then discuss
the quality of our assessments on the data set under analysis, and finally
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TABLE 1 Estimated “Structural” Elements

Interpretation ECAR PJM COB

a Average log price level 3.0923 3.2002 2.8928
b Average log price slope .0049 .0036 .1382
g Yearly trend �.1300 .0952 .1979
d 6-month trend .0292 .0217 .0618
� Yearly shift .3325 2.4383 1.7303
z 6-month shift .7417 .2907 1.7926
n 0.7 average distribution

quantile
3.2762 3.3232 3.3586

D Jump regime level 2.5000 1.5000 1.0000
w Maximum jump size 3.3835 1.6864 1.0169
k Jump periodicity 1.0000 1.0000 1.0000
t Intensity phase .5000 .5000 .5000

Note.—The electricity log price model, eq. (1), with average trend function (5) and jump component (4)
(direction), , with , (size), and eq. (10) (intensity) is calibrated to

N(t) i.i.d. v f(x)3J(t) p � J J ∼ p(x; v , w) ∝ e 0 ≤ x≤ wi i 3ip1

a data set including daily observations between January 6, 1997, and December 30, 1999. Observed log prices
over the three-year period are averaged into a one-year period and bounded from above by the 0.7 quantile
n of their empirical distribution. The trend function m is fitted to the average data by a sequential OLS providing
parametersa, b, g, d, �, and z. The regime-switching threshold T is set as a spread D over the average trend
m. The jump size distribution takes values in the interval [0, w], where w is chosen as the observed maximal
daily absolute variation in log prices. The shape of the jump intensity is described through the parameters k
and t.

conclude on a comparison with the alternative models introduced at the end
of Section V.

As mentioned before, the first step is the functional estimation of the struc-
tural elements m, s, T, and p. The values a, b, g, d, �, and z characterizing
the average trend function m(t) defined in formula (5) are reported in table 1.
The jump intensity shape has the form defined in equation (6), withs(t)

, , and ; this corresponds to a jump occurrence displayingk p 1 t p 0.5 d p 2
an annual peak strongly clustered around the middle of the year, as observed
in all examined markets. The threshold T(t) is defined by a spread D over the
deterministic trend m(t), where D is chosen in the order of 50% of the range
spanned by the observed log prices. We observe that both ECAR and PJM
reveal no significant linear trend over the three-year sample period, whereas
COB shows a small positive linear trend expressed by the coefficient b.

In all cases, the annual periodicity expressed by the coefficient g prevails
over the semiannual component described by the coefficient d. Figure 9 rep-
resents the average paths for the three regional markets in a joint graph; clearly,
the annual component is predominant in the COB market, whereas an addi-
tional semiannual component is significant in the ECAR and PJM markets.
A clear difference between the three markets is represented by the maximum
size w of daily price variations: for instance, ECAR displays jumps that may
be more than three times greater than the maximum value observed in the
COB market. In this market, the high percentage of hydrogeneration and the
reservoir capacity allow it to go through the year—the cold season in partic-
ular—with no or mild spikes. In contrast, the PJM and ECAR markets ex-
perience both very warm summers and cold winters; this leads to the semi-
annual periodicity of observed power prices in these regions. However, PJM
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Fig. 9.—Estimated average trends in the observed log price paths (January 6,
1997–December 30, 1999). The PJM and ECAR markets exhibit overlapping perio-
dicities with periods equal to six and 12 months. COB essentially displays an annual
periodicity.

benefits from a fuel mix in power generation and also from a rich transmission
network that has been very efficient since the start of deregulation; hence the
less dramatic price spikes observed.

The second step of the calibration procedure is the statistical estimation of
parameters v1, v2, v3, j, G, and d. The approximated likelihood estimation
detailed in the previous section has been implemented by the Levenberg-
Marquardt nonlinear maximum search algorithm. Final results are reported in
table 2.

All markets exhibit some amount of smooth mean reversion. Note that the
value of the reversion force in PJM is significantly greater than that in ECAR.
It is worth emphasizing again that the overall reversion displayed by our
model is created by the joint effect of the classical mean reversion and an
effect due to the downward jumps. Since ECAR displays more jumps than
PJM, the overall reversion effect is higher than the one observed in the PJM
market. This is statistically consistent with the fact that, in PJM, both skewness
and kurtosis of daily price increments are lower since the smooth reversion
suffices most of the time to ensure return to the average trend. We remark
that the expected number of jumps per year is represented by the integral of
the calibrated intensity function over one year.

We now turn to the assessment of the quality of the estimated processes.
This is performed according to four criteria:

1. We analyze simulated sample paths together with empirically observed
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TABLE 2 Estimated Model Parameters

Interpretation ECAR PJM COB

v1 Smooth mean reversion
force

38.8938 42.8844 13.3815

v2 Maximum expected number
of jumps

59.5210 63.9301 13.2269

v3 Reciprocal average jump
size

.3129 .5016 1.0038

j Brownian local volatility 1.8355 1.4453 1.3631
G Jump threshold .9200 .6000 .6200
N(1) Average number of jumps 9.0000 9.6667 2.0000
nj Number of filtered jumps 27 29 6

Note.—The model parameters v1 (smooth mean-reversion force), v2 (maximum expected number of jumps),
and v3 (reciprocal expected jump size) are selected by an approximated maximum likelihood estimator. The
Brownian volatility j is calculated as a discrete-time observation approximation of the standard cumulated
covariance estimator on the continuous path obtained by deleting observations of size larger than G. The jump
threshold G is chosen in such a way that the resulting model matches the fourth moment of the daily log price
return distribution. An estimate of the expected number of jumps over one year is provided by the integralN(1)
of the intensity function over a one-year period. The quantity denotes the number of observed daily pricenj

variations attributed to the jump component of the process according to the selected jump size threshold G.

trajectories and make a judgment about the fitting quality of the tra-
jectorial properties.

2. We compare simulated moments of the daily increments distribution
with the empirical values displayed by each market under investigation.

3. We check for the robustness of the procedure by reestimating simulated
sample paths generated by the calibrated model.

4. We test our model against the most popular representation of electricity
spot prices so far, namely, a jump diffusion process with positive jumps
only and smooth mean reversion.

5. We examine the effect of introducing a price-dependent jump intensity
on both trajectorial and statistical properties displayed by the most
irregular market in our data set (ECAR).

Figures 10, 11, and 12 show trajectories of the estimated model for the
three markets. For the purpose of comparison, both historical and sample
paths are reported at various scales. The dashed line represents the average
mean trend m(t). These pictures show that the proposed family of processes
is capable of reproducing quite consistently the qualitative features exhibited
by power paths in all three examined markets.

Table 3 reports the mean, standard deviation, skewness, and excess kurtosis
of observed and simulated daily price variations. We see that all statistics of
the simulated trajectories are quite satisfactory; there is, however, a small
positive skewness that has no counterpart in the empirical data, suggesting
that the reverting component ought to be more pronounced. The most im-
portant effect of the signed-jump model is the excellent fit of the leptokur-
tosicity of the distribution. The relevance of the incorporation of jumps in
equity return modeling has been analyzed and exhibited in a number of recent
papers of the financial economics literature (see, e.g., Carr et al. 2002). In
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Fig. 10.—ECAR simulated price path vs. empirical path: a, absolute scale 0–2,500



Electricity Prices 1247

Fig. 10.—(Continued) ECAR simulated price path vs. empirical path: b, absolute
scale 0–500.
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Fig. 10.—(Continued) ECAR simulated price path vs. empirical path: c, absolute
scale 0–100.
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Fig. 11.—PJM simulated price path vs. empirical path: a, absolute scale 0–600
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Fig. 11.—(Continued) PJM simulated price path vs. empirical path: b, absolute scale
0–300.
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Fig. 11.—(Continued) PJM simulated price path vs. empirical path: c, absolute scale
0–100.
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Fig. 12.—COB simulated price path vs. empirical path: a, absolute scale 0–175
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Fig. 12.—(Continued) COB simulated price path vs. empirical path: b, absolute
scale 0–90.
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Fig. 12.—(Continued) COB simulated price path vs. empirical path: c, absolute
scale 0–50.
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TABLE 3 Moment Matching

ECAR PJM COB

Empirical Simulated Empirical Simulated Empirical Simulated

Average �.0002 �.0001 �.0006 .0000 .0009 .0006
Standard deviation .3531 .3382 .2364 .2305 .1586 .1121
Skewness �.5575 2.1686 .3949 1.6536 .1587 .9610
Kurtosis 21.6833 22.5825 13.1507 14.8429 6.7706 6.5402

Note.—For each model estimated by maximum likelihood, descriptive statistics are computed for the
empirical vs. simulated (after calibration) logarithmic price variations. Statistics include the mean, standard
deviation, skewness, and excess of kurtosis. Simulations have been performed 1,000 times.

TABLE 4 Parameter Estimation Stability

ECAR PJM COB

Original Reestimation Original Reestimation Original Reestimation

v1 38.8938 37.7559 42.8844 40.0285 13.3815 11.7956
v2 59.5210 57.9367 4.1578 4.0188 2.5822 2.4001
v3 .3129 .2957 .5016 .4800 1.0038 1.1897
j 1.8355 2.1355 1.4453 1.7822 1.3631 1.3882

Note.—The parameters v1, v2, v3, and j have been reestimated by approximated maximum likelihood over
300 simulated paths. Results have been averaged over all samples.

the case of electricity prices, the nonnormality of distributions is widely rec-
ognized, and kurtosis naturally becomes a key parameter: in these markets in
which extreme events provide the rationale for building small and flexible
power plants called peakers, a proper representation of the spikes and their
probability of occurrence (i.e., of the tail of the distribution) is the first re-
quirement a model must satisfy.

We further test the robustness of the estimators by simulating 1,000 paths
from the estimated process and then using the corresponding increments to
reassess the values of the parameters v1, v2, v3, and j. The simulation method
is detailed in Appendix B, and the results are described in table 4.

For all estimated models the procedure is satisfactorily stable. We do not
report the values for G because they are all identical to the original ones. The
only slight mismatch occurs for the jump size parameter v3 in the case of the
COB market; this may be due to the very low number of jumps, which makes
the estimator sensitive to outliers in the simulated paths. This result is of
minor importance, to the extent that the jump component is almost irrelevant
for modeling COB prices. In general, we conclude that the procedure is not
only statistically but also numerically robust.

Returning to the alternative specifications discussed in Section V.C, we also
calibrated the upward-jumpmodel with deterministicintensity and the signed-
jumpmodel with stochasticintensity to the ECAR market data. For the purpose
of comparison, table 5 shows the quality assessment of these two models with
respect to the benchmark defined by the signed-jump model with a deter-
ministic intensity. It is clear that all three models account quite well for the
first two moments of daily average prices, with an excess in volatility and
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TABLE 5 Moment Matching of Alternative Models in the ECAR Market

Market:
ECAR

(1)

Existing
Literature:

Upward-Jump
Deteterministic

Intensity
(2)

Model I:
Signed-Jump
Deterministic

Intensity
(3)

Model II:
Signed-Jump

Stochastic
Intensity

(4)

Average �.0002 .0000 �.0001 �.0000
Standard deviation .3531 1.3238 .3382 .37821
Skewness �.5575 3.5688 2.1686 �.0119
Kurtosis 21.6833 8.3542 22.5825 28.0288

Note.—A comparison between descriptive statistics of empirical data and corresponding statistics is produced
for the three models. Col. 1 reports statistics of the ECAR market between January 6, 1997, and December
30, 1999. Col. 2 refers to the standard jump-diffusion model in the existing literature: a smooth mean-reverting
diffusion with an upward jump component only. Col. 3 relates to our benchmark model (model I): a jump-
diffusion model with a deterministic jump intensity, and col. 4, to a jump-reverting diffusion with a stochastic
jump intensity (model II). Each model is estimated by maximum likelihood. Model-generated statistics are
computed over a sample of 1,000 simulated paths. The simulation algorithm for both deterministic and stochastic
jump intensities is detailed in App. B.

positive skewness, however, for the upward-jump model. The signed-jump
model with stochastic intensity compared to the one with deterministic in-
tensity slightly improves the value of the skewness, and our view is that this
extra complexity does not bring any decisive improvement. As for the upward-
jump model (with deterministic intensity), which is quite popular in the lit-
erature on electricity spot price modeling, it generates a kurtosis four times
smaller than the real one; this misspecification may translate into a wrong
estimation of value at risk numbers and have severe consequences in markets
in which some inefficient plants continue to exist only because of these rare
events. In all industries a wrong estimation of reserves leads to harmful
consequences.

VII. Conclusion

We have proposed in this paper a family of discontinuous processes featuring
upward and downward jumps to model electricity spot prices. Our approach
is rooted in the physical properties of electricity, in particular its nonstorability,
and their consequences on the short-term supply and demand equilibrium in
the pool market.

Given the number of state variables that explain power prices in a pool
(i.e., temperature, fuel mix, type of transmission network) and their distri-
butional complexity (e.g., the occurrence of plant outages), we chose a
reduced-form representation in order to get a tractable and efficient tool al-
lowing us to handle the random evolution of spot prices and the related
management decisions. The calibrated processes exhibit the expected mean
reversion property, however, in an unevenly pronounced manner depending
on the market. All analyzed trajectories show price spikes resulting from a
momentary imbalance between offered generation and volume of demand.
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The fitting performed on three major U.S. markets allows us to conclude
positively the quality of the model, in terms of both its statistical and trajec-
torial properties.

Appendix A

Likelihood Estimator

The following proposition is an important result for the estimation of jump processes,
from both a theoretical and an operational standpoint, and an original contribution of
the paper (to our knowledge, at least).

Proposition. Let m, s, f, c, and j be sufficiently regular functions for the stochastic
differential equations (1)–(4) to admit a unique weak solution for allvE v p (v , v ,1 2

in a compact subset of . Let be an observed path over3v ) � E p {E(t), t ≤ t ≤ t}3 � 0

the continuous-time interval and a starting parameter set. Then0 0 0 0[t , t] v p (v , v , v )0 1 2 3

the log likelihood of observing a realization of the process with respect to thevE
process is given by

0vE
t � 0[m(u) � E(u )](v � v )1 10 c �L(vFv , E) p d[E (u ) � m(u)]� 2j(u)t0

2t �1 [m(u) � E(u )]v1
� du� { }2 j(u)t0

t
v2 0� � 1 s(u)du� (logv � log v )N(t)� 2 2( )0v2 t0

DE(u)
0 0� (v � v )f � log c(v ) � log c(v ) , (A1)� 3 3 3 3( )�[ ]h(E(u ))u≤t,DE(0

where is the path process devoid of its jump component:cE

c � �E (u ) p E(u ) � E � DE(s), (A2)�0
s≤u,DE(s)(0

is the starting point , is the observed jump size at time s (if any), andE E(t ) DE(s)0 0

is the number of jumps that occurred up to time t.N(t)
Proof. For notational simplicity, we write equation (1) as

dEp (a � v b)dt� jdW� hdJ, (A3)1

with , , and , and we set . We also� �a p Dm(t) b p m(t) � E(t ) h p h(E(t )) t p 00

denote by .� �E(t ) E
We divide the proof in two steps. First, we compute the semimartingale characteristic

triplet of the jump diffusion process E corresponding to a given choice of(B , C, n )v v

the parameter v. Second, we calculate the likelihood by applying a general semimar-
tingale version of the Girsanov theorem (see Jacod and Shiryaev 1987).

Step 1: Since N is independent of for all i, , , and thev i.i.d.J � (N(t)) p i(t) J ∼ p(x; v )i i 3

additive compensator of the purely discontinuous part of the semimartingale E is given
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by

n (dt# A, t) p n (A, t)dtv v

N(t)

v �p � h(E )d J dt�t i( { [ ]})
ip1

�p v s(t) dx{1 [h(E )x]p(x; v )} dt2 � A'{0} 3( )
[0,w]

x x
p v s(t) p ; v dxdt.2 � 3( )� �[ ]h(E ) h(E )X

where . Since all coefficients are bounded functions, the�X p ([0, w/h(E )] ∩ A) ' {0}
process E is a special semimartingale. Consequently, the canonical representation of
equation (A3) follows by adding and subtracting the compensator nv to the jump
measure and gathering the absolutely continuous terms:dm p h(t)dJ(t)v

dEp a � bv � dn (x, t) dt� jdW� dm ,1 � v v[ ]
[0,w]

where is a martingale measure under . From this expression we immediatelym �v v

identify the term of the semimartingale triplet corresponding to v:

t

�B (t) p a(u) � b(u)v � h(E )xdn (x, u) du. (A4)v � 1 � v[ ]
0 [0,w]

Step 2: The semimartingale process under the prior probability is determined
0v�

by the characteristic triplet . Since(B , C, n )0 0v v

v x2 0 0n (dt# A) p dt dx exp (v � v )f � [logc(v ) � log c(v )]v � 3 3 3 3( )0 �( { }v h(E )X 2

x x
0 0 0# v s(t) exp v f � log c(v )2 3 3( )� �[ ])h(E ) h(E )

v x2 0 0p exp (v � v )f � log c(v ) � log c(v ) n (dt# dx),0� 3 3 3 3 v( )0 �[ ]v h(E )X 2

the density of with respect to is given bydn dn 0v v

v x2 0 0d (t, x) p exp (v � v )f � log c(v ) � log c(v ) .v 3 3 3 3( )0 �[ ]v h(E )2

By substituting this expression into (A4), we see that the drift term under can�v

be represented as the sum of the drift term under and a term denoted as�0v

, wherec (t)j(t)v

0 �1c (t) p b(t)(v � v )j(t) .v 1 1

Let be the probability measure induced by over the path space and restrictedv�F Ev Ft

to events up to time t. Given the set E of continuous-time observations, the corre-
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sponding density of with respect to the prior probability is given by the�F � F0v F v Ft t

Radon-Nikodym derivative:

t
d� 1v 2p exp c dW� c du� [(d � 1)dn � log d dm] .0� v v � v v vF ( { })d� 20 Fv 0 Xt

This is a consequence of the Girsanov theorem on measure changes for general sem-
imartingales (see Jacod and Shiryaev 1987). The first two factors can be written as

t t u01 b(v � v )1 12exp c dW� c du p exp d E(u) � a(v)dv� v v � �( ) 2[ ] { [2 j0 0 0

t 2 0 21 b (v � v )1 1
� DE(s) � du .� � 2] }2 js≤u,DE(s)(0 0

The third factor is
t

v x2exp � (d � 1)dn p exp � s(u) p ; v dx0� � v v � � 3( )0 �[ ] { [v h(E )0 2 X

x
0� p ; v dx du� 3( )� ] }h(E )X

t
v2

p exp � � 1 s(u)du ,�( )0[ ]v2 0

where we use the property .�p(x/h(E ); v)dxp 1∫X
The fourth factor is

t t
x

0 0exp logd dm p exp (v � v )f � log c(v ) � log c(v ) dm( )� � v � � 3 3 3 3( )�{ [ ]h(E )0 X 0 X

t

0� (logv � log v ) dm2 2 � � }
0 X

DE(u)
0 0p exp (v � v )f � log c(v ) � log c(v )� 3 3 3 3( )�[ ]h(E )u≤t,DE(u)(0

0� (logv � log v )N(t),2 2

where the last equality stems from the relation between the process and the measure
representation of any marked point process. Substituting the expressions for a and b

leads to the log likelihood function (A1). QED

Appendix B

Simulation Algorithm

Monte Carlo simulations of trajectories described in equation (1) serve three purposes.
First, they provide a starting value v0 for the maximum likelihood search algorithm.
This is accomplished by sampling trajectories for several parameter sets until we find
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one whose corresponding simulated paths show qualitative features comparable with
those displayed in the empirical observations. Second, sample trajectories allow one
to judge on the qualitative performance of the calibrated model and to compute sim-
ulated moments of various orders for the daily price variations. This is used for moment
matching in the last step of the calibration procedure. Third, simulations provide a
robustness analysis of the estimation procedure: parameters of a calibrated model can
be reestimated over simulated paths. The closer to the original values the reestimated
ones are, the more robust the likelihood estimation procedure is. We detail a simulation
algorithm for sampling a path defined by equation (1). The Euler approximation of
the stochastic differential equation (1) over a discrete set of evenly spaced sample
times ist , … , t1 N

�E p E � Dm(t ) # D � v [m(t ) � E ] # D � j DN� h(t ) # 1 # J,k�1 k k 1 k k k i

where N is a sample from a standard normal distribution and J is a sample from
. The function 1i is either one or zero according to whether is, or is not, ap(7, v ) t3 i

jump time of the process. In order to sample jump times of a point process with
nonconstant deterministic intensity, we may first simulate jump times of a constant
intensity Poisson process and then use a variation of the “acceptance-rejection” method
to make sure that these are statistically identical to the required sample set of times.
More precisely, on a given horizon [0, T], we generate interarrival times �i until their
sum exceeds T. Each �i is a sample from an exponential distribution with parameter

. Candidate jump times are defined by approximating each∗ ′i p max i(t) tt�[0,T] k

to the closest element in the set of sample times . For each k, we
k� � {t , … , t }i 1 Nip1

draw a uniform random variable on and accept if ; otherwise∗ ′ ′U [0, i ] t U ≤ i(t )k k k k

we reject it. The set of selected times is hence a sample sequence of the(t , … , t )1 n

jump times for a compound jump process with intensity function i(t). Consequently,
if , for some . This completes the description of the sim-1 p 1 t p t k p 1, … , ni i k

ulating algorithm for any calibrated solution of equation (1).
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