616,057 research outputs found

    Applications of finite geometry in coding theory and cryptography

    Get PDF
    We present in this article the basic properties of projective geometry, coding theory, and cryptography, and show how finite geometry can contribute to coding theory and cryptography. In this way, we show links between three research areas, and in particular, show that finite geometry is not only interesting from a pure mathematical point of view, but also of interest for applications. We concentrate on introducing the basic concepts of these three research areas and give standard references for all these three research areas. We also mention particular results involving ideas from finite geometry, and particular results in cryptography involving ideas from coding theory

    Extension of information geometry for modelling non-statistical systems

    Full text link
    In this dissertation, an abstract formalism extending information geometry is introduced. This framework encompasses a broad range of modelling problems, including possible applications in machine learning and in the information theoretical foundations of quantum theory. Its purely geometrical foundations make no use of probability theory and very little assumptions about the data or the models are made. Starting only from a divergence function, a Riemannian geometrical structure consisting of a metric tensor and an affine connection is constructed and its properties are investigated. Also the relation to information geometry and in particular the geometry of exponential families of probability distributions is elucidated. It turns out this geometrical framework offers a straightforward way to determine whether or not a parametrised family of distributions can be written in exponential form. Apart from the main theoretical chapter, the dissertation also contains a chapter of examples illustrating the application of the formalism and its geometric properties, a brief introduction to differential geometry and a historical overview of the development of information geometry.Comment: PhD thesis, University of Antwerp, Advisors: Prof. dr. Jan Naudts and Prof. dr. Jacques Tempere, December 2014, 108 page

    Fine Scale Simulation of Fractured Reservoirs: Applications and Comparison

    Get PDF
    Imperial Users onl

    Large bandwidth, highly efficient optical gratings through high index materials

    Get PDF
    We analyze the diffraction characteristics of dielectric gratings that feature a high index grating layer, and devise, through rigorous numerical calculations, large bandwidth, highly efficient, high dispersion dielectric gratings in reflection, transmission, and immersed transmission geometry. A dielectric TIR grating is suggested, whose -1dB spectral bandwidth is doubled as compared to its all-glass equivalent. The short wavelength diffraction efficiency is additionally improved by allowing for slanted lamella. The grating surpasses a blazed gold grating over the full octave. An immersed transmission grating is devised, whose -1dB bandwidth is tripled as compared to its all-glass equivalent, and that surpasses an equivalent classical transmission grating over nearly the full octave. A transmission grating in the classical scattering geometry is suggested, that features a buried high index layer. This grating provides effectively 100% diffraction efficiency at its design wavelegth, and surpasses an equivalent fused silica grating over the full octave.Comment: 15 pages, 7 figure
    corecore