2,396 research outputs found

    An Integro-Differential Structure for Dirac Distributions

    Full text link
    We develop a new algebraic setting for treating piecewise functions and distributions together with suitable differential and Rota-Baxter structures. Our treatment aims to provide the algebraic underpinning for symbolic computation systems handling such objects. In particular, we show that the Green's function of regular boundary problems (for linear ordinary differential equations) can be expressed naturally in the new setting and that it is characterized by the corresponding distributional differential equation known from analysis.Comment: 38 page

    Mass concentration in a nonlocal model of clonal selection

    Full text link
    Self-renewal is a constitutive property of stem cells. Testing the cancer stem cell hypothesis requires investigation of the impact of self-renewal on cancer expansion. To understand better this impact, we propose a mathematical model describing dynamics of a continuum of cell clones structured by the self-renewal potential. The model is an extension of the finite multi-compartment models of interactions between normal and cancer cells in acute leukemias. It takes a form of a system of integro-differential equations with a nonlinear and nonlocal coupling, which describes regulatory feedback loops in cell proliferation and differentiation process. We show that such coupling leads to mass concentration in points corresponding to maximum of the self-renewal potential and the model solutions tend asymptotically to a linear combination of Dirac measures. Furthermore, using a Lyapunov function constructed for a finite dimensional counterpart of the model, we prove that the total mass of the solution converges to a globally stable equilibrium. Additionally, we show stability of the model in space of positive Radon measures equipped with flat metric. The analytical results are illustrated by numerical simulations

    Adaptation and migration of a population between patches

    Full text link
    A Hamilton-Jacobi formulation has been established previously for phenotypically structured population models where the solution concentrates as Dirac masses in the limit of small diffusion. Is it possible to extend this approach to spatial models? Are the limiting solutions still in the form of sums of Dirac masses? Does the presence of several habitats lead to polymorphic situations? We study the stationary solutions of a structured population model, while the population is structured by continuous phenotypical traits and discrete positions in space. The growth term varies from one habitable zone to another, for instance because of a change in the temperature. The individuals can migrate from one zone to another with a constant rate. The mathematical modeling of this problem, considering mutations between phenotypical traits and competitive interaction of individuals within each zone via a single resource, leads to a system of coupled parabolic integro-differential equations. We study the asymptotic behavior of the stationary solutions to this model in the limit of small mutations. The limit, which is a sum of Dirac masses, can be described with the help of an effective Hamiltonian. The presence of migration can modify the dominant traits and lead to polymorphic situations

    Toward a global description of the nucleus-nucleus interaction

    Get PDF
    Extensive systematization of theoretical and experimental nuclear densities and of optical potential strengths exctracted from heavy-ion elastic scattering data analyses at low and intermediate energies are presented.The energy-dependence of the nuclear potential is accounted for within a model based on the nonlocal nature of the interaction.The systematics indicate that the heavy-ion nuclear potential can be described in a simple global way through a double-folding shape,which basically depends only on the density of nucleons of the partners in the collision.The poissibility of extracting information about the nucleon-nucleon interaction from the heavy-ion potential is investigated.Comment: 12 pages,12 figure

    Relativistic Hartree-Bogoliubov theory with finite range pairing forces in coordinate space: Neutron halo in light nuclei

    Get PDF
    The Relativistic Hartree Bogoliubov (RHB) model is applied in the self-consistent mean-field approximation to the description of the neutron halo in the mass region above the s-d shell. Pairing correlations and the coupling to particle continuum states are described by finite range two-body forces. Finite element methods are used in the coordinate space discretization of the coupled system of Dirac-Hartree-Bogoliubov integro-differential eigenvalue equations, and Klein-Gordon equations for the meson fields. Calculations are performed for the isotopic chains of Ne and C nuclei. We find evidence for the occurrence of neutron halo in heavier Ne isotopes. The properties of the 1f-2p orbitals near the Fermi level and the neutron pairing interaction play a crucial role in the formation of the halo. Our calculations display no evidence for the neutron halo phenomenon in C isotopes.Comment: 7 pages, Latex, 5 P.S. Figures, To appear in Phys. Rev. Let

    Solving the Dirac equation with nonlocal potential by Imaginary Time Step method

    Full text link
    The Imaginary Time Step (ITS) method is applied to solve the Dirac equation with the nonlocal potential in coordinate space by the ITS evolution for the corresponding Schr\"odinger-like equation for the upper component. It is demonstrated that the ITS evolution can be equivalently performed for the Schr\"odinger-like equation with or without localization. The latter algorithm is recommended in the application for the reason of simplicity and efficiency. The feasibility and reliability of this algorithm are also illustrated by taking the nucleus 16^{16}O as an example, where the same results as the shooting method for the Dirac equation with localized effective potentials are obtained

    Nonlinear mean-field Fokker-Planck equations and their applications in physics, astrophysics and biology

    Get PDF
    We discuss a general class of nonlinear mean-field Fokker-Planck equations [P.H. Chavanis, Phys. Rev. E, 68, 036108 (2003)] and show their applications in different domains of physics, astrophysics and biology. These equations are associated with generalized entropic functionals and non-Boltzmannian distributions (Fermi-Dirac, Bose-Einstein, Tsallis,...). They furthermore involve an arbitrary binary potential of interaction. We emphasize analogies between different topics (two-dimensional turbulence, self-gravitating systems, Debye-H\"uckel theory of electrolytes, porous media, chemotaxis of bacterial populations, Bose-Einstein condensation, BMF model, Cahn-Hilliard equations,...) which were previously disconnected. All these examples (and probably many others) are particular cases of this general class of nonlinear mean-field Fokker-Planck equations

    On the velocity distributions of the one-dimensional inelastic gas

    Full text link
    We consider the single-particle velocity distribution of a one-dimensional fluid of inelastic particles. Both the freely evolving (cooling) system and the non-equilibrium stationary state obtained in the presence of random forcing are investigated, and special emphasis is paid to the small inelasticity limit. The results are obtained from analytical arguments applied to the Boltzmann equation along with three complementary numerical techniques (Molecular Dynamics, Direct Monte Carlo Simulation Methods and iterative solutions of integro-differential kinetic equations). For the freely cooling fluid, we investigate in detail the scaling properties of the bimodal velocity distribution emerging close to elasticity and calculate the scaling function associated with the distribution function. In the heated steady state, we find that, depending on the inelasticity, the distribution function may display two different stretched exponential tails at large velocities. The inelasticity dependence of the crossover velocity is determined and it is found that the extremely high velocity tail may not be observable at ``experimentally relevant'' inelasticities.Comment: Latex, 14 pages, 12 eps figure
    corecore