We develop a new algebraic setting for treating piecewise functions and
distributions together with suitable differential and Rota-Baxter structures.
Our treatment aims to provide the algebraic underpinning for symbolic
computation systems handling such objects. In particular, we show that the
Green's function of regular boundary problems (for linear ordinary differential
equations) can be expressed naturally in the new setting and that it is
characterized by the corresponding distributional differential equation known
from analysis.Comment: 38 page