144 research outputs found

    Hybrid Polymer Electrolyte for Lithium-Oxygen Battery Application

    Get PDF
    The transition from fossil fuels to renewable resources has created more demand for energy storage devices. Lithium-oxygen (Li-O2) batteries have attracted much attention due to their high theoretical energy densities. They, however, are still in their infancy and several fundamental challenges remain to be addressed. Advanced analytical techniques have revealed that all components of a Li-O2 battery undergo undesirable degradation during discharge/charge cycling, contributing to reduced cyclability. Despite many attempts to minimize the anode and cathode degradation, the electrolyte remains as the leading cause for rapid capacity fading and poor cyclability in Li-O2 batteries. In this dissertation, composite gel polymer electrolytes (cGPEs) consisting of a UV-curable polymer, tetragylme based electrolyte, and glass microfibers with a diameter of ~1 µm and an aspect ratio of \u3e100 have been developed for their use in Li-O2 battery application. The Li-O2 batteries containing cGPEs showed superior charge/discharge cycling for 500 mAh.g-1 cycle capacity with as high as 400% increase in cycles for cGPE over gel polymer electrolytes (GPEs). Results using in-situ electrochemical impedance spectroscopy (EIS), Raman spectroscopy, and scanning electron microscopy revealed that the source of the improvement was the reduction of the rate of lithium carbonates formation on the surface of the cathode. This decrease in formation rate afforded by cGPE-containing batteries was possible due to the decrease of the rate of electrolyte decomposition. The increase in solvated to the paired Li+ ratio at the cathode, afforded by increased lithium transference number, helped lessen the probability of superoxide radicals reacting with the tetraglyme solvent. This stabilization during cycling helped prolong the cycling life of the batteries. The effect of ion complexes on the stability of liquid glyme based electrolytes with various lithium salt concentrations has also been investigated for Li-O2 batteries. Charge/discharge cycling with a cycle capacity of 500 mAh·g-1 showed an improvement as high as 300% for electrolytes containing higher lithium salt concentrations. Analysis of the Raman spectroscopy data of the electrolytes suggested that the increase in lithium salt concentration afforded the formation of cation-solvent complexes, which in turn, mitigated the tetragylme degradation

    Construction of an Initiated Chemical Vapor Deposition (iCVD) Reactor and Deposition of Polytetrafluoroethylene (Ptfe) Thin Films Using Perfluoro-1-Octanesulfonyl Fluoride as the Initiator

    Get PDF
    Initiated Chemical Vapor Deposition (iCVD) is a surface polymerization technique that is different from other traditional chemical vapor deposition (CVD) techniques. iCVD is carried under a vacuum without the use of solvents, therefore eliminating contaminations. An initiator and a monomer are metered into a vacuum reactor chamber. Inside the reaction chamber is an array of resistively heated filaments and a cooled substrate stage. Monomer species adsorb on to the cooled substrate surface underneath the filament array. The thermal energy from the resistively heated filaments breaks the bonds in the initiator molecule, generating free radicals. These generated free radicals chemisorb to the monomer initiating an in situ free radical polymerization reaction which results in the formation of a polymer thin film. The overall objective of this research was to assemble a custom-built iCVD reactor and use it to grow polytetrafluoroethylene (PTFE) thin films. Perfluoro-1-octanesulfonyl fluoride (PFOSF) was used as the initiator while hexafluoropropylene oxide (HFPO) was used as the monomer. HPFO is well known for its good thermal decomposition. Nichrome filaments were resistively heated at temperature less than 400 ˚C and substrate surface cooled between 10 ˚C and 35 ˚C. Various characterization techniques such FTIR, XPS, SEM, and EDX were performed on as-deposited iCVD PTFE thin films. FTIR spectra of iCVD PTFE showed that the as-deposited iCVD thin films are spectroscopically identical to bulk PTFE

    Conformal Antennas and Arrays with Layers Consisting of Copper and Graphene-based Conductors for Redundancy Properties

    Get PDF
    Graphene is a new promising material with unique electrical, mechanical, optical and thermal characteristics. The use of graphene in the design of an antenna and other electromagnetic passive devices would be beneficial for miniaturization, efficient dynamic tuning, monolithic integration with graphene RF nano-electronics, and even transparency, mechanical flexibility, andreliability. However, there are some challenges to fabricate and design an antenna with pure graphene embedded in the layout. Here, an advanced study on the electrical and mechanical properties of the graphene-based conductive material (not pure graphene), and how this material can be utilized in developing a first-ever graphene-based conformal antenna array for wireless communication systems has been done. More specifically, the important factors for antenna design, such as electrical and mechanical properties, will be studied here to ensure an effective and efficient design. Next, a graphene-based antenna array on a planar surface will be designed to validate the electrical and mechanical properties, and finally, the trade-off of the graphene-based antenna array on a conformal surface is investigated. To mitigate the challenges of designing a graphene-based conformal antenna array, proper care is needed to achieve the optimal performance of the antenna array system. These new mechanisms of the graphene-based conformal antenna arrays will bring new possibilities in conformal antenna usage and wearable antenna applications for the first time

    Integrated Field Emission Electron Guns With Single Vertically Aligned Carbon Nanofiber Cathodes

    Get PDF
    Nanostructured carbon-based materials hold great promise as field emission (FE) cathodes for integrated FE devices. These materials display remarkable FE properties as a consequence of their unique chemical and physical properties. Among this class of materials, the vertically aligned carbon nanofiber (VACNF) is exceptional in that its synthesis can be deterministically controlled. This has enabled the characterization of the FE properties of individual VACNF grown on Si substrates. The results of these studies indicate that the VACNF is an excellent candidate for integrated FE electron sources where the generation of a focused electron beam from a microscale structure is required. In this dissertation, the design, fabrication and characterization of FE electron sources using single VACNF cathodes is presented. This work emphasized the construction of devices using standard wafer-scale microfabrication techniques. Consequently, the compatibility of VACNF with these processes was explored in detail. Results showed that the VACNF could be incorporated into well established processes for synthesizing integrated FE electron sources. Gated cathode electron sources and sources incorporating an integrated electrostatic focusing electrode were designed using single carbon nanofiber cathodes. Numerical simulations of the device structures were performed to analyze the electric field structure within the devices. Following fabrication of these devices, testing was performed to verify device operation demonstrating their functionality

    Plasmonic Paper as a Novel Chem/Bio Detection Platform

    Get PDF
    The time varying electric field of electromagnetic (EM) radiation causes oscillation of conduction electrons of metal nanoparticles. The resonance of such oscillation, termed localized surface plasmon resonance (LSPR), falls into the visible spectral region for noble metals such as gold, silver and copper. LSPR of metal nanostructures is sensitive to numerous factors such as composition, size, shape, dielectric properties of surrounding medium, and proximity to other nanostructures (plasmon coupling). The sensitivity of LSPR to the refractive index of surrounding medium renders it an attractive platform for chemical and biological sensing. When the excitation light is in resonance with the plasmon frequency of the metal nanoparticle, it radiates a characteristic dipolar radiation causing a characteristic spatial distribution in which certain areas show higher EM field intensity, which is manifested as electromagnetic field enhancement. Surface enhanced Raman scattering (SERS) involves dramatic enhancement of the intensity of the Raman scattering from the analyte adsorbed on or in proximity to a nanostructured metal surface exhibiting such strong EM field enhancement. Both LSPR and SERS have been widely investigated for highly sensitive and label-free chemical & biological sensors. Most of the SERS/LSPR sensors demonstrated so far rely on rigid planar substrates (e.g., glass, silicon) owing to the well-established lithographic approaches, which are routinely employed for either fabrication or assembly of plasmonic nanotransducers. In many cases, their rigid nature results in low conformal contact with the sample and hence poor sample collection efficiency. We hypothesized that paper substrates are an excellent alternative to conventional rigid substrates to significantly improve the (multi-)functionality of LSPR/SERS substrates, dramatically simplify the fabrication procedures and lower the cost. The choice of paper substrates for the implementation of SERS/LSPR sensors is rationalized by numerous advantages such as (i) high specific surface area resulting in large dynamic range (ii) excellent wicking properties for rapid uptake and transport of analytes to test domains (iii) compatibility with conventional printing approaches, enabling multi-analyte plasmonic sensors (iv) significant reduction in cost (v) smaller sample volume requirement (vi) easy disposability. In this work, we have introduced novel SERS and LSPR substrates based on conventional filter paper decorated with plasmonic nanostructures, called plasmonic paper. A flexible SERS substrate based on common filter paper adsorbed with gold nanostructures allows conformal contact with real-world surfaces, enabling rapid trace detection. To realize multifunctional SERS substrates, paper substrates were cut into star-shaped structures and the fingers were differentially functionalized with polyelectrolytes that allows separation and pre-concentration of different components of a complex sample in a small surface area by taking advantage of the properties of cellulose paper and shape-enhanced capillary effect. Plasmonic paper can also serve as a novel LSPR biosensing platform by decorating the paper substrate with biofunctionalized nanostructures. Furthermore, calligraphy approach was employed to create well-isolated test domains on paper substrates using functionalized plasmonic nanostructures as ink for multiplexed chemical sensing and label-free biosensing. These plasmonic paper substrates exhibit excellent sample collection efficiency and do not require complex fabrication processes. This class of substrates is expected to have applications not only to first responders and military personal but also to several areas of medical, food analysis, and environmental research

    FABRICATION, CHARACTERIZATION AND APPLICATIONS OF HIGHLY CONDUCTIVE WET-SPUN PEDOT:PSS FIBERS

    Get PDF
    Smart electronic textiles cross conventional uses to include functionalities such as light emission, health monitoring, climate control, sensing, storage and conversion of energy, etc. New fibers and yarns that are electrically conductive and mechanically robust are needed as fundamental building blocks for these next generation textiles. Conjugated polymers are promising candidates in the field of electronic textiles because they are made of earth-abundant, inexpensive elements, have good mechanical properties and flexibility, and can be processed using low-cost large-scale solution processing methods. Currently, the main method to fabricate electrically conductive fibers or yarns from conjugated polymers is the deposition of the conducting polymer onto an inert fiber support by using different techniques. However, the volume occupied by the electrically active coating is generally very small relative to the volume of insulating fiber acting as support. Therefore, when considering the total volume, the bulk electrical conductivity of these coated textiles is usually small, often lower than 10 S/cm, which limits their applications. An interesting alternate approach would be to fabricate fibers directly from the electrically conductive material avoiding the need for an inert-fiber support. Therefore, in this work, a wet-spinning process for the fabrication of PEDOT:PSS fibers with high electrical conductivity and robust mechanical properties is described. The process includes a coagulating step, a drawing step in a dimethyl sulfoxide bath and two drying steps. The effect that drawing the fibers in the DMSO bath has on the electrical, thermoelectric and mechanical properties of the fibers is studied and correlated to the changes observed in the fibers’ structure. In general, the fibers with the highest state of preferential orientation of crystal planes are also the most conductive and stiffest. In order to further improve the electrical properties of the fibers, substituting the DMSO drawing step by a sulfuric acid drawing step in the fabrication process is investigated. The sulfuric acid drawn fibers have higher electrical conductivities and better mechanical properties than the DMSO drawn fibers. In fact, electrical conductivities as high as 4039 S/cm and break stresses around 550 MPa are obtained which, to the best of our knowledge, are the highest reported for a PEDOT:PSS fiber. The mechanism by which sulfuric acid enhances the electrical and mechanical properties of the fibers is also investigated. It is found that the sulfuric acid treatment is very efficient removing PSS from the fibers while also promoting substitution of PSS by sulfates as counterions. The removal of PSS and substitution of counterions leads to a reorganization of the crystal structure of the fibers that is more favorable for charge transport. The last part of this work focuses on the application of the fibers. The mechanical properties of the fibers are compared to traditional textile fibers. Additionally, the time stability of the electrical conductivity of the fibers is also studied. Moreover, the maximum current carrying capacity or ampacity of the fibers is investigated together with some Joule heating-based applications such as thermochromic textiles. A thermoelectric textile device is also demonstrated using the fibers as the p-type legs. Finally, electrochemical applications of the fibers are discussed and demonstrated

    웨어러블 센서 및 에너지 소자의 공간 신호 및 열 전달 증진을 위한 나노복합체를 이용한 기계적 순응성 향상

    Get PDF
    학위논문 (박사) -- 서울대학교 대학원 : 공과대학 전기·정보공학부, 2020. 8. 홍용택.Electronic skin (e-skin) that mimics mechanical and functional properties of human skin has a strong impact on the field of wearable electronics. Beyond being just wearable, e-skin seamlessly interfaces human, machine, and environment by perfectly adhering to soft and time-dynamic three-dimensional (3D) geometries of human skin and organs. Real-time and intimate access to the sources of physical and biological signals can be achieved by adopting soft or flexible electronic sensors that can detect pressure, strain, temperature, and chemical substances. Such extensions in accessible signals drastically accelerate the growth of the Internet of Things (IoT) and expand its application to health monitoring, medical implants, and novel human-machine interfaces. In wearable sensors and energy devices, which are essential building blocks for skin-like functionalities and self-power generation in e-skin, spatial signals and heat are transferred from time-dynamic 3D environments through numerous geometries and electrical devices. Therefore, the transfer of high-fidelity signals or a large amount of heat is of great importance in these devices. The mechanical conformability potentially enhances the signal/heat transfer by providing conformal geometries with the 3D sources. However, while the relation between system conformability and electrical signals has been widely investigated, studies on its effect on the transfer of other mechanical signals and heat remain in their early stages. Furthermore, because active materials and their designs for sensors and energy devices have been optimized to maximize their performances, it is challenging to develop ultrathin or soft forms of active layers without compromising their performances. Therefore, many devices in these fields suffer from poor spatial signal/heat transfer due to limited conformability. In this dissertation, to ultimately augment the functionalities of wearable sensors and energy devices, comprehensive studies on conformability enhancement via composite materials and its effect on signal/heat transfer, especially in pressure sensors and thermoelectric generators (TEGs), are conducted. A solution for each device is carefully optimized to reinforce its conformability, taking account of the structure, characteristics, and potential advantages of the device. As a result, the mechanical conformability of each device is significantly enhanced, improving signal/heat transfer and consequently augmenting its functionalities, which have been considered as tough challenges in each area. The effect of the superior conformability on signal/heat transfer is systematically analyzed via a series of experiments and finite element analyses. Demonstrations of practical wearable electronics show the feasibility of the proposed strategies. For wearable pressure sensors, ultrathin piezoresistive layers are developed using cellulose/nanowire nanocomposites (CNNs). The unique nanostructured surface enables unprecedentedly high sensor performances such as ultrahigh sensitivity, wide working range, and fast response time without microstructures in sensing layers. Because the ultrathin pressure sensor perfectly conforms to 3D contact objects, it transfers pressure distribution into conductivity distribution with high spatial fidelity. When integrated with a quantum dot-based electroluminescent film, the transferred high-resolution pressure distribution is directly visualized without the need for pixel structures. The electroluminescent skin enables real-time smart touch interfaces that can identify the user as well as touch force and location. For high-performance wearable TEGs, an intrinsically soft heat transfer and electrical interconnection platform (SHEP) is developed. The SHEP comprises AgNW random networks for intrinsically stretchable electrodes and magnetically self-assembled metal particles for soft thermal conductors (STCs). The stretchable electrodes lower the flexural rigidity, and the STCs enhance the heat exchange capability of the soft platform, maintaining its softness. As a result, a compliant TEG with SHEPs forms unprecedentedly conformal contact with 3D heat sources, thereby enhancing the heat transfer to the TE legs. This results in significant improvement in thermal energy harvesting on 3D surfaces. Self-powered wearable warning systems indicating an abrupt temperature increase with light-emitting alarms are demonstrated to show the feasibility of this strategy. This study provides a systematic and comprehensive framework for enhancing mechanical conformability of e-skin and consequently improving the transfer of spatial signals and energy from time-dynamic and complex 3D surfaces. The framework can be universally applied to other fields in wearable electronics that require improvement in signal/energy transfer through conformal contact with 3D surfaces. The materials, manufacturing methods, and devices introduced in this dissertation will be actively exploited in practical and futuristic applications of wearable electronics such as skin-attachable advanced user interfaces, implantable bio-imaging systems, nervous systems in soft robotics, and self-powered artificial tactile systems.인간 피부의 기계적 특성 및 기능을 모방하는 전자피부(electronic skin, e-skin)는 웨어러블 전자기기 분야의 트렌드를 바꾸고 있다. 기존의 웨어러블 전자기기가 단지 착용하는데 그쳤다면, 전자피부는 인간의 피부와 장기 표면에 완벽하게 붙어 동작함으로써 기존에는 접근 불가능 했던 다양한 생체 신호를 높은 신뢰도로 감지하고 처리할 수 있다. 실시간으로 감지 가능한 생체 신호의 확장은 사물인터넷(Internet of Things, IoT)의 성장을 획기적으로 가속화하고 헬스케어, 의료용 임플란트, 소프트 로봇 및 새로운 휴먼 머신 인터페이스로의 응용을 가능하게 한다. 전자피부의 필수요소인 센서와 에너지 소자에서는 삼차원 표면의 공간신호와 열에너지를 손실 없이 전달하는 것이 매우 중요하다. 이러한 공간 신호와 열에너지는 다양한 기하 구조와 전자소자를 거쳐 처리 가능한 신호로 전달된다. 이 과정에서 3차원 표면에 빈틈없이 붙는 기계적 순응성(mechanical conformability)은 공간신호와 열에너지를 왜곡 없이 전달하는 것을 가능하게 한다. 전자피부의 기계적 순응성을 증가시키는 방법은 크게 다음과 같이 두 가지로 나눌 수 있다. (1) 전자피부를 두께를 낮추는 전략과 (2) 전자피부의 영률(Youngs modulus)을 낮추어 고무와 같이 부드럽게 만드는 전략이다. 하지만, 기존 센서 및 에너지 소자를 위한 재료와 디자인이 각 장치의 성능을 향상시키는 것에 초점이 맞추어져 있기 때문에, 고성능을 유지하면서 매우 얇거나 연질 형태의 소자를 개발하는 것은 매우 도전적이었다. 따라서 고유연성을 확보하지 못한 기존 센서와 에너지 소자는 공간 신호 및 열 전달이 심각하게 저해되고, 이로 인해 공간 압력의 왜곡, 열전 효율의 저하와 같은 한계를 보여준다. 이 논문에서는 웨어러블 센서와 에너지 소자의 비약적인 기능 향상을 궁극적인 목표로, 각 소자에 최적화된 재료와 제작방식, 구조를 이용해 이들의 기계적 순응성을 획기적으로 높이고, 이를 통한 공간 신호 및 열 전달의 향상을 심도 있게 분석한다. 특히, 두께를 낮추거나 영률을 낮추는 두 가지 전략 중 각 소자에 가장 적합한 전략을 선택하고, 체계적인 방법론을 적용하여 이들의 기계적 순응성과 공간 신호 및 열 전달을 증진시킨다. 이 과정에서 나노융복합재료가 각 전략을 구현하는 핵심 요소로 작용한다. 각 소자에 따른 구체적인 연구 내용은 다음과 같다. 첫째, 압력 센서의 경우 초박막 셀룰로오스/나노와이어 복합체를 이용하여 고성능의 저항방식 압력 센서를 개발한다. 이러한 복합체는 표면에 형성된 고유한 나노구조 덕분에 마이크로구조체를 이용한 기존 압력 센서보다 월등한 성능을 보여준다. 특히, 1 마이크로 미터 수준의 매우 얇은 두께로 인해 접촉 물체의 복잡한 형상에 완벽하게 순응할 수 있고, 이로 인해 고해상도 압력 분포를 왜곡 없이 저항 분포로 전달할 수 있다. 이러한 압력 센서를 양자 점 발광소자와 결합하여 고해상도의 압력분포를 높은 정밀도로 이미징 가능한 발광 소자를 보고한다. 둘째, 열전 소자의 경우 기존의 금속 전극으로 인한 낮은 유연성과 탄성중합체의 낮은 열 전도도를 극복하기 위해 열 전달 능력이 획기적으로 향상된 낮은 영률의 소프트 전극 플랫폼을 개발한다. 소프트 플랫폼은 내부에 은 나노와이어 기반의 신축성 전극을 갖고 있으며, 자기장을 통해 자가 정렬된 금속 입자들이 효과적으로 외부 열을 열전 재료에 전달한다. 이를 기반으로 제작된 고유연성 열전 소자는 삼차원 열원에 빈틈없이 붙어 열 손실을 최소화 하며, 이로 인해 높은 열전 효율을 달성한다. 이 논문은 다양한 전자소자의 유연성을 증진시키고 이를 통한 공간 신호 및 열 전달의 향상을 도모하고 분석하는 체계적이고 종합적인 방법론을 제시했다는 데 큰 의의가 있다. 제안된 방법론은 분야에 국한되지 않고 다양한 소자의 개발에 적용할 수 있어 웨어러블 기기와 전자피부 분야의 기계적, 기능적 발전에 크게 기여할 것으로 기대된다. 뿐만 아니라 이 연구에서 최초로 개발한 소재 및 소자들은 다양한 웨어러블 어플리케이션과 산업에 곧바로 융합되고 응용될 수 있다. 이를 통해 신체 부착 및 삽입 가능한 생체 이미징 시스템, 소프트 로봇을 위한 신경 체계, 자가 발전이 가능한 인공 감각 기관, 가상 및 증강 현실을 위한 새로운 유저 인터페이스와 같은 미래 지향적 융합 어플리케이션의 실현을 앞당길 것으로 기대된다.Chapter 1. Introduction 1 1.1 Wearable Electronics and Electronic Skin 1 1.2 Mechanical Conformability of Electronic Skin 6 1.2.1 Definition and Advantages 6 1.2.2 Thickness-Based Conformability 11 1.2.3 Softness-Based Conformability 15 1.3 Conformability for Enhanced Signal/Heat Transfer in Wearable Sensors and Energy Devices 19 1.3.1 Conformability for Spatial Signal Transfer in Pressure Sensors 20 1.3.2 Conformability for Heat Transfer in Thermoelectric Generators 22 1.4 Motivation and Organization of This Dissertation 24 Chapter 2. Ultrathin Cellulose Nanocomposites for High-Performance Piezoresistive Pressure Sensors 28 2.1 Introduction 28 2.2 Experimental Section 31 2.2.1 Fabrication of the CNNs and Pressure Sensors 31 2.2.2 Measurements 34 2.3 Results and Discussion 38 2.3.1 Morphology of CNNs 38 2.3.2 Piezoresistive Characteristics of CNNs 41 2.3.3 Mechanism of High Sensitivity and Great Linearity 45 2.3.4 Fast Response Time of CNN-Based Pressure Sensors 49 2.3.5 Cyclic Reliability of CNN-Based Pressure Sensors 53 2.3.6 Mechanical Reliability and Conformability 57 2.3.7 Temperature and Humidity Tolerance 63 2.4 Conclusion 66 Chapter 3. Ultraflexible Electroluminescent Skin for High-Resolution Imaging of Pressure Distribution 67 3.1 Introduction 67 3.2 Main Concept 70 3.3 Experimental Section 72 3.3.1 Fabrication of Pressure-Sensitive Photonic Skin 72 3.3.2 Characterization of Photonic Skin 74 3.4 Results and Discussion 76 3.4.1 Structure and Morphology of Photonic Skin 76 3.4.2 Pressure Response of Photonic Skin 79 3.4.3 Effect of Conformability on Spatial Resolution 85 3.4.4 Demonstration of High-Resolution Pressure Imaging 99 3.4.5 Pressure Data Acquisition 104 3.4.6 Application to Smart Touch Interfaces 106 3.5 Conclusion 109 Chapter 4. Intrinsically Soft Heat Transfer and Electrical Interconnection Platforms Using Magnetic Nanocomposites 110 4.1 Introduction 110 4.2 Experimental Section 115 4.2.1 Fabrication of SHEPs 115 4.2.2 Measurements 117 4.3 Results and Discussion 119 4.3.1 Fabrication Scheme and Morphology of SHEPs 119 4.3.2 Calculation of Particle Concentration in STCs 124 4.3.3 Enhancement of Heat Transfer Ability via Magnetic Self-Assembly 127 4.3.4 Softness of STCs 131 4.3.5 Mechanical Reliability of Stretchable Electrodes 133 4.3.6 Optimization of Magnetic Self-Assembly Process 135 4.4 Conclusion 139 Chapter 5. Highly Conformable Thermoelectric Generators with Enhanced Heat Transfer Ability 140 5.1 Introduction 140 5.2 Experimental Section 142 5.2.1 Fabrication of Compliant TEGs 142 5.2.2 Measurements 144 5.2.3 Finite Element Analysis 147 5.3 Results and Discussion 149 5.3.1 Enhancement of TE Performance via STCs 149 5.3.2 Mechanical Reliability of Compliant TEGs 157 5.3.3 Enhanced TE Performance on 3D Surfaces via Conformability 162 5.3.4 Self-Powered Wearable Applications 167 5.4 Conclusion 171 Chapter 6. Summary, Limitations, and Recommendations for Future Researches 172 6.1 Summary and Conclusion 172 6.2 Limitations and Recommendations 176 6.2.1 Pressure Sensors and Photonic Skin 176 6.2.2 Compliant TEGs 177 Bibliography 178 Publication List 186 Abstract in Korean 192Docto

    Synthesis Of Graphene Nanomaterials And Their Application In Electrochemical Energy Storage

    Get PDF
    The need to store and use energy on diverse scales in a modern technological society necessitates the design of large and small energy systems, among which electrical energy storage systems such as batteries and capacitors have attracted much interest in the past several decades. Supercapacitors, also known as ultracapacitors, or electrochemical capacitors, with fast power delivery and long cycle life are complementing or even replacing batteries in many applications. The rapid development of miniaturized electronic devices has led to a growing need for rechargeable micro-power sources with high performance. Among different sources, electrochemical micro-capacitors or micro-supercapacitors provide higher power density than their counterparts and are gaining increased interest from the research and engineering communities. Rechargeable Li ion batteries with high energy and power density, long cycling life, high charge-discharge rate (1C - 3C) and safe operation are in high demand as power sources and power backup for hybrid electric vehicles and other applications. In the present work, graphene-based graphene materials have been designed and synthesized for electrochemical energy storage applications, e.g., conventional supercapacitors (macro-supercapacitors), microsupercapacitors and lithium ion batteries. Factors influencing the formation and structure of graphitic petals grown by microwave plasma-enhanced chemical vapor deposition on oxidized silicon substrates were investigated through process variation and materials analysis. Insights gained into the growth mechanism of these graphitic petals suggest a simple scribing method can be used to control both the location and formation of petals on flat Si substrates. Transitional metal oxides and conducting polymers have been coated on the graphitic petal-based electrodes by facile chemical methods for multifunctional energy storage applications. Detailed electrochemical characterization (e.g., cyclic voltammetry and constant galvanostatic charge/discharge) has been carried out to evaluate the performance of electrodes

    Solvent Evaporation-Assisted Three-Dimensional Printing of Piezoelectric Sensors from Polyvinylidene Fluoride and its Nanocomposites

    Get PDF
    RÉSUMÉ Les matériaux piézoélectriques sont connus pour générer des charges électriques lors de leur déformation. Leur capacité à transformer linéairement l'énergie mécanique en énergie électrique, et vice versa, est utilisée dans la détection, l'actionnement, la récupération et le stockage d'énergie. Ces appareils trouvent des applications dans les domaines de l'aérospatiale, de la biomédecine, des systèmes micro-électromécaniques, de la robotique et des sports, pour n'en nommer que quelques-uns. On retrouve la propriété de piézoélectricité dans certaines céramiques, roches, monocristaux et quelques polymères. Le poly(fluorure de vinylidène) (PVDF) est un polymère piézoélectrique qui présente un coefficient piézoélectrique très élevé par rapport aux céramiques, ce qui laisse présager des applications de détection et de récupération d'énergie. La facilité de fabrication, la flexibilité et la biocompatibilité du PVDF sont autant de qualité qui en font un très bon candidat pour ces applications. Les dispositifs actuels à base de PVDF commercial sont disponibles en films plats ou en fibres unidimensionnelles (1D). L'impression tridimensionnelle (3D) du PVDF peut amener à des sensibilités, souplesses et capacités de fabrication accrues des capteurs embarqués en cas d'impression multi-matériaux. Le PVDF est un polymère semi-cristallin possédant cinq polymorphes, dont la phase β polaire qui présente les meilleures propriétés piézoélectriques. Malheureusement, le PVDF, provenant de la fusion ou de la dissolution, cristallise en une phase α non polaire thermodynamiquement stable. Diverses transformations physiques telles que le recuit, l'addition de charge, l'étirement ou le polissage sont effectuées pour transformer la phase α en phase β. En raison de la cristallisation inhérente du PVDF dans la phase α, il y a eu très peu de tentatives de fabrication de structures 3D à partir du PVDF. L'électrofilage en champ proche et la Déposition de Filament Fondu ont permis de fabriquer certaines structures 3D couche par couche avec du PVDF, soit avec l'application de hautes tensions électriques, soit avec la fusion à haute température du polymère. Et les deux nécessitent un traitement de polarisation pour conférer la piézoélectricité aux structures imprimés. Pour fabriquer des capteurs incorporés ou conformes, sur des substrats donnés, il est essentiel de ne pas avoir d'effets négatifs sur les matériaux adjacents à cause de la polarisation pendant le processus d'impression. Ainsi, dans ce travail, nous avons développé un procédé d'impression 3D qui crée des structures PVDF principalement en phase β, à température ambiante et sans application de tension de polarisation.----------ABSTRACT Piezoelectric materials are known to generate electric charges upon deformation. Their ability to linearly transform mechanical energy into electrical energy and vice versa, is utilized in sensing, actuation, transducing, energy harvesting and storage. These devices find applications in aerospace, biomedicine, micro electromechanical systems, robotics and sports, to name a few. Piezoelectricity is found in some ceramics, rocks, single crystals and a few polymers. Polyvinylidene fluoride (PVDF) is a piezoelectric polymer that exhibits a very high piezoelectric stress coefficient as compared to the ceramics, making it the forerunner for sensing and energy harvesting applications. PVDF’s formability, flexibility and biocompatibility, further reinforce its candidature. Present commercial PVDF-based devices come in flat films or one-dimensional (1D) fibers. Three-dimensional (3D) printing of PVDF leads to higher sensitivity, better compliance, and ability to print embedded sensors in case of multi-material printing. PVDF is a semi-crystalline polymer possessing five polymorphs, of which the polar β-phase exhibits highest piezoelectric properties. Unfortunately, PVDF from melt or solution crystallizes into a thermodynamically stable non-polar α-phase. Various physical transformations like annealing, filler addition, stretching or poling are carried out to transform the α-phase into β-phase. Due to the inherent crystallization of PVDF into α-phase, there have been very few attempts in fabricating 3D structures from PVDF. Near-field electrospinning and fused deposition modelling have demonstrated some layer-by-layer 3D structures with PVDF, either with application of high electric voltages or high temperature melting of the polymer, respectively. Also, both these techniques require a poling treatment to impart the desired piezoelectricity to the printed features. To fabricate embedded or conformal sensors on given substrates, it is essential to not have any adverse effects on the adjacent or substrate materials due to poling during the printing process. Thus, in this work, we develop a 3D printing process, that creates PVDF structures that inherently crystallize in the piezoelectric oriented β-phase at room temperature without any applied voltages. Solvent-evaporation assisted 3D printing is employed to print 3D piezoelectric structures of PVDF based solutions. In this process, the polymer solution is filled into a syringe which is inserted into a pneumatic dispenser. The pneumatic dispenser is mounted on a robotic arm that is controlled via a computer program

    Development of Nanofiber Scaffolds with Controllable Structure and Mineral Content for Tendon-to-Bone Repair

    Get PDF
    Rotator cuff tears are common and lead to significant pain and disability. Effective repair of torn rotator cuff tendons requires healing of tendon to bone. Unfortunately, healing does not reproduce the structural and compositional features of the natural tendon-to-bone bone attachment that are necessary for effective load transfer, and surgical repairs often rupture. Recent efforts for improving tendon-to-bone healing have focused on tissue engineering approaches. Scaffolds, cells, and/or growth factors are implanted at the repair site to guide the healing process and improve outcomes. To that end, a polymer-mineral tissue engineered scaffold was developed for this thesis which mimics two of the primary features of the tendon-to-bone insertion: aligned nanofibers and hydroxyapatite mineral crystals. The nanofibrous component was created by electrospinning poly lactic-co-glycolic acid to create non-woven mats. The bone-like mineral was then deposited onto the nanofibers using mineralizing solutions. The structure (alignment and crimp microstructure) and composition (mineral content and morphology) of the scaffolds were modulated to understand their influence on scaffold mechanics. Experimental and modeling results demonstrated that: (1) the orientation distribution of the nanofibers was a major determinant of modulus, strength, and anisotropy, (2) crimp microstructure was a major determinant of low strain non-linear mechanical behavior, (3) mineral content positively correlated with modulus and strength and negatively correlated with toughness, (4) mineral morphology was a significant determinant of its stiffening effect, and (5) scaffold-level stiffening by mineral was due to mineral cross-bridges between nanofibers, not due to stiffening of individual nanofibers. Scaffolds were tested in a rotator cuff tendon-to-bone animal model in an effort to improve healing, but were found to be ineffective; the scar-mediated wound healing response dominated over any effects from the scaffold. In summary, a number of mechanisms driving nanofiber mechanics were defined, but further study is needed to effectively apply these scaffolds in the setting of tendon-to-bone repair
    corecore