288 research outputs found

    Characterization of Single- and Multi-antenna Wireless Channels

    Get PDF
    The wireless propagation channel significantly influences the received signal, so that it needs to be modeled effectively. Extensive measurements and analysis are required for investigating the validity of theoretical models and postulating new models based on measurements. Such measurements, analysis, and modeling are the topic of this thesis. The focus of the included contributions are Multiple-Input Multiple-Output (MIMO) propagation channels and radio channels for sensor network applications. Paper I presents results from one of the first MIMO measurements for a double-directional characterization of the outdoor-to-indoor wireless propagation channel. Such channels are of interest for both cellular and wireless LAN applications. We discuss physical aspects of building penetration, and also provide statistics of angle and delay spreads in the channel. The paper also investigates the coupling between DOD and DOA and the two spectra are found to have non-negligible dependence. We test the applicability of three analytical channel models that make different assumptions on the coupling between DODs and DOAs. Our results indicate that analytical models, that impose fewer restrictions on the DOD to DOA coupling, should be used preferrably over models such as the Kronecker model that have more restrictive assumptions. Paper II presents a cluster-based analysis of the outdoor-to-indoor MIMO measurements analyzed in Paper I. A subset of parameters of the COST 273 channel model, a generic model for MIMO propagation channels, are characterized for the outdoor-to-indoor scenario. MPC parameters are extracted at each measured location using a high-resolution algorithm and clusters of MPCs are identified with an automated clustering approach. In particular, the adopted clustering approach requires that all MPC parameters must be similar in order for the MPCs to form a cluster. A statistical analysis of the identified clusters is performed for both the intra- and inter-cluster properties. Paper III analyzes the spatial fading distribution for a range of canonical sensor deployment scenarios. The presented results are relevant to communicating within, and between, clusters of nodes. Contrary to the widely accepted assumption in published literature that the channel is AWGN at a small-enough distance, our measurements indicate that values of the Rice factor do not, in general, increase monotonically as the Tx-Rx distance is reduced. A probability mixture model is presented, with distance dependent parameters, to account for the distance dependent variations of the Rice factor. A simulation model that includes small- and large-scale fading effects is presented. According to the modeling approach, a sensor node placed anywhere within the spatial extent of a small-scale region will experience the channel statistics applicable to that region. Paper IV presents results characterizing a radio channel for outdoor short-range sensor networks. A number of antennas are placed on the ground in an open area and time-variation of the channel is induced by a person moving in the vicinity of the nodes. The channel statistics of both the LOS path and the overall narrowband signal are non-stationary. We investigate the stationarity interval length to be used for small-scale analysis. Our analysis of the various measured links shows that the Rx signal strength is significantly influenced by a moving person only when the person blocks the LOS path. We present a generic approach for modeling the LOS blockage, and also model the time-variant Doppler spectrum of the channel's scattered components

    Reconfigurable antennas for wireless network security

    Get PDF
    Large scale proliferation of wireless technology coupled with the increasingly hostile information security landscape is of serious concern as organizations continue to widely adopt wireless networks to access and distribute critical and con dential information. Private users also face more risks than ever as they exchange more and more sensitive information over home and public networks through their ubiquitous wireless-enabled laptops and hand held devices. The fundamental broadcast nature of wireless data transmission aggravates the situation, since unlike wired networks, it introduces multiple avenues for attack and penetration into a network. Though several traditional mechanisms do exist to protect wireless networks against threats, such schemes are a carryover from the traditional wire based systems. Hence vulnerabilities continue to exist, and have been repeatedly demonstrated to be susceptible to failure under di erent circumstances.The resulting uncertainties have led to a signi cant paradigm shift in the design and implementation of wireless security in recent times, among which wireless channel based security schemes have shown the most promise. Channel based security schemes are rooted on the simple fact that a legitimate user and an adversary cannot be physically co-located and hence the underlying multi-path structure corresponding to the two links cannot be the same. However most wireless systems are constrained in terms of bandwidth, power and number of transceivers, which seriously limit the performance of such channel based security implementations. To overcome these limitations, this thesis proposes a new dimension to the channel based security approach by introducing the capabilities of recon gurable antennas. The main objective of this work is to demonstrate that the ability of recon gurable antennas to generate di erent channel realizations that are uncorrelated between di erent modes will lead to signi cant improvements in intrusion detection rates.To this end, two di erent schemes that make use of channels generated by a recon gurable antenna are proposed and evaluated through measurements. The rstscheme is based on associating a channel based ngerprint to the legitimate user to prevent intrusion. The three main components of this scheme are i ) a ngerprint derived from the di erent modes of the antenna, ii ) a metric to compare two ngerprints and iii ) a hypothesis test based on the proposed metric to classify intruders and legitimate transmitters. The second scheme relies on monitoring the statistics of the channels for the legitimate transmitters' links since any intrusion will result in an observable change in the channel's statistics. The problem is posed as a generalized likelihood ratio test (GLRT) which responds to any change in the channel statistics by a large spike in the likelihood ratio's value. The detector's performance is studied as a function of pattern correlation coe cient for both schemes to provide insights on designing appropriate antenna modes for better performance.Moreover this thesis takes a holistic approach to studying the antenna based security schemes. A novel channel modeling approach which combines the cluster channel model and site speci c ray tracer results is proposed and validated to facilitate the analysis of such schemes through simulations without resorting to comprehensive channel measurements. This approach is motivated by the lack of an intuitive and simple channel model to study systems that use recon gurable antennas for any application.Finally the design of a metamaterial based substrate that can help miniaturize antenna arrays and recon gurable antennas is presented. The magnetic permeabilityenhanced metamaterial's capability to miniaturize an antenna's size while maintaining an acceptable level of isolation between elements in an array is experimentallydemonstrated. The bene ts gained in a wireless communication system that uses a patch antenna arrray built on this substrate is quanti ed in terms of mean e ective gain, correlation between the antennas and channel capacity through channel measurements.Despite their capability to signi cantly improve spectral e ciency, the widespread adoption of recon gurable antennas in wireless devices has been hampered by their complexity, cost and size. The work presented in this thesis is therefore intended to serve as a catalyst to the widespread adoption of recon gurable antenna technology by i ) adding value to such antennas by utilizing them for enhancing system security and ii ) providing a mechanism to miniaturize them to facilitate their integration into modern space constrained wireless devices.Ph.D., Electrical Engineering -- Drexel University, 201

    Wi-Fi For Indoor Device Free Passive Localization (DfPL): An Overview

    Get PDF
    The world is moving towards an interconnected and intercommunicable network of animate and inanimate objects with the emergence of Internet of Things (IoT) concept which is expected to have 50 billion connected devices by 2020. The wireless communication enabled devices play a major role in the realization of IoT. In Malaysia, home and business Internet Service Providers (ISP) bundle Wi-Fi modems working in 2.4 GHz Industrial, Scientific and Medical (ISM) radio band with their internet services. This makes Wi-Fi the most eligible protocol to serve as a local as well as internet data link for the IoT devices. Besides serving as a data link, human entity presence and location information in a multipath rich indoor environment can be harvested by monitoring and processing the changes in the Wi-Fi Radio Frequency (RF) signals. This paper comprehensively discusses the initiation and evolution of Wi-Fi based Indoor Device free Passive Localization (DfPL) since the concept was first introduced by Youssef et al. in 2007. Alongside the overview, future directions of DfPL in line with ongoing evolution of Wi-Fi based IoT devices are briefly discussed in this paper

    Channel State Information from pure communication to sense and track human motion: A survey

    Get PDF
    Human motion detection and activity recognition are becoming vital for the applications in smart homes. Traditional Human Activity Recognition (HAR) mechanisms use special devices to track human motions, such as cameras (vision-based) and various types of sensors (sensor-based). These mechanisms are applied in different applications, such as home security, Human–Computer Interaction (HCI), gaming, and healthcare. However, traditional HAR methods require heavy installation, and can only work under strict conditions. Recently, wireless signals have been utilized to track human motion and HAR in indoor environments. The motion of an object in the test environment causes fluctuations and changes in the Wi-Fi signal reflections at the receiver, which result in variations in received signals. These fluctuations can be used to track object (i.e., a human) motion in indoor environments. This phenomenon can be improved and leveraged in the future to improve the internet of things (IoT) and smart home devices. The main Wi-Fi sensing methods can be broadly categorized as Received Signal Strength Indicator (RSSI), Wi-Fi radar (by using Software Defined Radio (SDR)) and Channel State Information (CSI). CSI and RSSI can be considered as device-free mechanisms because they do not require cumbersome installation, whereas the Wi-Fi radar mechanism requires special devices (i.e., Universal Software Radio Peripheral (USRP)). Recent studies demonstrate that CSI outperforms RSSI in sensing accuracy due to its stability and rich information. This paper presents a comprehensive survey of recent advances in the CSI-based sensing mechanism and illustrates the drawbacks, discusses challenges, and presents some suggestions for the future of device-free sensing technology

    A Survey on Cellular-connected UAVs: Design Challenges, Enabling 5G/B5G Innovations, and Experimental Advancements

    Full text link
    As an emerging field of aerial robotics, Unmanned Aerial Vehicles (UAVs) have gained significant research interest within the wireless networking research community. As soon as national legislations allow UAVs to fly autonomously, we will see swarms of UAV populating the sky of our smart cities to accomplish different missions: parcel delivery, infrastructure monitoring, event filming, surveillance, tracking, etc. The UAV ecosystem can benefit from existing 5G/B5G cellular networks, which can be exploited in different ways to enhance UAV communications. Because of the inherent characteristics of UAV pertaining to flexible mobility in 3D space, autonomous operation and intelligent placement, these smart devices cater to wide range of wireless applications and use cases. This work aims at presenting an in-depth exploration of integration synergies between 5G/B5G cellular systems and UAV technology, where the UAV is integrated as a new aerial User Equipment (UE) to existing cellular networks. In this integration, the UAVs perform the role of flying users within cellular coverage, thus they are termed as cellular-connected UAVs (a.k.a. UAV-UE, drone-UE, 5G-connected drone, or aerial user). The main focus of this work is to present an extensive study of integration challenges along with key 5G/B5G technological innovations and ongoing efforts in design prototyping and field trials corroborating cellular-connected UAVs. This study highlights recent progress updates with respect to 3GPP standardization and emphasizes socio-economic concerns that must be accounted before successful adoption of this promising technology. Various open problems paving the path to future research opportunities are also discussed.Comment: 30 pages, 18 figures, 9 tables, 102 references, journal submissio

    State-of-the-art authentication and verification schemes in VANETs:A survey

    Get PDF
    Vehicular Ad-Hoc Networks (VANETs), a subset of Mobile Ad-Hoc Networks (MANETs), are wireless networks formed around moving vehicles, enabling communication between vehicles, roadside infrastructure, and servers. With the rise of autonomous and connected vehicles, security concerns surrounding VANETs have grown. VANETs still face challenges related to privacy with full-scale deployment due to a lack of user trust. Critical factors shaping VANETs include their dynamic topology and high mobility characteristics. Authentication protocols emerge as the cornerstone of enabling the secure transmission of entities within a VANET. Despite concerted efforts, there remains a need to incorporate verification approaches for refining authentication protocols. Formal verification constitutes a mathematical approach enabling developers to validate protocols and rectify design errors with precision. Therefore, this review focuses on authentication protocols as a pivotal element for securing entity transmission within VANETs. It presents a comparative analysis of existing protocols, identifies research gaps, and introduces a novel framework that incorporates formal verification and threat modeling. The review considers key factors influencing security, sheds light on ongoing challenges, and emphasises the significance of user trust. The proposed framework not only enhances VANET security but also contributes to the growing field of formal verification in the automotive domain. As the outcomes of this study, several research gaps, challenges, and future research directions are identified. These insights would offer valuable guidance for researchers to establish secure authentication communication within VANETs
    • …
    corecore