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The Impact of Overnight Periods on Option
Pricing

Mark-Jan Boes, Feike C. Drost, and Bas J. M. Werker∗

Abstract

This paper investigates the effect of closed overnight exchanges on option prices. During
the trading day, asset prices follow the literature’s standard affine model that allows for
stochastic volatility and random jumps. Independently, the overnight asset price process
is modeled by a single jump. We find that the overnight component reduces the variation
in the random jump process significantly. However, neither the random jumps nor the
overnight jumps alone are able to empirically describe all features of option prices. We
conclude that both random jumps during the day and overnight jumps are important in
explaining option prices, where the latter account for about one quarter of total jump risk.

I. Introduction

As a result of the shortcomings in the classical Black-Scholes model for op-
tion pricing, two streams of literature can be identified. The first stream extends
the Black-Scholes framework to time-varying volatility and the occurrence of ran-
dom jumps in the underlying stock price process. Hull and White (1987) derive
option prices in a stochastic volatility model under the assumption that volatility
risk is idiosyncratic. Heston (1993) gives closed-form option pricing formulas
using a mean-reverting volatility process and an explicit volatility risk premium.
Parallel to this, Merton (1976) motivates the occurrence of abnormal events by a
jump component in the underlying stock price process. That paper discusses the
implications for option pricing in case jumps are modeled as a compound Poisson
process and under the assumption that jump risk is not priced in the market. The
models derived in Heston (1993) and Merton (1976) can be merged in the affine
jump diffusion framework of Duffie, Pan, and Singleton (2000), where asset re-
turns and variances are driven by a finite number of state variables. The second
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stream of literature uses more general Lévy processes instead of Brownian mo-
tion and the compound Poisson process as driving factors for asset returns. If the
parsimonious variance gamma process is assumed to be the stochastic process for
underlying stock returns, Madan, Carr, and Chang (1998) derive closed-form ex-
pressions for the density of asset returns and option prices. Stochastic volatility
models driven by Lévy processes are studied in Carr, Geman, Madan, and Yor
(2003), among others.

From the empirical results concerning the aforementioned models, it is ev-
ident that jumps are important in explaining characteristics of asset returns and
option prices (see, for example, Bakshi, Cao, and Chen (1997), Pan (2002), An-
dersen, Benzoni, and Lund (2002), and Madan, Carr, and Chang (1998)). Using
a parametrically specified pricing kernel, Pan (2002) provides evidence that both
volatility risk and jump risk are priced in the SPX options market. Coval and
Shumway (2001) end up with a similar conclusion using returns on option posi-
tions. These positions are constructed such that the value of the positions is only
sensitive to changes in the two risk factors. The Lévy literature also provides sup-
port for priced volatility and jump risk since the parameter estimates under the
objective and the risk-neutral measure are generally significantly different. For
instance, Madan, Carr, and Chang (1998) find significant negative skewness un-
der the risk-neutral probability measure, while this is not present in their objective
parameter estimates. The differences between the objective and the risk-neutral
distributions are indicative of the presence of a price for crash risk in options mar-
kets. However, it is not always obvious how to infer market prices of risk from the
estimation results because a parametric pricing kernel that defines risk prices is
usually not specified in this literature. On the whole, it is clear from both streams
of literature that jumps, next to stochastic volatility, are important in explaining
observed patterns in asset returns and option prices.

The present paper considers the jump process in more detail by focusing on
jumps in asset prices that are inherent to overnight market closure. Most of the
empirical research cited above uses daily returns. These returns are calculated us-
ing the last tick price on the exchange of each trading day. However, the exchange
is closed a large part of the day and information that arrives during the closing
time cannot be immediately incorporated in stock and option prices. For instance,
European investors use information revealed in U.S. stock markets by submitting
orders to their exchange before the opening. This means that the opening price
of the exchange reflects overnight information. The effect of market closure on
stock (index) returns has been considered extensively in the literature.1 Impor-
tant findings are that i) open-to-open returns are more volatile than close-to-close
returns (see, for instance, Amihud and Mendelson (1987), (1991), Stoll and Wha-
ley (1990), and Cao, Choe, and Hatheway (1997)), ii) weekend returns are lower
than weekday returns (see, for example, French (1980), Gibbons and Hess (1981),
and Keim and Stambaugh (1984)), and iii) returns over trading periods are more
volatile than returns over nontrading periods (see, among others, Fama (1965),

1In most studies that treat the effects of market closure on stock returns, nontrading periods are
exogenously determined by the closing time of the exchanges. An alternative is provided in Jones,
Kaul, and Lipson (1994), who define nontrading periods as periods where exchanges are open, but
traders choose not to trade.
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French and Roll (1986), Oldfield and Rogalski (1980), and Amihud and Mendel-
son (1991)). However, the influence of market closure on option pricing has not
been treated yet.

In this paper, we stress the difference in information by using alternative
processes driving intraday and overnight returns, respectively. In particular, in the
spirit of Andersen, Benzoni, and Lund (2002), we assume a continuous part with
stochastic volatility (reflecting the normal vibrations in the stock price) and a jump
part (modeling the arrival of important new information) during the day. Further-
more, the “normal” overnight change in the stock price is modeled by means of
a single jump. We investigate the theoretical and empirical implications of this
added factor on option prices. This paper is related to Dubinsky and Johannes
(2005) who propose a model that includes jumps at fixed points in time. Those
time points are the earnings announcement dates of firms. As a consequence, the
analysis in the paper is performed for single stock options. The paper finds in-
creased volatility around these announcement dates, which affects option prices.
Although we do not provide a formal analysis along these lines, it seems that both
effects are complimentary.

We find, for the SPX market over two separate periods, that both random
jumps and overnight jumps are important for option pricing. In particular, the
overnight jump component accounts for approximately one quarter of total jump
variation. Moreover, the inclusion of overnight jumps leads to different parameter
estimates for the stochastic volatility and random jump part of the stock price
process. This will have important consequences for hedging these risks.

The organization of the paper is as follows. Section II provides the theoret-
ical formulation and motivation of the model under both the objective and risk-
neutral measure. We also give a closed-form option pricing formula in the spirit
of Heston (1993). Section III describes the data and discusses the estimation pro-
cedure. In Section IV, the empirical results are presented. Section V concludes.
Mathematical details are gathered in the Appendix.

II. The Overnight Jump Model

A. Stock Price Process

Worldwide financial markets do not allow for continuously trading stocks,
interest rates products, and derivatives. Trading usually starts in the local time
morning hours and ends in the late afternoon or in the evening. Of course, it is
possible for individual and institutional investors to do 24-hour trading all over
the world: by the time London closes, Wall Street is already open and when the
U.S. markets stop trading, Asian exchanges have already opened their doors. Due
to increasing globalization and financial market integration, economies and firms
from various countries are interrelated. As a consequence, changes in the value of
financial instruments on different exchanges are not independent. This does not
only hold if exchanges are open simultaneously, but also if one market is closed.
In case an exchange is closed, relevant news cannot be immediately incorporated
in prices. For instance, a high closing of stocks traded on the Dow Jones usually
has a positive effect on stock price openings in Europe. All news that is important
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for the value of a particular stock should ideally be processed in the opening price
of the stock. The difference between the closing price and the opening price the
next day can be seen as a measure of the revealed information all over the world
during the overnight period.2

Up to now, the overnight period in financial markets has not been considered
in the derivative pricing literature. This paper tries to fill this gap by explicitly
modeling this period through an additional jump process.

Asset managers tend to leave their active cash on an overnight bank account.
Overnight accounts are used for two reasons. First, asset managers earn interest
on their cash position. Second, asset managers have the cash (almost) always
available. The specifics of overnight deposits on borrowings differ across markets
worldwide. For instance, in the eurozone, asset managers are allowed to drop
their cash until 5PM on an overnight account. The cash can be withdrawn again
immediately after midnight. The overnight rate is the shortest term interest rate.
Overnight interest rates are determined by supply and demand together with the
central bank’s repo rate and the liquidity supply of the central bank. In this paper,
a separate overnight rate is not explicitly incorporated in the price processes be-
cause the overnight rate is not exactly an interest rate that is earned between the
closing and the opening of the stock exchange. Moreover, it is well known that
interest rates only marginally affect the prices of the plain vanilla options we are
interested in. Therefore, we assume that the money market process is given by

dBt

Bt
= rdt,(1)

i.e., Bt = exp(rt).
In this paper, we use the equivalent martingale method for pricing options. In

comparison to the standard Black and Scholes (1973) framework, there are added
risk factors that make the market incomplete with respect to the traded financial
securities. A consequence is the non-uniqueness of the equivalent martingale
measure Q. Motivated by, for example, the Breeden (1979) consumption-based
model, the value process of the underlying in transaction time under the risk-
neutral probability measure Q is defined by

2There are important differences in market opening procedures among exchanges. Specifically,
on the NYSE a stabilized auction market opens trading, while on the NASDAQ a quote-driven, dealer
market mechanism is used for all transactions during the trading day. However, even though there
is no formal call market opening on the NASDAQ, the open of trade is preceded by a pre-opening
session that facilitates price discovery. Greene and Watts (1996) and Masulis and Shivakumar (1997)
examine the differences in close-to-open price reaction to overnight news announcements across these
markets. Greene and Watts (1996) find that the opening procedure on the NASDAQ leads to prices that
incorporate more of the overnight information. In addition, Masulis and Shivakumar (1997) report that
the NASDAQ reacts faster to overnight seasoned equity offering announcements. Cao, Ghysels, and
Hatheway (2000) conclude that the more rapid price adjustment on the NASDAQ is a consequence of
the pre-opening session.
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{Nt} with

Nt ∼ Poisson (λt) .

Both
{
WS

t

}
and {Nt} are also assumed to be independent of sequences of jumps

{Yi} and {Vi}. Note that the volatility model with jumps of Bakshi, Cao, and
Chen (1997) and Andersen, Benzoni, and Lund (2002) is obtained by deleting
the last sum covering the overnight jump part in (2). The time-varying volatility
process

{
σ2

t

}
will be defined below.

The random jump distribution of the Ys is parametrized such that a single
jump multiplies, in expectation, the price by 1 +μRJ. On a yearly basis, due to the
random number of jumps, this implies an expected instantaneous drift term that
needs to be compensated in (2) to keep the martingale property of the discounted
price process. The expected number of random Y-jumps during one calendar year
(in addition to the 252 V-jumps) is equal to λ.

Our contribution consists of an extra jump term that is added to the stock
price process. For simplicity, we count weekends as a single night and we have
252 days a year. At each time, which is a multiple of 1/252, an overnight period
is inserted. Each overnight period results in an additional stock return that is
reflected by the jump Vi. Finally, note as required that the Q-expected yearly
return on the stock price in our model is given by

Et St+1/St = exp(r).

The specification of the stochastic variance process in (2) is taken from Hes-
ton (1993),

dσ2
t = −κ

(
σ2

t − σ2
)
dt + σσσtdWV

t ,(3)

Corrt
(
dWV

t , dWS
t

)
= ρ,

where κ is the speed of mean reversion, σ2 is the long-run mean of the vari-
ance, and σσ is the volatility of volatility. This specification allows for a negative
premium for volatility risk (see, for example, Bakshi and Kapadia (2003)) for the-
oretical and empirical evidence. It has been often observed that a large decline
in the stock price is accompanied by a positive shock in volatility levels. This is
captured by means of a negative parameter ρ.
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B. Option Pricing

Given the risk-neutral processes in (2), a standard plain vanilla call option
can be priced using

Ct = Bt E
Q
t

(
max (ST − X, 0)

BT

)
,

where T is the maturity and X is the strike price of the option. Following Heston
(1993), we show in the Appendix that the pricing formulas for the value of a call
option C and a put option P at time t can be simplified as

C(t, T) = StP1 − Xe−r(T−t)P2,(4)

P (t, T) = Xe−r(T−t) (1 − P2) − St (1 − P1) ,(5)

where the probabilities P1 and P2 are given by (7) and (8). The proof uses the
independence of the overnight process and the intraday process and the fact that
the trading day part of the model is an affine jump diffusion in the spirit of Duffie,
Pan, and Singleton (2000).

III. Data and Estimation

In the previous section, we motivated the different processes describing the
intraday and overnight returns. We focus on the S&P 500 index in two periods:
a low volatility period from January 1, 1992 until August 27, 1997 and a high
volatility period from July 9, 1999 until November 27, 2003.

To assess the effects of market closure in an intuitive and informal way, Ta-
ble 1 shows the sample statistics of the close-to-close, open-to-close, and close-
to-open returns series for the respective sample periods. From the standard devia-
tions in Table 1, it is clear that the overnight return is an important part of the total
daily return in both the first and the second period. As the sample standard devi-
ation of the overnight returns is lower than the standard deviation of the intraday
returns, one may conclude that information important for S&P stocks generally
arrives during trading hours. Information of significant importance during the
night often leads to a high, either positive or negative, return on the S&P 500,
which explains the high kurtosis values of overnight returns in Table 1.

TABLE 1

Summary Statistics of S&P 500 Returns

Table 1 shows summary statistics of S&P 500 returns during the low volatility period January 1, 1992–August 27, 1997,
and the high volatility period July 9, 1999–November 27, 2003.

January 1992–August 1997 July 1999–November 2003

Close-Close Open-Close Close-Open Close-Close Open-Close Close-Open

Average 13.2% 5.5% 7.7% −4.3% −3.5% −0.8%
Std. dev. 10.5% 9.9% 2.7% 20.6% 18.9% 7.9%
Skewness −0.28 −0.26 −2.54 0.13 0.21 0.25
Kurtosis 4.8 4.7 40.8 4.6 5.9 10.4
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Finally, we have the daily closing option quotes of SPX options for both
sample periods. These data are extracted from the ABN-AMRO Asset Manage-
ment option database. Following Bakshi, Cao, and Chen (1997), for each day
in the sample only the mid-price based on the last reported bid-ask quote (prior
to 3:00PM CST) of each option contract is used for estimation. Of course, the
aforementioned S&P 500 index levels are measured at the same time. Following
Jackwerth and Rubinstein (1996), we assume that the dividend amount and tim-
ing expected by the market is identical to the dividends actually paid on the index.
We use interpolated LIBOR rates as a proxy of the risk-free rate.

Table 2 provides descriptive statistics on call and put option prices (stated
in terms of Black-Scholes implied volatilities) that i) have time to expiration of
greater than or equal to six calendar days, ii) have a bid price of greater than or
equal to $3/8, iii) have a bid-ask spread of less than or equal to $1, and iv) have a
Black-Scholes implied volatility greater than zero and less than or equal to 0.70,
and satisfy the arbitrage restriction,

C(t, T) ≥ max
(
0, Ste

−q(T−t) − Xe−r(T−t)
)

,

for call options and a similar restriction for put options. In this formula, X is the
option exercise price, q is the dividend rate, and r is the continuously compounded
intraday risk-free rate.

TABLE 2

Summary Statistics on SPX Call and Put Option-Implied Volatilities

The reported numbers are average implied volatilities of options on the S&P 500 index corresponding to the last tick before
3:00PM and the total number of observations for each maturity category. The sample periods are January 1, 1992–August
27, 1997 and July 9, 1999–November 27, 2003, respectively.

January 1992–August 1997 July 1999–November 2003

Days to Expiration Days to Expiration

Moneyness < 60 60–180 > 180 Subtotal < 60 60–180 > 180 Subtotal

Calls
ITM < 0.97 0.210 0.171 0.140 0.319 0.277 0.252

14,753 14,802 6,821 36,376 12,618 10,918 2,882 26,418

ATM 0.97–1.03 0.136 0.138 0.152 0.222 0.225 0.238
14,611 13,693 5,571 33,875 7,945 6,834 2,906 17,685

OTM > 1.03 0.124 0.118 0.172 0.302 0.234 0.208
4,768 9,380 5,836 19,984 13,886 13,742 2,198 29,826

Subtotal 34,132 37,875 18,228 90,235 34,449 31,494 7,986 73,929

Puts
OTM < 0.97 0.191 0.173 0.172 0.330 0.283 0.249

12,912 14,729 7,065 34,706 14,321 12,132 2,965 29,418

ATM 0.97–1.03 0.137 0.139 0.151 0.220 0.222 0.233
14,690 13,771 5,709 34,170 7,942 6,805 2,906 17,653

ITM > 1.03 0.163 0.125 0.130 0.256 0.220 0.205
8,513 11,259 6,122 25,894 10,223 10,630 2,161 23,014

Subtotal 36,115 39,759 18,896 94,770 32,486 29,567 8,032 70,085

From the numbers in Table 2, well-known patterns in implied volatilities
across strikes and maturities are recognized. The volatility skew or smile is clearly
present for all option categories but one. This exceptional category is probably
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less frequently traded. From the return data in Table 1, it is clear that the 1992–
1997 sample period can be characterized as a low volatility period and the 1999–
2003 sample as a high volatility period. This characterization of both periods also
becomes clear from the implied volatilities in Table 2 since they are consistently
on a higher level across strike prices and maturities in the 1999–2003 sample
period. Christensen and Prabhala (1998), among others, provide evidence for a
high correlation between realized volatility and Black-Scholes implied volatility.

In this paper, we extract information about Q-parameters from the option
prices since our focus is on the influence of overnight jumps on these options.
The practical implementation of the estimation procedure is straightforward and
follows Bakshi, Cao, and Chen (1997). For a particular day t, a set of N op-
tions is chosen for which the closing price is observed. Henceforth, the ith option
price in this set will be denoted by Oobs

it . For all options, related values such as
strike price, remaining time to maturity, risk-free interest rates, and (dividend dis-
counted) value of the underlying are observed as well. Subsequently, we have a
model price of option i at time t, say Omodel

it , that is a function of the structural Q

parameter vector θ = (μRJ , σRJ, λ, σOJ , κ, σ, σσ, ρ) and the unobservable instan-
taneous variance σ2

t . For a particular time t, the estimated parameter vector is
determined from

[
θ̂t, σ̂

2
t

]
= argmin

θ,σ2
t

N∑
i=1

(
Omodel

it − Oobs
it

Oobs
it

)2

.(6)

This objective function implies that we focus on fitting the steepness of the ob-
served (Black-Scholes) implied volatility skews or otherwise stated the tails of the
market-implied risk-neutral distribution (see Britten-Jones and Neuberger (2000)).
The procedure is repeated for each day in both samples resulting in two time series
of estimators. The parameter estimates presented in Section IV are the averages
of these estimates. Note that an advantage of such an approach is that possible
time variation in the parameters is not excluded a priori. This is especially rele-
vant for the overnight jump volatility σOJ as Dubinsky and Johannes (2005) relate
this specifically to macroeconomic or earnings announcements that would lead to
time variation. Similar procedures are applied to option pricing models in Bakshi,
Cao, and Chen (1997) and Madan, Carr, and Chang (1998). In the implementation
of the procedure above, we only use the out-of-the-money options (for low strikes
put options and for high strikes call options) since these options are generally
more liquid than in-the-money options.

IV. Empirical Results

This section provides the estimation results obtained by applying the data
and estimation techniques as described in Section III to the model formulated in
Section II. First, as a benchmark, results are presented for the standard stochas-
tic volatility model (SV) and the stochastic volatility model with random jumps
(SVRJ). These results are followed by a discussion of the results in the extended
model including overnight jumps. The results are presented both in a setting with
only stochastic volatility during the day (SVOJ) as well as in a setting where ran-
dom jumps are possible (SVRJOJ).



Boes, Drost, and Werker 525

A. Standard Option Pricing Models

We present the results for the SV and SVRJ models in order to make them
comparable to, for instance, those of Bakshi, Cao, and Chen (1997). Their model
specification and their estimation techniques are similar to the ones that are em-
ployed in this section. For both sample periods described in Section III, Table 3
gives an overview of the estimation results of the risk-neutral parameters.

For the SV model, Table 3 confirms that the average instantaneous volatility
in the 1992–1997 sample is low in comparison to, for example, the estimated val-
ues in Bakshi, Cao, and Chen (1997) over the period June 1988 to May 1991. In
the 1999–2003 sample, the average instantaneous volatility is higher. In compari-
son to Bakshi, Cao, and Chen (1997) and Broadie, Chernov, and Johannes (2005),
the parameters σσ , κ, and σ are also estimated differently. For instance, Bakshi,
Cao, and Chen (1997) estimate σσ equal to 0.39 while this parameter in Broadie,
Chernov, and Johannes (2005) is estimated at a level of 2.82 in a stochastic volatil-
ity model. One obvious explanation for these differences is the different sample
periods used. Furthermore, Bakshi, Cao, and Chen (1997) focus on absolute pric-
ing errors while in this section relative pricing errors are considered (see (6)). By
using relative pricing errors, the misspecification of the SV model becomes more
apparent since a high value of σσ is necessary to fit empirically observed implied
volatility curves.

TABLE 3

Implied Average Parameter Estimates in the SV, SVRJ, SVOJ, and SVRJOJ Models

Table 3 shows the implied average parameter estimates in the SV, SVRJ, SVOJ, and SVRJOJ models using option data
on the S&P 500 from the low volatility period January 1, 1992–August 27, 1997 and the high volatility period July 9,
1999–November 27, 2003. Standard deviations of the daily parameter estimates are given in brackets.

January 1992–August 1997 July 1999–November 2003

SV SVRJ SVOJ SVRJOJ SV SVRJ SVOJ SVRJOJ

μRJ −6.3% −7.0% −11.5% −8.8%
(3.9%) (3.6%) (7.6%) (6.0%)

σRJ 8.8% 6.8% 13.8% 11.2%
(4.2%) (2.8%) (10.0%) (6.6%)

λ 0.60 0.56 0.63 1.21
(0.05) (0.40) (0.11) (1.06)

σOJ 7.6% 5.0% 6.8% 7.5%
(2.9%) (2.7%) (5.0%) (4.5%)

κ 1.67 3.55 1.64 3.30 1.60 3.90 1.74 3.33
(0.96) (1.00) (0.11) (1.09) (0.51) (0.11) (0.21) (3.57)

σ 16.0% 11.6% 16.0% 11.4% 15.9% 11.3% 15.9% 12.1%
(4.3%) (3.5%) (0.9%) (5.0%) (1.5%) (3.1%) (1.5%) (5.1%)

σσ 61.1% 40.0% 91.9% 51.8% 86.8% 39.3% 81.3% 55.5%
(18.7%) (30.0%) (31.3%) (29.2%) (18.7%) (11.2%) (36.3%) (41.9%)

ρ −0.69 −0.59 −0.90 −0.70 −0.64 −0.53 −0.89 −0.72
(0.15) (0.20) (0.16) (0.21) (0.18) (0.07) (0.13) (0.22)

σt 14.4% 11.7% 11.8% 9.6% 24.8% 20.2% 22.0% 17.6%
(3.0%) (3.2%) (3.5%) (3.4%) (5.3%) (5.0%) (6.8%) (7.5%)

SSE 0.70 0.16 0.39 0.12 0.70 0.22 0.48 0.11
(0.58) (0.15) (0.36) (0.09) (0.66) (0.31) (0.50) (0.14)

To address this issue in more detail, consider the typical situation where
the option-implied volatility curve for short-term options is downward sloping in
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the strike price for low levels of the strike price.3 The steepness of the implied
volatility curve provides information about the risk-neutral distribution of the un-
derlying index at the maturity date. The steeper the implied volatility curve for a
certain strike price region, the more probability mass in that particular region of
the implied risk-neutral distribution.

There is an enormous literature on methodologies that extract information
about the risk-neutral distribution from option prices (see, for example, Coutant,
Jondeau, and Rockinger (1998), Jackwerth (1999), Britten-Jones and Neuberger
(2000), Anagnou, Bedendo, Hodges, and Tompkins (2002), Bliss and Panigirt-
zoglou (2002), and Panigirtzoglou and Skiadopoulos (2004)). Because squared
relative errors are minimized, the fit of cheaper options (short-term OTM puts
and calls) is relatively more important compared to the more expensive options
in the sample (long-term ATM and ITM puts and calls). Stated differently, the
focus is more on the tails of the market-implied risk-neutral distribution. The
negative slope of the implied volatility curve for short-term options forces the op-
timization algorithm to choose parameter values that are able to generate negative
skewness in the risk-neutral distribution. The desired skewness can be obtained
both from ρ and σσ . In more detail, the SV estimates would imply a volatility of
volatility σσσt of 9% in the low volatility period and a volatility of volatility of
22% in the high volatility period, while using empirical data volatility of volatil-
ity is estimated around 5% in low volatility markets and 12% in high volatility
markets.4 Although the estimate of σσ differs from the estimates in Bakshi, Cao,
and Chen (1997), Bates (2000), and Broadie, Chernov, and Johannes (2005), the
conclusion is the same: the volatility of volatility parameter σσ is estimated at too
high a level to be consistent with time-series estimates in, for instance, Andersen,
Benzoni, and Lund (2002), Chernov, Gallant, Ghysels, and Tauchen (2003), and
Eraker, Johannes, and Polson (2003). The latter study reports the highest estimate
of σσ = 14% in a stochastic volatility model.

The estimation results show that part of the misspecification in the SV model
is solved by adding random jumps to the option’s underlying value. Compared to
the SV estimates, the parameter estimates of σσ and ρ are much smaller in the
SVRJ model, which is due to the appearance of (on average) negative jumps that
capture (part of) the negative skewness in the implied risk-neutral distribution.
A similar conclusion can be found in Bakshi, Cao, and Chen (1997) and Bates
(2000). These studies also find that adding jumps to the risk-neutral return pro-
cess leads to lower estimates of ρ and σσ . The three-parameter random jump
size process combined with stochastic volatility is superior to the SV model in
describing the tails of the market-implied risk-neutral distribution and fitting the
option data.

Comparing the results for both sample periods, the parameter estimates show
that the instantaneous volatility in the SVRJ models is lower on average than in
the SV model. This is intuitively correct since the total variation in the underlying

3For shorter maturities, the option-implied volatility curve usually has a smile shape (see Table 2
and Tompkins (2001)) and, hence, the option-implied volatility curve is not downward sloping over
the whole range of strike prices.

4These estimates are based on the standard deviation of the at-the-money Black-Scholes implied
volatilities of the data described in Section III.
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value is now divided in the variation of a jump component and the variation that
stems from the stochastic volatility part of the model. The variance in the log
return due to the jumps is given by

var

(
Nt+1−Nt∑

i=1

logYi

)
= λσ2

RJ + λ

(
log (1 + μRJ) − 1

2
σ2

RJ

)2

.

The full variance decomposition for the SVRJ model is presented in Table 4,
which shows that the variance due to the random jump part is given by 0.007 and
0.023 in the respective sample periods. Taking σ2

t as a proxy of the variance of the
continuous part of the underlying value process, approximately one third of the
total variance is due to random jumps. Moreover, if the variance of the random
jump part is added to the estimate of σ2

t , then for both samples the total variance
in the SV model (0.021 in the first and 0.062 in the second sample period) is
comparable to the total variance in the SVRJ model.

TABLE 4

Variance Decomposition of the SVRJ and SVRJOJ Models

Table 4 shows the variance decomposition of the SVRJ and SVRJOJ models for the 1992–1997 and 1999–2003 sample
periods. The numbers are based on the implied parameter estimates of Table 3.

1992–1997 1999–2003

SVRJ SVRJOJ SVRJ SVRJOJ

Continuous part 0.014 0.009 0.041 0.031
Random jump part 0.007 0.006 0.023 0.027
Overnight jump part 0.003 0.006
Total 0.021 0.017 0.063 0.063
Volatility 11.7% 9.6% 20.2% 17.6%
Objective function 0.163 0.121 0.216 0.108

Summarizing, the results of this subsection show that the parameter esti-
mates in the SVRJ model are in line with the findings of Bakshi, Cao, and Chen
(1997), Bates (2000), and Broadie, Chernov, and Johannes (2005). The addition
of the random jump component stabilizes the stochastic volatility parameters to
more reasonable levels and, hence, reduces the misspecification of the model.
Compared to time-series estimates, the volatility of volatility parameter is still
estimated at too large a value. This indicates misspecification of the risk-neutral
volatility process that possibly could be solved by adding jumps to the volatility
process. Eraker, Johannes, and Polson (2003) find strong evidence for jumps in
volatility by using index returns.

B. Option Pricing Models with Overnight Jumps

As the goal of the present subsection is to assess the importance of overnight
trading halts for derivative pricing, the estimation results for the SVOJ and SVRJOJ
models are compared with the results in the previous subsection.

Table 3 shows that the parameter estimates in the SVOJ model are quite sim-
ilar to the ones resulting from the SV model. Again, just as discussed for the SV
model, the parameters σσ and ρ are extreme in the SVOJ model. Unlike a model
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with Poissonian jumps, overnight jumps at fixed times lead to a normal jump
distribution without skewness. Note that the (objective) skewness and kurtosis
estimates in Table 1 give (albeit indirect) evidence of a nonnormal jump distribu-
tion. Moreover, as already observed in the SVRJ model, the attributed proportion
of the total variance due to jumps is approximately one third. Especially in the
second sample period, the SVOJ model fails to reproduce this result. Taking σt

as a proxy of the standard deviation of the continuous part, the total variance is
given by σ2

t + σ2
OJ . Using this it follows that the jump proportion of the variance

is slightly less than one third (29%) in the first period, but that it is far too low
(9%) in the second period. Since jumps play a more dominant role in high volatil-
ity periods, this once more indicates that the SVOJ model is misspecified. A final
objection against the SVOJ model is the fit to the option data. Of course, the SVOJ
model beats the classical SV model, but the increased fit due to overnight jumps
although not negligible is low in comparison to the inclusion of random jumps as
in the SVRJ model. All this leads to the conclusion that replacement of the ran-
dom jumps in the SVRJ model by overnight jumps is not sufficient. However, the
question of whether overnight jumps influence option prices remains open. This
issue will be tackled now.

The SVRJOJ model clearly outperforms the models discussed before. In
comparison to the SV, SVRJ, and SVOJ models, the SVRJOJ model considerably
improves the fit of option prices in both sample periods. The addition of random
jumps to the SVOJ model has the same effect on the parameters σσ and ρ as the
addition of random jumps to the SV model. The reasoning is also the same: the
random jump part captures (part of) the negative skewness in the risk-neutral dis-
tribution required to fit option prices that otherwise could only be captured by
extreme values of σσ and ρ. Comparing the remaining parameters in the SVRJOJ
model with the SVRJ model leads to several conclusions. Since overnight jumps
are included, the parameter estimates of the random jump distribution are less
dominant and since the total variance has to be divided over three terms, the esti-
mated variance of the continuous part diminishes. One striking difference is the
change in the estimated intensity λ. In the first sample period, the estimated value
decreases as expected since additional jumps are added. However, in the high
volatility period, the intensity is almost doubled compared to the SVRJ model.
This effect is greatly offset by the much lower value of σRJ . Possibly, in high
volatility periods the introduction of overnight jumps allows the model to fit many
more small jumps. The addition of overnight jumps comes at the cost of a worse
empirical identifiability of λ. This is reflected by the higher standard deviation of
the estimate of λ in the SVRJOJ model compared to the SVRJ model.

In the same spirit as in the previous subsection, the total risk-neutral variance
of the log return can be split into three parts: a first component from the stochastic
volatility term σt and two remaining components from both the random jumps
and the overnight jumps. The trading period’s variance consists of the variance
of the continuous component (stochastic volatility) and (part of) the random jump
component. The nontrading overnight period variance is due to the remaining part
of the random jump component and the overnight jumps.

Given the estimates of the SVRJOJ model in Table 3, the variance decom-
position is provided in Table 4. The estimated variances due to the jumps are
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0.009 and 0.032 in the respective periods. These values can be split into a vari-
ance of 0.006 (0.027) attributed to the random jumps and 0.003 (0.006) due to
the overnight jumps in the first (second) sample period. The proportion of the
total variance attributed to jumps has increased to around 50% in both sample
periods compared to the SVRJ model. On average, one quarter of this part has
to be attributed to the overnight jumps, once more indicating that the inclusion of
overnight jumps is non-negligible.

This section shows that the most appealing model is clearly the SVRJOJ
model, which allows for difference in intraday asset return variance and overnight
asset return variance. The SVRJOJ model fits empirical option prices best in
two different sample periods. Since this model contains the overnight jump part,
which covers approximately one quarter of total jump variance, the estimation
results show that overnight periods are important and have a considerable impact
on option prices. The economic content of this result is that the risk of overnight
closures is identifiable from option prices. Investors that have positions in these
options are faced with an additional and undiversifiable source of risk that was
previously attributed to random jump risk.

V. Conclusion

We present an option pricing model that explicitly models the influence of
nontrading overnight periods on option prices. One of the main conclusions is
that both random jumps during trading periods and the overnight jump are impor-
tant in explaining observed option prices. We show that in two sample periods, of
which the first can be characterized as a period of low volatility and the second as
a period of high volatility, the added jump component covers a significant amount
of the variation in the underlying value (risk-neutral) process. In more detail, the
results show that the overnight jump part covers approximately one quarter of to-
tal jump variation. Moreover, 50% of the daily variance is explained by jumps
that are either random or overnight. Furthermore, the empirical results reveal that
models including the overnight jump component give a better fit of empirical op-
tion prices than the traditional pricing models. Finally, the results show that a
model containing only overnight jumps in combination with stochastic volatility
has the same problem as a pure stochastic volatility model: the estimated volatil-
ity of volatility is too large in comparison to the volatility of volatility extracted
from volatility series. Hence, this paper concludes that total jump risk should be
separated into random jump risk and overnight jump risk.

Appendix. Option Pricing Formula

We derive the theoretical formula for a plain vanilla call option given the risk-neutral
process in (2). The put price follows similarly. Using Ito’s Lemma, the stochastic differ-
ential of log St is

d log St =

�
r − 1

2
σ2

t

�
dt + σtdWS

t + d

�
Nt�

i=1

log Yi

�
− λμRJdt + d

�
��252t��

i=1

log Vi

�
	 .



530 Journal of Financial and Quantitative Analysis

Following Scott (1997), the call option value formula is given by

C(t, T) = Bt Et

�
max (ST − X, 0)

BT

�

= StP1 − e−r(T−t)XP2,

where

P1 =

∞

X

ST

Et(ST)
pt(ST)dST ,

P2 = Pt(ST > X).

Since the probability density function is unknown under our assumptions regarding the
evolution of stock and money market, Fourier inversion techniques are used to derive ex-
pressions for P1 and P2 (see Bakshi and Madan (2000)). For P2, this gives

P2 =
1
2

+
1
π

∞

0

Re

�
exp (−iα log X)ϕ (α)

iα

�
dα,(7)

where ϕ (α) denotes the characteristic function of the random variable log ST , i.e., ϕ (α)=
Et exp (iα log ST). The probability P1 will be obtained later from P2. Given the process of
log St above, ϕ (α) can be written with τ = T − t as

ϕ(α) = Et {exp (iα log ST)} ,

= Et

��

exp

�
�iα

�
�log St + rτ − 1

2

T

t

σ2
udu +

T

t

σudWS
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+
NT�
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log Yi − λμRJτ +
�252T��
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�
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iα
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log Yi − λμRJτ

���
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The characteristic functions of the various parts will be derived separately. The first part is
equal to formula (17) in Heston (1993), i.e.,

Et

��

exp

�
�iα

�
�log St + rτ − 1

2

T

t

σ2
udu +

T

t

σudWS
u

�
	
�
	
��
�

= exp
�
C (τ ; α) + D (τ ; α) σ2

t + iα log St

�
,

where

C (τ ; α) = riατ +
κσ2

σ2
σ

�
(κ − ρσσiα + d) τ − 2 log

�
1 − gedτ

1 − g

��
,

D (τ ; α) =
κ − ρσσ iα + d

σ2
σ

1 − edτ

1 − gedτ
,
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and

g =
κ − ρσσiα + d
κ − ρσσiα − d

,

d =

�
(ρσσiα − κ)2 + σ2

σ (iα + α2).

The random jump part of the model is described by means of a compensated compound
Poisson process. The lognormal distribution of the jump sizes Yi determines the character-
istic function, still with τ = T − t, as

Et

�
exp

�
iα

�
NT�

i=Nt+1

log Yi − λμRJτ

���
=

exp

�
λτ

�
(1 + μRJ)

iα exp

��
iα
2

�
(iα − 1) σ2

RJ

�
− 1

�
− iαλμRJτ

�
.

The expression for the characteristic function of the fixed jump part is more tractable
since (relative to the random jump part) one source of randomness disappears. The char-
acteristic function then can be calculated, using the lognormal jump sizes Vi, as

Et

��

exp

�
�iα

�252T��
i=�252t�+1

log Vi

�
	
��
� = exp

�
−1

2
α (α + i) nσ2

OJ/252

�
,

where n = �252T� − �252t�. The characteristic function of the terminal stock price is
determined and can be used to obtain P2 in the option pricing formula.

In order to obtain P1, observe the following lemma with Y = log ST .

Lemma A.1. Let Y be a random variable whose distribution has density p and characteristic
function ϕ and for which E {exp (Y)} < ∞. Define the distribution F by its survival
function,

1 − F (z) =

∞

z

exp (y)

E {exp (Y)}p (y) dy.

Then, F has characteristic function ϕ̃ with

ϕ̃ (α) =
ϕ (α − i)

E {exp (Y)} .

Proof. Let Z have distribution function F and density

f (z) =
exp (z) p (z)

E {exp (Y)} .

Now

ϕ̃ (α) = E exp (iαZ) =

∞

−∞

exp (iαz)
exp (z) p (z)

E {exp (Y)}dz

=

∞

−∞

exp (i (α − i) z)

E {exp (Y)} p (z) dz =
E exp {i (α − i)Y}

E {exp (Y)}

=
ϕ (α − i)

E {exp (Y)} ,
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which concludes the proof.

Comparable to (7), this leads to

P1 =
1
2

+
1
π

∞

0

Re

�
exp (−iα log X) ϕ (α − i)

iαϕ (−i)

�
dα.(8)
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