12,239 research outputs found

    Privacy and security in cyber-physical systems

    Get PDF
    Data privacy has attracted increasing attention in the past decade due to the emerging technologies that require our data to provide utility. Service providers (SPs) encourage users to share their personal data in return for a better user experience. However, users' raw data usually contains implicit sensitive information that can be inferred by a third party. This raises great concern about users' privacy. In this dissertation, we develop novel techniques to achieve a better privacy-utility trade-off (PUT) in various applications. We first consider smart meter (SM) privacy and employ physical resources to minimize the information leakage to the SP through SM readings. We measure privacy using information-theoretic metrics and find private data release policies (PDRPs) by formulating the problem as a Markov decision process (MDP). We also propose noise injection techniques for time-series data privacy. We characterize optimal PDRPs measuring privacy via mutual information (MI) and utility loss via added distortion. Reformulating the problem as an MDP, we solve it using deep reinforcement learning (DRL) for real location trace data. We also consider a scenario for hiding an underlying ``sensitive'' variable and revealing a ``useful'' variable for utility by periodically selecting from among sensors to share the measurements with an SP. We formulate this as an optimal stopping problem and solve using DRL. We then consider privacy-aware communication over a wiretap channel. We maximize the information delivered to the legitimate receiver, while minimizing the information leakage from the sensitive attribute to the eavesdropper. We propose using a variational-autoencoder (VAE) and validate our approach with colored and annotated MNIST dataset. Finally, we consider defenses against active adversaries in the context of security-critical applications. We propose an adversarial example (AE) generation method exploiting the data distribution. We perform adversarial training using the proposed AEs and evaluate the performance against real-world adversarial attacks.Open Acces

    Hiding Symbols and Functions: New Metrics and Constructions for Information-Theoretic Security

    Get PDF
    We present information-theoretic definitions and results for analyzing symmetric-key encryption schemes beyond the perfect secrecy regime, i.e. when perfect secrecy is not attained. We adopt two lines of analysis, one based on lossless source coding, and another akin to rate-distortion theory. We start by presenting a new information-theoretic metric for security, called symbol secrecy, and derive associated fundamental bounds. We then introduce list-source codes (LSCs), which are a general framework for mapping a key length (entropy) to a list size that an eavesdropper has to resolve in order to recover a secret message. We provide explicit constructions of LSCs, and demonstrate that, when the source is uniformly distributed, the highest level of symbol secrecy for a fixed key length can be achieved through a construction based on minimum-distance separable (MDS) codes. Using an analysis related to rate-distortion theory, we then show how symbol secrecy can be used to determine the probability that an eavesdropper correctly reconstructs functions of the original plaintext. We illustrate how these bounds can be applied to characterize security properties of symmetric-key encryption schemes, and, in particular, extend security claims based on symbol secrecy to a functional setting.Comment: Submitted to IEEE Transactions on Information Theor

    Privacy Against Statistical Inference

    Full text link
    We propose a general statistical inference framework to capture the privacy threat incurred by a user that releases data to a passive but curious adversary, given utility constraints. We show that applying this general framework to the setting where the adversary uses the self-information cost function naturally leads to a non-asymptotic information-theoretic approach for characterizing the best achievable privacy subject to utility constraints. Based on these results we introduce two privacy metrics, namely average information leakage and maximum information leakage. We prove that under both metrics the resulting design problem of finding the optimal mapping from the user's data to a privacy-preserving output can be cast as a modified rate-distortion problem which, in turn, can be formulated as a convex program. Finally, we compare our framework with differential privacy.Comment: Allerton 2012, 8 page

    Context-Aware Generative Adversarial Privacy

    Full text link
    Preserving the utility of published datasets while simultaneously providing provable privacy guarantees is a well-known challenge. On the one hand, context-free privacy solutions, such as differential privacy, provide strong privacy guarantees, but often lead to a significant reduction in utility. On the other hand, context-aware privacy solutions, such as information theoretic privacy, achieve an improved privacy-utility tradeoff, but assume that the data holder has access to dataset statistics. We circumvent these limitations by introducing a novel context-aware privacy framework called generative adversarial privacy (GAP). GAP leverages recent advancements in generative adversarial networks (GANs) to allow the data holder to learn privatization schemes from the dataset itself. Under GAP, learning the privacy mechanism is formulated as a constrained minimax game between two players: a privatizer that sanitizes the dataset in a way that limits the risk of inference attacks on the individuals' private variables, and an adversary that tries to infer the private variables from the sanitized dataset. To evaluate GAP's performance, we investigate two simple (yet canonical) statistical dataset models: (a) the binary data model, and (b) the binary Gaussian mixture model. For both models, we derive game-theoretically optimal minimax privacy mechanisms, and show that the privacy mechanisms learned from data (in a generative adversarial fashion) match the theoretically optimal ones. This demonstrates that our framework can be easily applied in practice, even in the absence of dataset statistics.Comment: Improved version of a paper accepted by Entropy Journal, Special Issue on Information Theory in Machine Learning and Data Scienc

    On the Measurement of Privacy as an Attacker's Estimation Error

    Get PDF
    A wide variety of privacy metrics have been proposed in the literature to evaluate the level of protection offered by privacy enhancing-technologies. Most of these metrics are specific to concrete systems and adversarial models, and are difficult to generalize or translate to other contexts. Furthermore, a better understanding of the relationships between the different privacy metrics is needed to enable more grounded and systematic approach to measuring privacy, as well as to assist systems designers in selecting the most appropriate metric for a given application. In this work we propose a theoretical framework for privacy-preserving systems, endowed with a general definition of privacy in terms of the estimation error incurred by an attacker who aims to disclose the private information that the system is designed to conceal. We show that our framework permits interpreting and comparing a number of well-known metrics under a common perspective. The arguments behind these interpretations are based on fundamental results related to the theories of information, probability and Bayes decision.Comment: This paper has 18 pages and 17 figure

    Multi-Layer Cyber-Physical Security and Resilience for Smart Grid

    Full text link
    The smart grid is a large-scale complex system that integrates communication technologies with the physical layer operation of the energy systems. Security and resilience mechanisms by design are important to provide guarantee operations for the system. This chapter provides a layered perspective of the smart grid security and discusses game and decision theory as a tool to model the interactions among system components and the interaction between attackers and the system. We discuss game-theoretic applications and challenges in the design of cross-layer robust and resilient controller, secure network routing protocol at the data communication and networking layers, and the challenges of the information security at the management layer of the grid. The chapter will discuss the future directions of using game-theoretic tools in addressing multi-layer security issues in the smart grid.Comment: 16 page

    Preserving Link Privacy in Social Network Based Systems

    Full text link
    A growing body of research leverages social network based trust relationships to improve the functionality of the system. However, these systems expose users' trust relationships, which is considered sensitive information in today's society, to an adversary. In this work, we make the following contributions. First, we propose an algorithm that perturbs the structure of a social graph in order to provide link privacy, at the cost of slight reduction in the utility of the social graph. Second we define general metrics for characterizing the utility and privacy of perturbed graphs. Third, we evaluate the utility and privacy of our proposed algorithm using real world social graphs. Finally, we demonstrate the applicability of our perturbation algorithm on a broad range of secure systems, including Sybil defenses and secure routing.Comment: 16 pages, 15 figure

    Privacy Games: Optimal User-Centric Data Obfuscation

    Full text link
    In this paper, we design user-centric obfuscation mechanisms that impose the minimum utility loss for guaranteeing user's privacy. We optimize utility subject to a joint guarantee of differential privacy (indistinguishability) and distortion privacy (inference error). This double shield of protection limits the information leakage through obfuscation mechanism as well as the posterior inference. We show that the privacy achieved through joint differential-distortion mechanisms against optimal attacks is as large as the maximum privacy that can be achieved by either of these mechanisms separately. Their utility cost is also not larger than what either of the differential or distortion mechanisms imposes. We model the optimization problem as a leader-follower game between the designer of obfuscation mechanism and the potential adversary, and design adaptive mechanisms that anticipate and protect against optimal inference algorithms. Thus, the obfuscation mechanism is optimal against any inference algorithm
    • …
    corecore