281 research outputs found

    Vagueness and referential ambiguity in a large-scale annotated corpus

    Get PDF
    In this paper, we argue that difficulties in the definition of coreference itself contribute to lower inter-annotator agreement in certain cases. Data from a large referentially annotated corpus serves to corroborate this point, using a quantitative investigation to assess which effects or problems are likely to be the most prominent. Several examples where such problems occur are discussed in more detail, and we then propose a generalisation of Poesio, Reyle and Stevenson’s Justified Sloppiness Hypothesis to provide a unified model for these cases of disagreement and argue that a deeper understanding of the phenomena involved allows to tackle problematic cases in a more principled fashion than would be possible using only pre-theoretic intuitions

    Challenges for automatically extracting molecular interactions from full-text articles

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The increasing availability of full-text biomedical articles will allow more biomedical knowledge to be extracted automatically with greater reliability. However, most Information Retrieval (IR) and Extraction (IE) tools currently process only abstracts. The lack of corpora has limited the development of tools that are capable of exploiting the knowledge in full-text articles. As a result, there has been little investigation into the advantages of full-text document structure, and the challenges developers will face in processing full-text articles.</p> <p>Results</p> <p>We manually annotated passages from full-text articles that describe interactions summarised in a Molecular Interaction Map (MIM). Our corpus tracks the process of identifying facts to form the MIM summaries and captures any factual dependencies that must be resolved to extract the fact completely. For example, a fact in the results section may require a synonym defined in the introduction. The passages are also annotated with negated and coreference expressions that must be resolved.</p> <p>We describe the guidelines for identifying relevant passages and possible dependencies. The corpus includes 2162 sentences from 78 full-text articles. Our corpus analysis demonstrates the necessity of full-text processing; identifies the article sections where interactions are most commonly stated; and quantifies the proportion of interaction statements requiring coherent dependencies. Further, it allows us to report on the relative importance of identifying synonyms and resolving negated expressions. We also experiment with an oracle sentence retrieval system using the corpus as a gold-standard evaluation set.</p> <p>Conclusion</p> <p>We introduce the MIM corpus, a unique resource that maps interaction facts in a MIM to annotated passages within full-text articles. It is an invaluable case study providing guidance to developers of biomedical IR and IE systems, and can be used as a gold-standard evaluation set for full-text IR tasks.</p

    One, no one and one hundred thousand events: Defining and processing events in an inter-disciplinary perspective

    Get PDF
    We present an overview of event definition and processing spanning 25 years of research in NLP. We first provide linguistic background to the notion of event, and then present past attempts to formalize this concept in annotation standards to foster the development of benchmarks for event extraction systems. This ranges from MUC-3 in 1991 to the Time and Space Track challenge at SemEval 2015. Besides, we shed light on other disciplines in which the notion of event plays a crucial role, with a focus on the historical domain. Our goal is to provide a comprehensive study on event definitions and investigate which potential past efforts in the NLP community may have in a different research domain. We present the results of a questionnaire, where the notion of event for historians is put in relation to the NLP perspective

    A multi-level methodology for the automated translation of a coreference resolution dataset: an application to the Italian language

    Get PDF
    In the last decade, the demand for readily accessible corpora has touched all areas of natural language processing, including coreference resolution. However, it is one of the least considered sub-fields in recent developments. Moreover, almost all existing resources are only available for the English language. To overcome this lack, this work proposes a methodology to create a corpus for coreference resolution in Italian exploiting knowledge of annotated resources in other languages. Starting from OntonNotes, the methodology translates and refines English utterances to obtain utterances respecting Italian grammar, dealing with language-specific phenomena and preserving coreference and mentions. A quantitative and qualitative evaluation is performed to assess the well-formedness of generated utterances, considering readability, grammaticality, and acceptability indexes. The results have confirmed the effectiveness of the methodology in generating a good dataset for coreference resolution starting from an existing one. The goodness of the dataset is also assessed by training a coreference resolution model based on BERT language model, achieving the promising results. Even if the methodology has been tailored for English and Italian languages, it has a general basis easily extendable to other languages, adapting a small number of language-dependent rules to generalize most of the linguistic phenomena of the language under examination

    A Survey on Semantic Processing Techniques

    Full text link
    Semantic processing is a fundamental research domain in computational linguistics. In the era of powerful pre-trained language models and large language models, the advancement of research in this domain appears to be decelerating. However, the study of semantics is multi-dimensional in linguistics. The research depth and breadth of computational semantic processing can be largely improved with new technologies. In this survey, we analyzed five semantic processing tasks, e.g., word sense disambiguation, anaphora resolution, named entity recognition, concept extraction, and subjectivity detection. We study relevant theoretical research in these fields, advanced methods, and downstream applications. We connect the surveyed tasks with downstream applications because this may inspire future scholars to fuse these low-level semantic processing tasks with high-level natural language processing tasks. The review of theoretical research may also inspire new tasks and technologies in the semantic processing domain. Finally, we compare the different semantic processing techniques and summarize their technical trends, application trends, and future directions.Comment: Published at Information Fusion, Volume 101, 2024, 101988, ISSN 1566-2535. The equal contribution mark is missed in the published version due to the publication policies. Please contact Prof. Erik Cambria for detail

    Embedding Predications

    Get PDF
    Written communication is rarely a sequence of simple assertions. More often, in addition to simple assertions, authors express subjectivity, such as beliefs, speculations, opinions, intentions, and desires. Furthermore, they link statements of various kinds to form a coherent discourse that reflects their pragmatic intent. In computational semantics, extraction of simple assertions (propositional meaning) has attracted the greatest attention, while research that focuses on extra-propositional aspects of meaning has remained sparse overall and has been largely limited to narrowly defined categories, such as hedging or sentiment analysis, treated in isolation. In this thesis, we contribute to the understanding of extra-propositional meaning in natural language understanding, by providing a comprehensive account of the semantic phenomena that occur beyond simple assertions and examining how a coherent discourse is formed from lower level semantic elements. Our approach is linguistically based, and we propose a general, unified treatment of the semantic phenomena involved, within a computationally viable framework. We identify semantic embedding as the core notion involved in expressing extra-propositional meaning. The embedding framework is based on the structural distinction between embedding and atomic predications, the former corresponding to extra-propositional aspects of meaning. It incorporates the notions of predication source, modality scale, and scope. We develop an embedding categorization scheme and a dictionary based on it, which provide the necessary means to interpret extra-propositional meaning with a compositional semantic interpretation methodology. Our syntax-driven methodology exploits syntactic dependencies to construct a semantic embedding graph of a document. Traversing the graph in a bottom-up manner guided by compositional operations, we construct predications corresponding to extra-propositional semantic content, which form the basis for addressing practical tasks. We focus on text from two distinct domains: news articles from the Wall Street Journal, and scientific articles focusing on molecular biology. Adopting a task-based evaluation strategy, we consider the easy adaptability of the core framework to practical tasks that involve some extra-propositional aspect as a measure of its success. The computational tasks we consider include hedge/uncertainty detection, scope resolution, negation detection, biological event extraction, and attribution resolution. Our competitive results in these tasks demonstrate the viability of our proposal

    Generation and Applications of Knowledge Graphs in Systems and Networks Biology

    Get PDF
    The acceleration in the generation of data in the biomedical domain has necessitated the use of computational approaches to assist in its interpretation. However, these approaches rely on the availability of high quality, structured, formalized biomedical knowledge. This thesis has the two goals to improve methods for curation and semantic data integration to generate high granularity biological knowledge graphs and to develop novel methods for using prior biological knowledge to propose new biological hypotheses. The first two publications describe an ecosystem for handling biological knowledge graphs encoded in the Biological Expression Language throughout the stages of curation, visualization, and analysis. Further, the second two publications describe the reproducible acquisition and integration of high-granularity knowledge with low contextual specificity from structured biological data sources on a massive scale and support the semi-automated curation of new content at high speed and precision. After building the ecosystem and acquiring content, the last three publications in this thesis demonstrate three different applications of biological knowledge graphs in modeling and simulation. The first demonstrates the use of agent-based modeling for simulation of neurodegenerative disease biomarker trajectories using biological knowledge graphs as priors. The second applies network representation learning to prioritize nodes in biological knowledge graphs based on corresponding experimental measurements to identify novel targets. Finally, the third uses biological knowledge graphs and develops algorithmics to deconvolute the mechanism of action of drugs, that could also serve to identify drug repositioning candidates. Ultimately, the this thesis lays the groundwork for production-level applications of drug repositioning algorithms and other knowledge-driven approaches to analyzing biomedical experiments
    • 

    corecore